![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > Algebraic geometry
This volume contains revised papers that were presented at the international workshop entitled Computational Methods for Algebraic Spline Surfaces ("COMPASS"), which was held from September 29 to October 3, 2003, at Schloss Weinberg, Kefermarkt (A- tria). The workshop was mainly devoted to approximate algebraic geometry and its - plications. The organizers wanted to emphasize the novel idea of approximate implici- zation, that has strengthened the existing link between CAD / CAGD (Computer Aided Geometric Design) and classical algebraic geometry. The existing methods for exact implicitization (i. e., for conversion from the parametric to an implicit representation of a curve or surface) require exact arithmetic and are too slow and too expensive for industrial use. Thus the duality of an implicit representation and a parametric repres- tation is only used for low degree algebraic surfaces such as planes, spheres, cylinders, cones and toroidal surfaces. On the other hand, this duality is a very useful tool for - veloping ef?cient algorithms. Approximate implicitization makes this duality available for general curves and surfaces. The traditional exact implicitization of parametric surfaces produce global rep- sentations, which are exact everywhere. The surface patches used in CAD, however, are always de?ned within a small box only; they are obtained for a bounded parameter domain (typically a rectangle, or - in the case of "trimmed" surface patches - a subset of a rectangle). Consequently, a globally exact representation is not really needed in practice."
Geometric algebra (a Clifford Algebra) has been applied to different branches of physics for a long time but is now being adopted by the computer graphics community and is providing exciting new ways of solving 3D geometric problems. John Vince (author of numerous books including Geometry for Computer Graphics and Vector Analysis for Computer Graphics ) has tackled this complex subject in his usual inimitable style, and provided an accessible and very readable introduction. As well as putting geometric algebra into its historical context, John tackles complex numbers and quaternions; the nature of wedge product and geometric product; reflections and rotations (showing how geometric algebra can offer a powerful way of describing orientations of objects and virtual cameras); and how to implement lines, planes, volumes and intersections. Introductory chapters also look at algebraic axioms, vector algebra and geometric conventions and the book closes with a chapter on how the algebra is applied to computer graphics."
This is a relatively fast paced graduate level introduction to complex algebraic geometry, from the basics to the frontier of the subject. It covers sheaf theory, cohomology, some Hodge theory, as well as some of the more algebraic aspects of algebraic geometry. The author frequently refers the reader if the treatment of a certain topic is readily available elsewhere but goes into considerable detail on topics for which his treatment puts a twist or a more transparent viewpoint. His cases of exploration and are chosen very carefully and deliberately. The textbook achieves its purpose of taking new students of complex algebraic geometry through this a deep yet broad introduction to a vast subject, eventually bringing them to the forefront of the topic via a non-intimidating style.
In the library at Trinity College, Cambridge in 1976, George Andrews of Pennsylvania State University discovered a sheaf of pages in the handwriting of Srinivasa Ramanujan. Soon designated as "Ramanujan 's Lost Notebook," it contains considerable material on mock theta functions and undoubtedly dates from the last year of Ramanujan 's life. In this book, the notebook is presented with additional material and expert commentary.
Multiplicative invariant theory, as a research area in its own right within the wider spectrum of invariant theory, is of relatively recent vintage. The present text offers a coherent account of the basic results achieved thus far.. Multiplicative invariant theory is intimately tied to integral representations of finite groups. Therefore, the field has a predominantly discrete, algebraic flavor. Geometry, specifically the theory of algebraic groups, enters through Weyl groups and their root lattices as well as via character lattices of algebraic tori. Throughout the text, numerous explicit examples of multiplicative invariant algebras and fields are presented, including the complete list of all multiplicative invariant algebras for lattices of rank 2. The book is intended for graduate and postgraduate students as well as researchers in integral representation theory, commutative algebra and, mostly, invariant theory.
From the reviews "This book gives a thorough introduction to
several theories that are fundamental to research on modular forms.
Most of the material, despite its importance, had previously been
unavailable in textbook form. Complete and readable proofs are
given... In conclusion, this book is a welcome addition to the
literature for the growing number of students and mathematicians in
other fields who want to understand the recent developments in the
theory of modular forms."
This classic geometry text explores the theory of 3-dimensional convex polyhedra in a unique fashion, with exceptional detail. Vital and clearly written, the book includes the basics of convex polyhedra and collects the most general existence theorems for convex polyhedra that are proved by a new and unified method. This edition includes a comprehensive bibliography by V.A. Zalgaller, and related papers as supplements to the original text.
The content of this monograph is situated in the intersection of important branches of mathematics like the theory of one complex variable, algebraic geometry, low dimensional topology and, from the point of view of the techniques used, com- natorial group theory. The main tool comes from the Uniformization Theorem for Riemannsurfaces, whichrelatesthetopologyofRiemannsurfacesandholomorphic or antiholomorphic actions on them to the algebra of classical cocompact Fuchsian groups or, more generally, non-euclidean crystallographic groups. Foundations of this relationship were established by A. M. Macbeath in the early sixties and dev- oped later by, among others, D. Singerman. Another important result in Riemann surface theory is the connection between Riemannsurfacesandtheir symmetrieswith complexalgebraiccurvesandtheirreal forms. Namely, there is a well known functorial bijective correspondence between compact Riemann surfaces and smooth, irreducible complex projective curves. The fact that a Riemann surface has a symmetry means, under this equivalence, that the corresponding complex algebraic curve has a real form, that is, it is the complex- cation of a real algebraic curve. Moreover, symmetries which are non-conjugate in the full group of automorphisms of the Riemann surface, correspond to real forms which are birationally non-isomorphic over the reals. Furthermore, the set of points xedbyasymmetryishomeomorphictoaprojectivesmoothmodeloftherealform
A recent paper on subfactors of von Neumann factors has stimulated much research in von Neumann algebras. It was discovered soon after the appearance of this paper that certain algebras which are used there for the analysis of subfactors could also be used to define a new polynomial invariant for links. Recent efforts to understand the fundamental nature of the new link invariants has led to connections with invariant theory, statistical mechanics and quantum theory. In turn, the link invariants, the notion of a quantum group, and the quantum Yang-Baxter equation have had a great impact on the study of subfactors. Our subject is certain algebraic and von Neumann algebraic topics closely related to the original paper. However, in order to promote, in a modest way, the contact between diverse fields of mathematics, we have tried to make this work accessible to the broadest audience. Consequently, this book contains much elementary expository material.
This is the second volume of the new subseries "Invariant Theory and Algebraic Transformation Groups." The aim of the survey by A. Bialynicki-Birula is to present the main trends and achievements of research in the theory of quotients by actions of algebraic groups. This theory contains geometric invariant theory with various applications to problems of moduli theory. The contribution by J. Carrell treats the subject of torus actions on algebraic varieties, giving a detailed exposition of many of the cohomological results one obtains from having a torus action with fixed points. Many examples, such as toric varieties and flag varieties, are discussed in detail. W.M. McGovern studies the actions of a semisimple Lie or algebraic group on its Lie algebra via the adjoint action and on itself via conjugation. His contribution focuses primarily on nilpotent orbits that have found the widest application to representation theory in the last thirty-five years.
In the early years of the 1980s, while I was visiting the Institute for Ad vanced Study (lAS) at Princeton as a postdoctoral member, I got a fascinating view, studying congruence modulo a prime among elliptic modular forms, that an automorphic L-function of a given algebraic group G should have a canon ical p-adic counterpart of several variables. I immediately decided to find out the reason behind this phenomenon and to develop the theory of ordinary p-adic automorphic forms, allocating 10 to 15 years from that point, putting off the intended arithmetic study of Shimura varieties via L-functions and Eisenstein series (for which I visited lAS). Although it took more than 15 years, we now know (at least conjecturally) the exact number of variables for a given G, and it has been shown that this is a universal phenomenon valid for holomorphic automorphic forms on Shimura varieties and also for more general (nonholomorphic) cohomological automorphic forms on automorphic manifolds (in a markedly different way). When I was asked to give a series of lectures in the Automorphic Semester in the year 2000 at the Emile Borel Center (Centre Emile Borel) at the Poincare Institute in Paris, I chose to give an exposition of the theory of p-adic (ordinary) families of such automorphic forms p-adic analytically de pending on their weights, and this book is the outgrowth of the lectures given there."
The main object of this book is to reorient and revitalize classical geometry in a way that will bring it closer to the mainstream of contemporary mathematics. The postulational basis of the subject will be radically revised in order to construct a broad-scale and conceptually unified treatment. The familiar figures of classical geometry-points, segments, lines, planes, triangles, circles, and so on-stem from problems in the physical world and seem to be conceptually unrelated. However, a natural setting for their study is provided by the concept of convex set, which is compara tively new in the history of geometrical ideas. The familiarfigures can then appear as convex sets, boundaries of convex sets, or finite unions of convex sets. Moreover, two basic types of figure in linear geometry are special cases of convex set: linear space (point, line, and plane) and halfspace (ray, halfplane, and halfspace). Therefore we choose convex set to be the central type of figure in our treatment of geometry. How can the wealth of geometric knowledge be organized around this idea? By defini tion, a set is convex if it contains the segment joining each pair of its points; that is, if it is closed under the operation of joining two points to form a segment. But this is precisely the basic operation in Euclid."
This volume deals with the theory of finite topological spaces and its relationship with the homotopy and simple homotopy theory of polyhedra. The interaction between their intrinsic combinatorial and topological structures makes finite spaces a useful tool for studying problems in Topology, Algebra and Geometry from a new perspective. In particular, the methods developed in this manuscript are used to study Quillen's conjecture on the poset of p-subgroups of a finite group and the Andrews-Curtis conjecture on the 3-deformability of contractible two-dimensional complexes. This self-contained work constitutes the first detailed exposition on the algebraic topology of finite spaces. It is intended for topologists and combinatorialists, but it is also recommended for advanced undergraduate students and graduate students with a modest knowledge of Algebraic Topology.
The first part of the book studies pseudo-periodic maps of a closed surface of genus greater than or equal to two. This class of homeomorphisms was originally introduced by J. Nielsen in 1944 as an extension of periodic maps. In this book, the conjugacy classes of the (chiral) pseudo-periodic mapping classes are completely classified, and Nielsen's incomplete classification is corrected. The second part applies the results of the first part to the topology of degeneration of Riemann surfaces. It is shown that the set of topological types of all the singular fibers appearing in one parameter holomorphic families of Riemann surfaces is in a bijective correspondence with the set of conjugacy classes of the pseudo-periodic maps of negative twists. The correspondence is given by the topological monodromy.
The articles in this volume are an outgrowth of a colloquium
"Systemes Integrables et Feuilletages," which was held in honor of
the sixtieth birthday of Pierre Molino.
These Proceedings contain selected papers by the speakers invited to the Seminar on Deformations, organized in 1985/87 by Julian tawryno- wicz (t6dz), whose most fruitful parts took place in 1986 in Lublin during the 3rd Finnish-Polish Summer School in Complex Analysis [in cooperation with O. Martio (JyvliskyHl)] held simultaneously with the 9th Conference on Analytic Function in Poland [in cooperation with S. Dimiev (Sofia), P. Dolbeault (Paris), K. Spallek (Bochum), and E. Vesen- tini (Pisa)]. The Lublin session of the Seminar, organized jointly with S. Dimiev and K. Spallek, was preceded by a session organized by them at Druzhba (near Varna) in 1985 and followed by a similar session at Druzhba in 1987. The collection contains 31 papers connected with deformations of mathematical structures in the context of complex analysis with physi- cal applications: (quasi)conformal deformation uniformization, potential theory, several complex variables, geometric algebra, algebraic ge- ometry, foliations, Hurwitz pairs, and Hermitian geometry. They are research papers in final form: no version of them will be submitted for publication elsewhere. In contrast to the previous volume (Seminar on Deformations, Proceedings, L6dz-WarsaUJ 1982/84, ed. by J. -i:.awrynowicz, Lecture Notes in Math. 1165, Springer, Berlin-Heidelberg- -New York-Tokyo 1985, X + 331 pp.) open problems are not published as separate research notes, but are included in the papers.
Intersection cohomology assigns groups which satisfy a generalized form of Poincare duality over the rationals to a stratified singular space. This monograph introduces a method that assigns to certain classes of stratified spaces cell complexes, called intersection spaces, whose ordinary rational homology satisfies generalized Poincare duality. The cornerstone of the method is a process of spatial homology truncation, whose functoriality properties are analyzed in detail. The material on truncation is autonomous and may be of independent interest tohomotopy theorists. The cohomology of intersection spaces is not isomorphic to intersection cohomology and possesses algebraic features such as perversity-internal cup-products and cohomology operations that are not generally available for intersection cohomology. A mirror-symmetric interpretation, as well as applications to string theory concerning massless D-branes arising in type IIB theory during a Calabi-Yau conifold transition, are discussed.
Algorithms in algebraic geometry go hand in hand with software packages that implement them. Together they have established the modern field of computational algebraic geometry which has come to play a major role in both theoretical advances and applications. Over the past fifteen years, several excellent general purpose packages for computations in algebraic geometry have been developed, such as, CoCoA, Singular and Macaulay 2. While these packages evolve continuously, incorporating new mathematical advances, they both motivate and demand the creation of new mathematics and smarter algorithms. This volume reflects the workshop Software for Algebraic Geometry held in the week from 23 to 27 October 2006, as the second workshop in the thematic year on Applications of Algebraic Geometry at the IMA. The papers in this volume describe the software packages Bertini, PHClab, Gfan, DEMiCs, SYNAPS, TrIm, Gambit, ApaTools, and the application of Risa/Asir to a conjecture on multiple zeta values. They offer the reader a broad view of current trends in computational algebraic geometry through software development and applications."
Matroids appear in diverse areas of mathematics, from combinatorics to algebraic topology and geometry, and "Coxeter Matroids" provides an intuitive and interdisciplinary treatment of their theory. In this text, matroids are examined in terms of symmetric and finite reflection groups; also, symplectic matroids and the more general coxeter matroids are carefully developed. The Gelfand-Serganova theorem, which allows for the geometric interpretation of matroids as convex polytopes with certain symmetry properties, is presented, and in the final chapter, matroid representations and combinatorial flag varieties are discussed. With its excellent bibliography and index and ample references to current research, this work will be useful for graduate students and research mathematicians.
First Edition sold over 2500 copies in the Americas; New Edition contains three new chapters and two new appendices
This is a book about prime numbers, congruences, secret messages, and elliptic curves that you can read cover to cover. It grew out of undergr- uate courses that the author taught at Harvard, UC San Diego, and the University of Washington. The systematic study of number theory was initiated around 300B. C. when Euclid proved that there are in?nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A. D. ) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another thousand years later (in 1976), Di?e and Hellman introduced the ?rst ever public-key cryptosystem, which enabled two people to communicate secretely over a public communications channel with no predetermined secret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, publ- key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles' resolution of Fermat's Last Theorem.
The goal of the book is to present, in a complete and comprehensive way, a few areas of mathematics interlacing around the Poncelet porism: dynamics of integrable billiards, algebraic geometry of hyperelliptic Jacobians, and classical projective geometry of pencils of quadrics. Most important results and ideas connected to Poncelet theorem are presented: classical as well as modern ones, together with historical overview with analysis of classical ideas, their natural generalizations, and natural generalizations. Special attention is payed to realization of the Griffiths and Harris programme about Poncelet-type problems and addition theorems. This programme, formulated three decades ago, is aimed to understanding of higher-dimensional analogues of Poncelet problems and realization of synthetic approach of higher genus addition theorems. This problem is realized in a sequence of papers of the authors, published in last 20 years. Some of those results represent the key contribution to the development of the theory, while this book gives the complete image.
Nilpotent Ue algebras have played an Important role over the last ye!US : either In the domain at Algebra when one considers Its role In the classlftcation problems of Ue algebras, or In the domain of geometry since one knows the place of nilmanlfolds In the Illustration, the description and representation of specific situations. The first fondamental results In the study of nilpotent Ue algebras are obvlsouly, due to Umlauf. In his thesis (leipZig, 1991), he presented the first non trlvlal classifications. The systematic study of real and complex nilpotent Ue algebras was Independently begun by D1xmler and Morozov. Complete classifications In dimension less than or equal to six were given and the problems regarding superior dimensions brought to light, such as problems related to the existence from seven up, of an infinity of non Isomorphic complex nilpotent Ue algebras. One can also find these losts (for complex and real algebras) In the books about differential geometry by Vranceanu. A more formal approach within the frame of algebraiC geometry was developed by Michele Vergne. The variety of Ue algebraiC laws Is an affine algebraic subset In this view the role variety and the nilpotent laws constitute a Zarlski's closed of Irreduclbl~ components appears naturally as well the determination or estimate of their numbers. Theoritical physiCiSts, Interested In the links between diverse mechanics have developed the Idea of contractions of Ue algebras (Segal, Inonu, Wlgner). That Idea was In fact very convenient In the determination of components.
This book provides a quick access to computational tools for algebraic geometry, the mathematical discipline which handles solution sets of polynomial equations. Originating from a number of intense one week schools taught by the authors, the text is designed so as to provide a step by step introduction which enables the reader to get started with his own computational experiments right away. The authors present the basic concepts and ideas in a compact way.
The relation between mathematics and physics has a long history, in which the role of number theory and of other more abstract parts of mathematics has recently become more prominent. More than ten years after a first meeting in 1989 between number theorists and physicists at the Centre de Physique des Houches, a second 2-week event focused on the broader interface of number theory, geometry, and physics. This book is the result of that exciting meeting, and collects, in 2 volumes, extended versions of the lecture courses, followed by shorter texts on special topics, of eminent mathematicians and physicists. The present volume has three parts: Conformal Field Theories, Discrete Groups, Renomalization. The companion volume is subtitled: On Random Matrices, Zeta Functions and Dynamical Systems (Springer, 3-540-23189-7). |
You may like...
|