![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Biochemical engineering
This book collates various aspects of stress tolerance in crop plants. It primarily focuses on the heat and temperature related stress, starting from the severity of the problem on quantity and quality of yield under the threat of global climate change. The content also explores other mechanistic dimensions such as physiochemical and molecular mechanism underlying thermotolerance, signaling mechanism under heat stress, role of heat shock proteins in modulating thermotolerance, omics approach for development of climate smart-crop. Chapters discuss different approaches used in the past to develop heat stress tolerant crop plants, list of developed thermotolerant agriculturally important crop plants, redox homeostasis under heat stress, nutrient uptake and use efficiency in plants under heat stress and much more. The book is a useful compilation for researchers working in the area of abiotic stress tolerance in crop plants, as well as for students of plant physiology and agricultural sciences.
Despite advances in the long-range electrostatic double-layer force, which depends strongly on ionic strength in water by using theoretical models such as DLVO (Derjaguin, Landau, Verwey, and Overbeek), the structure of confined water in air still remains widely unknown and has led to a variety of unexplained phenomena. This book bridges that gap by introducing a newly developed scanning probe miscroscopy (SPM) approach, which enables one to probe confined water at the molecular and atomic scale. Written by the developer of SPM, this book covers this new approach, as well as original approaches to addressing general interfacial water issues. It also introduces the cantilever-based optical interfacial force microscope (COIFM), which was invented by the author along with the methodology. The improved understanding will contribute to liquid-based nano- and bio-technologies such as lab-on-a-chip technologies, nanofluidic devices, dip-pen nanolithography, nano-oxidation, water-based granular interactions, liquid-based nanolubricants, hydration layers in biopolymers, manipulation of biomolecules, protein folding, stability of colloid suspensions, enzyme activity, swelling in clays, development of bioactive surfaces, water columns and ion channeling in membranes and scanning probe microscopy (SPM). It will also contribute to the improved performance of moving components in silicon-based micro-electro-mechanical system (MEMS) devices, where water plays a key role in interfacial interactions.
This volume discusses how small bioreactors can produce useful biogas and compost from biodegradable waste. The authors identify which biodegradable wastes are optimal for small bioreactors, and how these choices can be used to increase bioreactor productivity. Additionally, readers will learn about how the amount and composition of biogas is estimated, the concentration of biodegradable waste that needs to be supplied to a bioreactor, the development of small bioreactors including the ratio of cost to the obtained benefits, and the nature of biodegradable wastes generated by both small farms and large food industry enterprises. The beginning chapters explain what biodegradable waste is, show how to predict how much waste an enterprise will produce, and elaborate the characteristics of the biogas which is generated from biodegradable waste in small bioreactors. Then the book discusses the types of small bioreactors and how to select the optimal bioreactor for a given case. Bioreactor performance is analyzed on both an economical and production efficiency basis, with experimental results provided on the quantity and quality of the biogas produced. The final chapters address how small bioreactors can be incorporated into small biogas plants, and the potential use of small bioreactors in countries with high demand for alternative energy using the case of Lithuania. The audience for this work includes specialists in biodegradable waste management and utilization enterprises, designers, and academics, researchers and students engaged in environmental engineering.
This book presents all information necessary to understand the functioning of a slurry loop reactor for the polymerisation of ethylene into high density polyethylene, and to operate it accordingly. All discussions are based on experimental data from the operation of full scale commercial loop reactors. Methods for off-line modelling and scaling-up from lab to full scale are included, as well as the answers to important questions on the running of two loop reactors in series. Building knowledge from full scale industrial experience. This highly accessible book makes one understand the functioning of slurry loop reactors for the polymerisation of ethylene, and how to operate them. Its methods include off-line modelling, scaling-up and running reactors in series. It is inspiring for all production and process engineers, showing, for the first time, how with full scale reactor data the link is made between firm basic theory and the most practical operating guidelines.
Biotechnology Biotechnology is is now now established established as as a a major major area area of of technology, technology, concerned concerned with with the' the' application application of of biological biological organisms, organisms, systems systems or or processes processes to to manufac turing turing or or service service industries'. industries'. Although Although the the exploitation exploitation of of organisms organisms by by man man is is not not new, new, many many of of the the techniques techniques which which are are stimulating stimulating the the rapid rapid advances advances in in biotechnology biotechnology have have developed developed from from recent recent scientific scientific discoveries. discoveries. Throughout Throughout history history man man has, has, knowingly knowingly or or not, not, been been exploiting exploiting yeast yeast in in the the production production of of alcoholic alcoholic beverages beverages and and bread, bread, and and these these processes processes still still represent represent major major biotechnological biotechnological industries. industries. The The brewer's brewer's and and baker's baker's yeast yeast Sac charomyces charomyces cerevisiae cerevisiae is, is, however, however, also also a a favoured favoured organism organism for for the the production production of of many many new new biotechnological biotechnological products. products."
This book offers the first comprehensive yet critical overview of methods used to evaluate interaction between humans and social robots. It reviews commonly used evaluation methods, and shows that they are not always suitable for this purpose. Using representative case studies, the book identifies good and bad practices for evaluating human-robot interactions and proposes new standardized processes as well as recommendations, carefully developed on the basis of intensive discussions between specialists in various HRI-related disciplines, e.g. psychology, ethology, ergonomics, sociology, ethnography, robotics, and computer science. The book is the result of a close, long-standing collaboration between the editors and the invited contributors, including, but not limited to, their inspiring discussions at the workshop on Evaluation Methods Standardization for Human-Robot Interaction (EMSHRI), which have been organized yearly since 2015. By highlighting and weighing good and bad practices in evaluation design for HRI, the book will stimulate the scientific community to search for better solutions, take advantages of interdisciplinary collaborations, and encourage the development of new standards to accommodate the growing presence of robots in the day-to-day and social lives of human beings.
With contributions from nearly 130 internationally renowned experts in the field, this reference details advances in transgenic plant construction and explores the social, political, and legal aspects of genetic plant manipulation. It provides analyzes of the history, genetics, physiology, and cultivation of over 30 species of transgenic seeds, fruits, and vegetables. Stressing the impact of genetic engineering strategies on the nutritional and functional benefit of foods as well as on consumer health and the global market economy, the book covers methods of gene marking, transferring, and tagging public perceptions to the selective breeding, hybridization, and recombinant DNA manipulation of food.
Genome sequence studies have become more and more important for plant breeding. Brassicas and Legumes: From Genome Structure to Breeding comprises 16 chapters and presents both an overview and the latest results of this rapidly expanding field. Topics covered include: genome analysis of a flowering plant, Arabidopsis thaliana; the sequence of the Arabidopsis genome as a tool for comparative structural genomics in Brassicaceae; application of molecular markers in Brassica coenospecies; the molecular genetic basis of flowering time variation in Brassica species; quantitative trait loci for clubroot resistance in Brassica oleracea; structural differences of S locus between Brassica oleracea and Brassica rapa; Brassica and legume chromosomes; sequence analysis of the Lotus japonicus genome; introduction of an early flowering accession ‘Miyakojima’ MG-20 to molecular genetics in Lotus japonicus; genetic linkage map of the model legume Lotus japonicus; construction of a high quality genome library of Lotus japonicus; genome analysis of Mesorhizobium loti: a symbiotic partner to Lotus japonicus; molecular linkage map of the model legume Medicago truncatula; genetic mapping of seed and nodule protein markers in diploid alfalfa (Medicago sativa); mapping the chickpea (Cicer arietinum) genome: localization of fungal resistance genes in interspecific crosses.
This book reviews the most recent developments of fluorescent imaging techniques for medicinal chemistry research and biomedical applications, including cell imaging, in vitro diagnosis and in vivo imaging. Fluorescent imaging techniques play an important role in basic research, drug discovery and clinical translation. They have great impact to many fields including chemical biology, cell biology, medical imaging, cancer diagnosis and treatment, pharmaceutical science, among others, and they have facilitated our understanding of diseases and helped to develop many novel powerful tools for imaging and treatment of diseases. This book will appeal to scientists from numerous fields such as chemistry, pharmaceutical science, biology, materials science, and medicine, and it will serve as a very useful and handy resource for readers with different levels of scientific knowledge, ranging from entry level to professional level.
Dynamic Modeling of Musculoskeletal Motion introduces biomechanists
at all levels of expertise to modern methods of modeling and
analyzing dynamic biomechanical systems in three dimensions. Using
vector kinematics, the reader is taught a systematic method which
significantly reduces the complexity of working with multiple,
moving limb segments in three dimensions. Operations which usually
require the application of differential calculus are replaced by
simple algebraic formulae. To derive dynamical equations of motion,
a practical introduction to Kane's Method is given. Kane's Method
builds upon the foundation of vector kinematics and represents one
of the most exciting theoretical developments of the modern era.
Together, these techniques enable biomechanists to decipher and
model living systems with great realism, efficiency and accuracy.
Using these methods, much more time can be spent on biomechanical
issues, and much less time must be expended tediously deriving
equations of motion. Interwoven with the theoretical presentation
are chapters and examples which highlight the subtle differences
between inanimate linkages and the biomechanical systems we seek to
understand. [email protected] send information regarding the instructor's name, title, and institution, the department, course number and title, the semester and year the course will be taught, and the expected enrollment.
Even though there is no generally accepted definition of nanotechnologies to be defined as distinct discipline there is an emerging consensus that their advent and development is a growing in importance factor of the contemporary and future technological civilization. One of these most fundamental issues we are confronted with is the compatibility with life itself. From single cell organisms to humans, carbon is a key building block of all molecular structures of life. In contrast the man created electronic industry to build on other elements, of which silicon is the most common. Both carbon and silicon create molecular chains, although different in their internal structure. All life is built from carbon-based chains. As long as the man built technological products do not directly interfere with the physiology of life the associated risks from them are relatively easy to identify. They are primarily in the environmental pollution and the possibility of upsetting the natural balance of biocoenosis, on a planetary scale. The basic life functions are still not directly subverted. We can use TV, computers, drive cars and use other technological utilities without fear of direct interference with our cellular functions. This is in particular because all these technological utilities are many orders of magnitude larger than typical scales of biological activity. Most of biological activity, from fermentative catalysis to DNA replication takes place on nanoscale. The situation is radically different when the technological goals are building nanoscale size products. All biological processes take place on nanoscale.
The marine environment has been, and continues to be, a fruitful source of novel chemical compounds that are not found in terrestrial and freshwater organisms. Many of these substances show potential biomedical applications, which could lead to development of new pharmaceutical products. Research on the utilization of natural products from marine organisms is growing by leaps and bounds; one important reason why being that, investigators, through new diving technologies, are becoming able to explore at greater depths. Studies of these marine natural products include investigations of neuronal membrane-active toxins, ion channel blockers, antitumor and antiviral agents, and anti-inflammatory molecules. This volume is the sixth in the ongoing series.
Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine "Nanorobotics and nanodiagnostics" can be defined as a new generation of biohybrid and nanorobotics that translate fundamental biological principles into engineering design rules, or integrative living components into synthetic structures to create biorobots and nanodiagnotics that perform like natural systems. Nanorobots or nanobots are structured of a nanoscale made of individual assemblies. They can be termed as intelligent systems manufactured with self-assembly strategies by chemical, physical and biological approaches. The nanorobot can determine the structure and enhance the adaptability to the environment in interdisciplinary tasks. "Nanorobotics and nanodiagnostics" is a new generation of biohybrid that translates fundamental biological principles into engineering design rules to create biorobots that perform like natural systems. These biorobotics and diagnostics can now perform various missions to be accomplished certain tasks in the research areas such as integrative biology and biomedicine. "Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine" sheds light on a comprehensive overview of the multidisciplinary areas that explore nanotherapeutics and nanorobotic manipulation in biology and medicine. It provides up-to-date knowledge of the promising fields of integrative biology and biomedicine for nano-assisted biorobotics and diagnostics to detect and treat diseases that will enable new scientific discoveries.
The book reviews the history, present, and likely future of intellectual property for plant-related inventions. It describes "what works" and "what does not work" in the current situation and analyzes whether the current intellectual property framework will be able to cope with the rise of genome editing/new breeding technologies (especially CRISPR Cas). Based on trend data, the analysis shows that the current system, including stakeholder initiatives, will most likely not be able to adapt to the technology change. It then evaluates different options for legislators to respond and proposes in detail a new holistic IP system which merges elements of the patent and the plant variety protection system into one new system.
The biotechnology industry across the globe is growing dramatically in line with rapidly emerging scientific and technological developments. This book explores both the theoretical and practical aspects of entrepreneurship in the biotechnology industry, focusing on the innovation processes underpinning success for new biotechnology firms (NBFs). It argues that biotechnology is at a crossroads: to date the science has been solid, yet commercial success remains elusive, and that it will be the commercial success of NBFs which will dictate the long term viability of this crucial industry. The authors go on to examine the roles played by both entrepreneurship and innovation in the competitiveness of biotechnology companies through a focus on: intellectual property strategies, product development, valuing biotechnology ventures, funding innovation and R&D, alliances and networking, changing industry structures evidenced through the shifting value chain and the impact of globalization on the changing industry and organizational life cycles. International case studies with a focus on human biosciences support the important theoretical developments at the heart of this book. Innovation and Entrepreneurship in Biotechnology offers original and valuable insights to researchers, academics and students as well as to practitioners involved with innovation and entrepreneurship in the field of biotechnology.
There is hardly a technical library in the world in which the volumes of the Chemical Formulary (Volumes 1-34) do not occupy a prominent place. It does not duplicate any of the formulas included in previous volumes, but lists a wide array of modern and salable products from all branches of the chemical industries. An excellent reference for formulation problems. - CONTENTS - I. Introduction - II. Adhesives - III. Beverages and Foods - IV. Cosmetics - V. Coatings - VI. Detergents - VII. Drugs - VIII. Metal Treatments - IX. Polishes - X. Elastomers, Polymers and Resins - XI. Miscellaneous - Appendix - Index - PREFACE - Chemistry, as taught in our schools and colleges, concerns chiefly synthesis, analysis, and engineering-and properly so. It is part of the right foundation for the education of the chemist. Many a chemist entering an Industry soon finds that most of the products manufactured by his concern are not synthetic or definite complex compounds, but are mixtures, blends, or highly complex compounds of which he knows little or nothing. The literature in this field, if any, may be meager, scattered, or obsolete. Even chemists with years of experience In one or more Industries spend conslderable time and effort in acquainting themselves with any new field which they may enter. Consulting chemists similarly have to solve problems brought to them from industries foreign to them. There was a definite need for an up-to-date compilation of formulae for chemical compounding and treatment. Since the fields to be covered are many and varied, an editorial board of chemists and engineers engaged in many industries was formed. Many publications, laboratories, manufacturing firms, and Individuals have been consulted to obtain the latest and best information. It is felt that the formulas given in this volume will save chemists and allied workers much time and effort.
With the erratic changes in climate, crop plants are facing many forms of biotic stresses. When plants are under stress, among several gene families, regulatory genes play a vital role in signal transduction in modulating the expression of genes underpinning several defense pathways and targeting regulatory proteins (viz, transcription factors (TFs)) can be the alternative. Transcription factors directly regulate the downstream R genes and are excellent candidates for disease resistance breeding. Till date, numerous transcription factors have been identified and characterized structurally and functionally. Of them, TF families such as WRKY, NAC, Whirly, Apetala2 (AP2), ethylene responsive elements (ERF) etc. are found to be associated with transcriptional reprogramming of plant defense response. These TFs are responsive to the pathogen's PAMPs/DAMPs - host's PRR protein interactions and specifically binds to the cis-elements of defense genes and regulate their expression. With this background, realizing the importance of TFs in resistance breeding, this book discusses the recent research and developments in this field for various crops.
This second edition volume expands on the previous edition with new and updated chapters on the latest developments in the study of yeast within the biotechnology field. The chapters in this book cover topics such as transformation protocols for genetic engineering of Saccaromyces cerevisiae and Komagataella spp.; an overview of selection markers, promoters, and strains used for metabolic engineering of S. cerevisiae, P. pastoris, and Z. bailii; the use of yeast in CRISPR/Cas9 technology; tools to study metabolic pathway in Yarrowia lypolitica; and a discussion on the "universal expression system" that is applied in a broad spectrum of fungal species. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and authoritative, Yeast Metabolic Engineering: Methods and Protocols, Second Edition is a valuable resource for researchers and scientists interested in learning more about this important and developing field.
This book focuses on the utilization of bio-resources and their conversion pathways for a sustainable future. Tapping into bio-resources by means of thermochemical and biochemical processes has attracted researchers from all over the world; it is a broad area that has given birth to concepts like the biorefinery, as well as a new stream known as biotechnology. Its scope includes biochemical and microbiological engineering, biocatalysis and biotransformation, biosynthesis and metabolic engineering, bioprocess and biosystem engineering, bioenergy and biorefineries, cell culture and biomedical engineering, food, agricultural and marine biotechnology, bioseparation and biopurification engineering, bioremediation and environmental biotechnology, etc. The book discusses a host of new technologies now being used to tap these resources with innovative bioprocesses. All chapters are based on outstanding research papers selected for and presented at the IconSWM 2018 conference.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. The chapter "DNA-Programmed Chemical Synthesis of Polymers and Inorganic Nanomaterials" is available open access under a CC BY 4.0 License via link.springer.com.
Enzymatic catalysis has gained considerable attention in recent years as an efficient tool in the preparation of natural products, pharmaceuticals, fine chemicals, and food ingredients. The high selectivity and mild reaction con- tions associated with enzymatic transformations have made this approach an attractive alternative in the synthesis of complex bioactive compounds, which are often difficult to obtain by standard chemical routes. However, the maj- ity of organic compounds are not very soluble in water, which was traditi- ally perceived as the only suitable reaction medium for the application of biocatalysts. The realization that most enzymes can function perfectly well under nearly anhydrous conditions and, in addition, display a number of useful properties, e. g. , highly enhanced stability and different selectivity, has d- matically widened the scope of their application to the organic synthesis. Another great attraction of using organic solvents rather than water as a reaction solvent is the ability to perform synthetic transformations with re- tively inexpensive hydrolytic enzymes. It is worth reminding the reader that in vivo, the synthetic and hydrolytic pathways are catalyzed by different enzymes. However, elimination of water from the reaction mixture enables the "reversal" of hydrolytic enzymes and thus avoids the use of the expensive cofactors or activated substrates that are required for their synthetic count- parts.
Biomaterials for Clinical Applications is organized according to the World Health Organization 's report of the top 11 causes of death worldwide, and lays out opportunities for both biomaterials scientists and physicians to tackle each of these leading contributors to mortality. The introductory chapter discusses the global burden of disease. Each of the subsequent eleven chapters focuses on a specific disease process, beginning with the leading cause of death worldwide, cardiovascular disease. The chapters start with describing diseases where clinical needs are most pressing, and then envisions how biomaterials can be designed to address these needs, instead of the more technologically centered approached favored by most books in the field. This book, then, should appeal to chemical engineers and bioengineers who are designing new biomaterials for drug delivery and vaccine delivery, as well as tissue engineering. |
![]() ![]() You may like...
Green Technologies for the Environment
Sherine Obare, Rafael Luque
Hardcover
R5,930
Discovery Miles 59 300
Importance of Chirality to Flavor…
Gary Takeoka, Karl-Heinz Engel
Hardcover
R5,923
Discovery Miles 59 230
Biomaterials for Photocatalysis…
Rafael Luque, Awais Ahmad, …
Hardcover
R5,165
Discovery Miles 51 650
|