![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Biochemical engineering > Biotechnology > Biosensors
Biosensors and Modern Biospecific Analytical Techniques further
expands the Comprehensive Analytical Chemistry series' coverage of
rapid analysis based on advanced technological developments. This
12-chapter volume summarizes the main developments in the
biosensors field over the last 10 years. It provides a
comprehensive study on the different types of biosensors, including
DNA-based, enzymatic, optical, self-assembled monolayers and the
third generation of biosensors. As well as many technological
developments on bioanalytical microsystems and new materials for
biosensors, antibody and immunoassay developments have a prominent
place in the book.
Optical Fiber Biosensors: Device Platforms, Biorecognition, Applications provides a comprehensive overview of the field of fiber optic sensors using an interdisciplinary approach that covers the fabrication of sensing devices and optical hardware, the functionalization to perform selective biorecognition, and the main applications of biosensors, with a present and a future outlook. Chapters discuss the principles of light propagation and the sensing devices suitable to perform biosensing with optical fibers, the process to functionalize the previous devices to selective biosensing, and applications in cells, small molecules, biomarkers and protein sensing, with a birds eye view on the most important results. This book provides a coherent picture of fiber optic biosensors, from the start (the device) to the end (the application), explaining in simple terms what is the whole process for development of a biosensor. The book also contains practical material (e.g. commercial instruments, fabrication instructions, medical standards for biocompatibility) that cannot be easily found elsewhere, and this is very useful for researchers to plan their development and build their labs.
This title brings to the attention of researchers in the industry,
and in academia, the application of fractals to help in modeling
the analyte/receptor binding and dissociation kinetics on biosensor
surfaces.
Presents sensor specification, theory of operation, sensor design, and application criteria Provides background plus specific information for practicing engineers who want to understand sensors Includes a complete chapter on industrial sensor communication protocols Explains temperature sensitivity, how to determine, and how to avoid Discusses how to understand and utilize sensor specifications
Bioimaging is a sophisticated non-invasive and non-destructive technique for direct visualization of biological processes. Highly luminescent quantum dots combined with magnetic nanoparticles or ions form an exciting class of new materials for bioimaging. These materials can be prepared in cost-effective ways and show unique optical behaviours. Magnetic Quantum Dots for Bioimaging explores leading research in the fabrication, characterization, properties, and application of magnetic quantum dots in bioimaging. * Covers synthesis, properties, and bioimaging techniques. * Discusses modern manufacturing technologies and purification of magnetic quantum dots. * Explores thoroughly the properties and extent of magnetization to various imaging techniques. * Describes the biocompatibility, suitability, and toxic effects of magnetic quantum dots. * Reviews recent innovations, applications, opportunities, and future directions in magnetic quantum dots and their surface decorated nanomaterials. This comprehensive reference offers a roadmap of the use of these innovative materials for researchers, academics, technologists, and advanced students working in materials engineering and sensor technology.
Describes how nanomaterial functionalization is being used to create more effective sensors. Discusses various synthesis procedures, characterization techniques, and which nanomaterials should be used for sensing applications. Provides an in-depth look into oxide nanostructures, carbon nanostructures, and 2D material fabrication. Explores the challenges of using nanoscale sensors for large-scale industrial applications.
Describes extensively the design and microfabrication of nanosensors based on nanotechnological tools. Provides a wide range of bioplatforms based on e.g., carbon nanostructures and Describes extensively a large number of application as a part of Nanomaterial based biosensors.
* Covers topics such as fundamentals of sensors and their working principles * Details recent materials and technologies used for flexible and wearable sensors * Covers emerging applications
Presents the state of the art in conductive composite materials and their application in flexible strain sensors Uniquely combines the processing, structure, properties, and applications of conductive polymer composites Integrates theory and practice Benefits plastics converters who wish to take full advantage of the potential of conductive plastic materials
Chemical, Gas, and Biosensors for the Internet of Things and Related Applications brings together the fields of sensors and analytical chemistry, devices and machines, and network and information technology. This thorough resource enables researchers to effectively collaborate to advance this rapidly expanding, interdisciplinary area of study. As innovative developments in the Internet of Things (IoT) continue to open new possibilities for quality of life improvement, sensor technology must keep pace, Drs. Mitsubayashi, Niwa and Ueno have brought together the top minds in their respective fields to provide the latest information on the numerous uses of this technology. Topics covered include life-assist systems, network monitoring with portable environmental sensors, wireless livestock health monitoring, point-of-care health monitoring, organic electronics and bio-batteries, and more.
In 1962 Clark and Lyons pioneered the concept of a biosensor. They p- posed immobilizing enzymes at electrochemical detectors to form "enzyme el- trodes" in order to expand the analyte range of ther base sensor. Smce then, the field of blosensors has greatly expanded. Some of the reasons for the expansion include both advances in signal transduction technologies and the incorporation of different biological sensing elements (Table 1). As a consequence, there are now a bewildering array of permutations of the biological sensing element and signal transducers that can be used to c- struct a biosensor. The purpose of the two volumes of Protocols and Te- niques in Biosensors is to provide a basic reference tool and starting point for use by graduate students, postdoctoral and senior researchers, and technicians m academics, industry, and government research establishments, to enable rapid entry into the field of biosensors. There are a variety of approaches that researchers employ to select a combination of bioaffinity elements and signal transducers. One commonly used approach is to identtfy the compound or compounds of interest; identify the biological molecule that yields an appropriate recognitionlselectivtty and dynamic concentration range for the assay; and choose an assay format and signal transduction technology that will meet the analytical requirements for the proposed application, This volume, Enzyme and Microbial Biosensors: Techniques and Protocols, describes a variety of transduction technologies that have been interfaced to enzymes and microorganisms.
Covers important supramolecules. Contains compilation of the different threads of supramolecular chemistry. Covers important supramolecules. Covers important environmental and biological applications. Covers important techniques at relevant places.
Volume 23, entitled Molecular Bio-Sensors and the Role of Metal Ions, of the series Metal Ions in Life Sciences (MILS) represents a milestone of contemporary progress and understanding of molecular bio-sensors for metal ions. It is bringing together the latest research in academia and industry, and it also emphasizes the spectrum of evolving regulations from regulatory bodies. This vibrant research area is covered by 31 internationally recognized experts. The impact of MILS-23 is manifested by more than 1300 references and close to 200 figures, more than 100 of them in color; further information is summarized in several tables. In conclusion, Volume 23 significantly advances our understanding of Molecular Bio-Sensors, it is therefore an essential resource for scientists working in the wide range from earth sciences, material sciences, physics, pharmacology, enzymology, analytical, organic, and inorganic biochemistry all the way through to medicine including the clinic. * It provides an understanding of the roles that metals play in living systems. * It offers an insight for the demands needed in the clinic. * It reveals the interplay between bio-sensors and therapies. The Series METAL IONS IN LIFE SCIENCES increases our understanding of the relationship between the chemistry of metals and life processes. The volumes reflect the interdisciplinary nature of Biological Inorganic Chemistry and coordinate the efforts of researchers in fields like biochemistry, inorganic chemistry, coordination chemistry, molecular and structural biology, enzymology, toxicology, environmental chemistry, biophysics, pharmacy, and medicine. The volumes deal with the formation, stability, structure, and reactivity of metal-containing biological compounds of low and high molecular weight. The metabolism and transport of metal ions and their complexes as well as new models of complicated natural structures and processes are in the focus. Consequently, the volumes are an essential source for researchers in the mentioned fields as well as for teachers preparing courses, e.g., in Bioinorganic Chemistry.
Biosensors: Fundamentals, Emerging Technologies, and Applications provides insight into the sensing applications of different types of biosensors relating to environmental pollutants, microbiological analysis, and healthcare. It describes state-of-the-art research in biosensors, point of care testing, potential applications, as well as future prospects for biosensors. This book: Presents the essentials that readers need to know to make full use of biosensor technology Discusses recent perspectives on optical and electrochemical biosensors Details biosensor types for medical applications Teaches how to use enzymes for biological recognition in biomarker assays Proposes innovations in wearable and smart biosensors This book is aimed at advanced students, researchers, and academics across a broad interdisciplinary field including biochemical, pharmaceutical, and environmental engineering as well as materials science, analytical chemistry, and biosciences.
This book reviews the state of the art in the use of organic materals as physical, chemical and biomedical sensors in a variety of application settings. Topics covered include organic semiconductors for chemical and physical sensing; conducting polymers in sensor applications; chemically functionalized organic semiconductors for highly selective sensing; composite organic-inorganic sensors; artificial skin applications; organic thin film transistor strain gauges for biomedical applications; OTFT infrared sensors for touchless human-machine interaction; smart fabric sensors and e-textile technologie; image capture with organic sensors; organic gas sensors and electronic noses; electrolyte gated organic transistors for bio-chemical sensing; ion-selective organic electrochemical transistors; DNA biosensors; metabolic organic sensors; and conductive polymer based sensors for biomedical applications.
This book arises from the NATO Advanced Study Institute "Technological Innovations in Detection and Sensing of CBRN Agents and Ecological Terrorism" held in Chisinau, Republic of Moldova in June 2010. It comprises a variety of invited contributions by highly experienced educators, scientists, and industrialists, and is structured to cover important aspects of the field that include developments in chemical-biological, and radiation sensing, synthesis and processing of sensors, and applications of sensors in detecting/monitoring contaminants introduced/dispersed inadvertently or intentionally in air, water, and food supplies. The book emphasizes nanomaterials and nanotechnology based sensing and also includes a section on sensing and detection technologies that can be applied to information security. Finally, it examines regional, national, and international policies and ethics related to nanomaterials and sensing. It will be of considerable interest and value to those already pursuing or considering careers in the field of nanostructured materials and nanotechnology based sensing, In general, it serves as a valuable source of information for those interested in how nanomaterials and nanotechnologies are advancing the field of sensing, detection, and remediation, policy makers, and commanders in the field.
Recent advances in nanotechnology has led the nanomaterials into the realm of sensing applications. This descriptive book utilizes a multi-disciplinary approach to provide extensive information about sensors and elucidates the impact of nanotechnology on development of chemical and biosensors for diversified applications. The main focus of this book is not only the inclusion of various research works, which have already been reported in literature, but also to make a potential conclusion about the mechanism behind this. This book will serve as an invaluable tool for both frontline researchers and academicians to work towards the future development of nanotechnology in sensing devices.
Sensors and measurement systems is an introduction to microsensors for engineering students in the final undergraduate or early graduate level, technicians who wants to know more about the systems they are using, and anybody curious enough to know what microsystems and microsensors can do. The book discusses five families of sensors: - Thermal sensors - Force and pressure sensors - Inertial sensors - Magnetic field sensors - Flow sensors For each sensor, theoretical, technology and application aspects are examined. The sensor function is modelled to understand sensitivity, resolution and noise. We ask ourselves: What do we want to measure? What are possible applications? How are the sensor chips made in the cleanroom? How are they mounted and integrated in a system? After reading this book, you should be able to: - Understand important thermal, mechanical, inertial and magnetic sensors - Work with characterization parameters for sensors - Choose sensors for a given application and apply them - Understand micromachining technologies for sensors
Mild traumatic brain injury (mTBI), directly related to chronic traumatic encephalopathy, presents a crisis in contact sports, the military, and public health. Mild Traumatic Brain Injury: A Science and Engineering Perspective reviews current understanding of mTBI, methods of diagnosis, treatment, policy concerns, and emerging technologies. It details the neurophysiology and epidemiology of brain injuries by presenting disease models and descriptions of nucleating events, characterizes sensors, imagers, and related diagnostic measures used for evaluating and identifying brain injuries, and relates emerging bioinformatics analysis with mTBI markers. The book goes on to discuss issues with sports medicine and military issues; covers therapeutic strategies, surgeries, and future developments; and finally addresses drug trials and candidates for therapy. The broad coverage and accessible discussions will appeal to professionals in diverse fields related to mTBI, students of neurology, medicine, and biology, as well as policy makers and lay persons interested in this hot topic. Features Summarizes the entire scope of the field of mTBI Details the neurophysiology, epidemiology, and presents disease models and descriptions of nucleating events Characterizes sensors, imagers, and related diagnostic measures and relates emerging bioinformatics analysis with mTBI markers Discusses issues with sports medicine and military issues Covers therapeutic strategies, surgeries, and future developments and addresses drug trials and candidates Dr Mark Mentzer earned his PhD in Electrical Engineering from the University of Delaware. He is a former research scientist at the US Army Research Laboratory where he studied mild traumatic brain injury and developed early-detection brain injury helmet sensors. He is a certified test director and contracting officer representative. He possesses two Level-III Defense Acquisition University Certifications in Science and Technology Management and in Test and Evaluation. During his career, he developed a wide range of sensors and instrumentation as well as biochemical processes to assess brain trauma. Mentzer currently teaches graduate systems engineering and computer science courses at the University of Maryland University College.
Biosensors are analytical devices that combine a biologically sensitive element with a physical or chemical transducer to selectively and quantitatively detect the presence of specific compounds. Balancing basics, principles, and case studies, Biosensors: Microelectrochemical Devices covers the theory and applications of one class of biosensor-microelectrochemical devices. The book clearly explains microelectronic techniques used to produce these cheap, fast reacting, and disposable sensors with the aid of helpful diagrams and tables. Researchers and postgraduates active in the field of chemical sensors, analytical chemistry, or microelectronics will find this an invaluable reference.
|
![]() ![]() You may like...
Advances in Nanosensors for Biological…
Aakash Deep, Sandeep Kumar
Paperback
R3,035
Discovery Miles 30 350
Biosensor Based Advanced Cancer…
Raju Khan, Arpana Parihar, …
Paperback
R3,177
Discovery Miles 31 770
Ultrathin Electrochemical Chemo- and…
Vladimir M. Mirsky
Hardcover
Optical Fiber-based Plasmonic Biosensors…
Santosh Kumar, Chinmoy Saha, …
Hardcover
R4,067
Discovery Miles 40 670
Biosensing - International Research and…
Jerome Schultz, Milan Mrksich, …
Hardcover
R4,559
Discovery Miles 45 590
Quantum Dots and Polymer Nanocomposites…
Jyotishkumar Parameswaranpillai, Poushali Das, …
Hardcover
R4,699
Discovery Miles 46 990
|