![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing
This book constitutes the refereed proceedings of the IFIP WG 8.2, 9.1, 9.4 Joint Working Conference on the Future of Digital Work: The Challenge of Inequality, IFIPJWC 2020, which was supposed to be held in Hyderabad, India, in December 2020, but was held virtually due to the COVID-19 pandemic. This conference was organized for IFIP's 60th anniversary and to commemorate its mission to "achieve worldwide professional and socially responsible development and application of ICTs."The 22 full papers presented together with an introduction and two keynotes were carefully reviewed and selected from 29 submissions. They are organized in topics on: innovation and entrepreneurship; the social significance of digital platforms; transforming healthcare; and the dark side of digitalization.
This book is a truly comprehensive, timely, and very much needed treatise on the conceptualization of analysis, and design of contactless & multimodal sensor-based human activities, behavior understanding & intervention. From an interaction design perspective, the book provides views and methods that allow for more safe, trustworthy, efficient, and more natural interaction with technology that will be embedded in our daily living environments. The chapters in this book cover sufficient grounds and depth in related challenges and advances in sensing, signal processing, computer vision, and mathematical modeling. It covers multi-domain applications, including surveillance and elderly care that will be an asset to entry-level and practicing engineers and scientists.(See inside for the reviews from top experts)
This book gathers outstanding research papers presented at the International Joint Conference on Advances in Computational Intelligence (IJCACI 2020), organized by Daffodil International University (DIU) and Jahangirnagar University (JU) in Bangladesh and South Asian University (SAU) in India. These proceedings present novel contributions in the areas of computational intelligence and offer valuable reference material for advanced research. The topics covered include collective intelligence, soft computing, optimization, cloud computing, machine learning, intelligent software, robotics, data science, data security, big data analytics, and signal and natural language processing.
This book presents high-quality research in the field of 3D imaging technology. The second edition of International Conference on 3D Imaging Technology (3DDIT-MSP&DL) continues the good traditions already established by the first 3DIT conference (IC3DIT2019) to provide a wide scientific forum for researchers, academia and practitioners to exchange newest ideas and recent achievements in all aspects of image processing and analysis, together with their contemporary applications. The conference proceedings are published in 2 volumes. The main topics of the papers comprise famous trends as: 3D image representation, 3D image technology, 3D images and graphics, and computing and 3D information technology. In these proceedings, special attention is paid at the 3D tensor image representation, the 3D content generation technologies, big data analysis, and also deep learning, artificial intelligence, the 3D image analysis and video understanding, the 3D virtual and augmented reality, and many related areas. The first volume contains papers in 3D image processing, transforms and technologies. The second volume is about computing and information technologies, computer images and graphics and related applications. The two volumes of the book cover a wide area of the aspects of the contemporary multidimensional imaging and the related future trends from data acquisition to real-world applications based on various techniques and theoretical approaches.
This book describes how to use computational intelligence and artificial intelligence tools to improve the decision-making process in new product development. These approaches, including artificial neural networks and constraint satisfaction solutions, enable a more precise prediction of product development performance compared to widely used multiple regression models. They support decision-makers by providing more reliable information regarding, for example, project portfolio selection and project scheduling.The book is appropriate for computer scientists, management scientists, students and practitioners engaged with product innovation and computational intelligence applications.
This book is a compilation of peer-reviewed papers presented at the International Conference on Machine Intelligence and Data Science Applications, organized by the School of Computer Science, University of Petroleum & Energy Studies, Dehradun, on September 4 and 5, 2020. The book starts by addressing the algorithmic aspect of machine intelligence which includes the framework and optimization of various states of algorithms. Variety of papers related to wide applications in various fields like image processing, natural language processing, computer vision, sentiment analysis, and speech and gesture analysis have been included with upfront details. The book concludes with interdisciplinary applications like legal, health care, smart society, cyber physical system and smart agriculture. The book is a good reference for computer science engineers, lecturers/researchers in machine intelligence discipline and engineering graduates.
Multi-Agent Applications with Evolutionary Computation and Biologically Inspired Technologies: Intelligent Techniques for Ubiquity and Optimization compiles numerous ongoing projects and research efforts in the design of agents in light of recent development in neurocognitive science and quantum physics. This innovative collection provides readers with interdisciplinary applications of multi-agents systems, ranging from economics to engineering.
In this book the author discusses synergies between computers and thought, related to the field of Artificial Intelligence; between people and thought, leading to questions of consciousness and our existence as humans; and between computers and people, leading to the recent remarkable advances in the field of humanoid robots. He then looks toward the implications of intelligent 'conscious' humanoid robots with superior intellects, able to operate in our human environments. After presenting the basic engineering components and supporting logic of computer systems, and giving an overview of the contributions of pioneering scientists in the domains of computing, logic, and robotics, in the core of the book the author examines the meaning of thought and intelligence in the context of specific tasks and successful AI approaches. In the final part of the book he introduces related societal and ethical implications. The book will be a useful accompanying text in courses on artificial intelligence, robotics, intelligent systems, games, and evolutionary computing. It will also be valuable for general readers and historians of technology.
Intelligent agent and distributed AI (DAI) approaches attach specific conditions to cooperative exchanges between intelligent systems, that go far beyond simple functional interoperability. Ideally, systems that pursue local or global goals, coordinate their actions, share knowledge, and resolve conflicts during their interactions within groups of similar or dissimilar agents can be viewed as cooperative coarse-grained systems. The infrastructure of telecommunications is a world in transition. There are a number of trends that contribute to this: convergence of traditional telephony and data network worlds, blurring of boundaries between public and private networks, complementary evolution of wireline, wireless, and cable network infrastructures, the emergence of integrated broadband multimedia networks and, of course, the information superhighway. Up to now, despite the effort that has gone into this area, the field of intelligent agents research has not yet led to many fielded systems. Telecommunications applications pose strong requirements to agents such as: reliability, real-time performance, openness, security management and other integrated management, and mobility. In order to fulfil their promise, intelligent agents need to be fully dependable and typically require an integrated set of capabilities. This is the challenge that exists for intelligent agents technology in this application domain.
This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering in diverse fields such as image segmentation, medical applications, and pavement infrastructure asset management.
In this publication, the author Kristian Kersting has made an assault on one of the hardest integration problems at the heart of Artificial Intelligence research. This involves taking three disparate major areas of research and attempting a fusion among them. The three areas are: Logic Programming, Uncertainty Reasoning, and Machine Learning. Every one of these is a major sub-area of research with its own associated international research conferences. Having taken on such a Herculean task, Kersting has produced a series of results which are now at the core of a newly emerging area: Probabilistic Inductive Logic Programming. The new area is closely tied to, though strictly subsumes, a new field known as 'Statistical Relational Learning' which has in the last few years gained major prominence in the American Artificial Intelligence research community. Within this book, the author makes several major contributions, including the introduction of a series of definitions which circumscribe the new area formed by extending Inductive Logic Programming to the case in which clauses are annotated with probability values. Also, Kersting investigates the approach of Learning from proofs and the issue of upgrading Fisher Kernels to Relational Fisher Kernels.
This book covers COVID-19 related research works and focuses on recent advances in the Internet of Things (IoT) in smart healthcare technologies. It includes reviews and original works on COVID-19 in terms of e-healthcare, medicine technology, life support systems, fast detection, diagnoses, developed technologies and innovative solutions, bioinformatics, datasets, apps for diagnosis, solutions for monitoring and control of the spread of COVID-19, among other topics. The book covers comprehensive studies from bioelectronics and biomedical engineering, artificial intelligence, and big data with a prime focus on COVID-19 pandemic.
This book features the latest research in the area of immersive technologies, presented at the 6th International Augmented Reality and Virtual Reality Conference, held in online in 2020. Bridging the gap between academia and industry, it presents the state of the art in augmented reality (AR) and virtual reality (VR) technologies and their applications in various industries such as marketing, education, health care, tourism, events, fashion, entertainment, retail and the gaming industry. The book is a collection of research papers by prominent AR and VR scholars from around the globe. Covering the most significant topics in the field of augmented and virtual reality and providing the latest findings, it is of interest to academics and practitioners alike.
Conventional computational methods, and even the latest soft computing paradigms, often fall short in their ability to offer solutions to many real-world problems due to uncertainty, imprecision, and circumstantial data. Hybrid intelligent computing is a paradigm that addresses these issues to a considerable extent. The Handbook of Research on Advanced Research on Hybrid Intelligent Techniques and Applications highlights the latest research on various issues relating to the hybridization of artificial intelligence, practical applications, and best methods for implementation. Focusing on key interdisciplinary computational intelligence research dealing with soft computing techniques, pattern mining, data analysis, and computer vision, this book is relevant to the research needs of academics, IT specialists, and graduate-level students.
This contributed volume discusses essential topics and the fundamentals for Big Data Emergency Management and primarily focusses on the application of Big Data for Emergency Management. It walks the reader through the state of the art, in different facets of the big disaster data field. This includes many elements that are important for these technologies to have real-world impact. This book brings together different computational techniques from: machine learning, communication network analysis, natural language processing, knowledge graphs, data mining, and information visualization, aiming at methods that are typically used for processing big emergency data. This book also provides authoritative insights and highlights valuable lessons by distinguished authors, who are leaders in this field. Emergencies are severe, large-scale, non-routine events that disrupt the normal functioning of a community or a society, causing widespread and overwhelming losses and impacts. Emergency Management is the process of planning and taking actions to minimize the social and physical impact of emergencies and reduces the community's vulnerability to the consequences of emergencies. Information exchange before, during and after the disaster periods can greatly reduce the losses caused by the emergency. This allows people to make better use of the available resources, such as relief materials and medical supplies. It also provides a channel through which reports on casualties and losses in each affected area, can be delivered expeditiously. Big Data-Driven Emergency Management refers to applying advanced data collection and analysis technologies to achieve more effective and responsive decision-making during emergencies. Researchers, engineers and computer scientists working in Big Data Emergency Management, who need to deal with large and complex sets of data will want to purchase this book. Advanced-level students interested in data-driven emergency/crisis/disaster management will also want to purchase this book as a study guide.
This book is written for software product teams that use AI to add intelligent models to their products or are planning to use it. As AI adoption grows, it is becoming important that all AI driven products can demonstrate they are not introducing any bias to the AI-based decisions they are making, as well as reducing any pre-existing bias or discrimination. The responsibility to ensure that the AI models are ethical and make responsible decisions does not lie with the data scientists alone. The product owners and the business analysts are as important in ensuring bias-free AI as the data scientists on the team. This book addresses the part that these roles play in building a fair, explainable and accountable model, along with ensuring model and data privacy. Each chapter covers the fundamentals for the topic and then goes deep into the subject matter - providing the details that enable the business analysts and the data scientists to implement these fundamentals. AI research is one of the most active and growing areas of computer science and statistics. This book includes an overview of the many techniques that draw from the research or are created by combining different research outputs. Some of the techniques from relevant and popular libraries are covered, but deliberately not drawn very heavily from as they are already well documented, and new research is likely to replace some of it.
Shipping is the world's oldest sharing economy and is conducted in a self-organizing manner. Shipping is capital, energy, and information intensive, and with the growing impact of digitalization and climate change, there is a need to rethink the management and operations of this critical global industry - assisted in no small way by maritime informatics. Building upon the recently published inaugural book Maritime Informatics by Springer, this book will address some of the most recent practical developments and experiences, particularly from a global perspective. The focus of the book is to address contemporary movements to tackle global concerns and to complement Maritime Informatics.
This book introduces the state-of-the-art algorithms for data and computation privacy. It mainly focuses on searchable symmetric encryption algorithms and privacy preserving multi-party computation algorithms. This book also introduces algorithms for breaking privacy, and gives intuition on how to design algorithm to counter privacy attacks. Some well-designed differential privacy algorithms are also included in this book. Driven by lower cost, higher reliability, better performance, and faster deployment, data and computing services are increasingly outsourced to clouds. In this computing paradigm, one often has to store privacy sensitive data at parties, that cannot fully trust and perform privacy sensitive computation with parties that again cannot fully trust. For both scenarios, preserving data privacy and computation privacy is extremely important. After the Facebook-Cambridge Analytical data scandal and the implementation of the General Data Protection Regulation by European Union, users are becoming more privacy aware and more concerned with their privacy in this digital world. This book targets database engineers, cloud computing engineers and researchers working in this field. Advanced-level students studying computer science and electrical engineering will also find this book useful as a reference or secondary text.
This book presents applications of machine learning techniques in processing multimedia large-scale data. Multimedia such as text, image, audio, video, and graphics stands as one of the most demanding and exciting aspects of the information era. The book discusses new challenges faced by researchers in dealing with these large-scale data and also presents innovative solutions to address several potential research problems, e.g., enabling comprehensive visual classification to fill the semantic gap by exploring large-scale data, offering a promising frontier for detailed multimedia understanding, as well as extract patterns and making effective decisions by analyzing the large collection of data. |
![]() ![]() You may like...
Management Of Information Security
Michael Whitman, Herbert Mattord
Paperback
Infinite Words, Volume 141 - Automata…
Dominique Perrin, Jean-Eric Pin
Hardcover
R4,319
Discovery Miles 43 190
Dynamic Web Application Development…
David Parsons, Simon Stobart
Paperback
|