Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
Tauberian theory compares summability methods for series and integrals, helps to decide when there is convergence, and provides asymptotic and remainder estimates. The author shows the development of the theory from the beginning and his expert commentary evokes the excitement surrounding the early results. He shows the fascination of the difficult Hardy-Littlewood theorems and of an unexpected simple proof, and extolls Wiener's breakthrough based on Fourier theory. There are the spectacular "high-indices" theorems and Karamata's "regular variation," which permeates probability theory. The author presents Gelfand's elegant algebraic treatment of Wiener theory and his own distributional approach. There is also a new unified theory for Borel and "circle" methods. The text describes many Tauberian ways to the prime number theorem. A large bibliography and a substantial index round out the book.
One service mathematics has rmdcred the 'Et moi, . . si j'avait su comment en rcvenir. human race. It has put common sense back je n'y semis point aile.' whc: rc it belongs, on the topmost shcIl next Jules Verne to the dusty callister labc:1lcd 'discarded non sense'. The series is divergent; thererore we may be Eric T. Bell able to do something with iL O. Hcavisidc Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And alI statements obtainable this way form part of the raison d'etre of this series."
This book (along with volume 2 covers most of the traditional methods for polynomial root-finding such as Newton s, as well as numerous variations on them invented in the last few decades. Perhaps more importantly it covers recent developments such as Vincent s method, simultaneous iterations, and matrix methods. There is an extensive chapter on evaluation of polynomials, including parallel methods and errors. There are pointers to robust and efficient programs. In short, it could be entitled A Handbook of Methods for Polynomial Root-finding . This book will be invaluable to anyone doing research in polynomial roots, or teaching a graduate course on that topic.
"
Stabilization of Navier Stokes Flows presents recent notable progress in the mathematical theory of stabilization of Newtonian fluid flows. Finite-dimensional feedback controllers are used to stabilize exponentially the equilibrium solutions of Navier Stokes equations, reducing or eliminating turbulence. Stochastic stabilization and robustness of stabilizable feedback are also discussed. The analysis developed here provides a rigorous pattern for the design of efficient stabilizable feedback controllers to meet the needs of practical problems and the conceptual controllers actually detailed will render the reader 's task of application easier still.Stabilization of Navier Stokes Flows avoids the tedious and technical details often present in mathematical treatments of control and Navier Stokes equations and will appeal to a sizeable audience of researchers and graduate students interested in the mathematics of flow and turbulence control and in Navier-Stokes equations in particular.
Mathematical models of deformation of elastic plates are used by applied mathematicians and engineers in connection with a wide range of practical applications, from microchip production to the construction of skyscrapers and aircraft. This book employs two important analytic techniques to solve the fundamental boundary value problems for the theory of plates with transverse shear deformation, which offers a more complete picture of the physical process of bending than Kirchhoff's classical one. The first method transfers the ellipticity of the governing system to the boundary, leading to singular integral equations on the contour of the domain. These equations, established on the basis of the properties of suitable layer potentials, are then solved in spaces of smooth (Hoelder continuous and Hoelder continuously differentiable) functions. The second technique rewrites the differential system in terms of complex variables and fully integrates it, expressing the solution as a combination of complex analytic potentials. The last chapter develops a generalized Fourier series method closely connected with the structure of the system, which can be used to compute approximate solutions. The numerical results generated as an illustration for the interior Dirichlet problem are accompanied by remarks regarding the efficiency and accuracy of the procedure. The presentation of the material is detailed and self-contained, making Mathematical Methods for Elastic Plates accessible to researchers and graduate students with a basic knowledge of advanced calculus.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
Maximum Principles are central to the theory and applications of second-order partial differential equations and systems. This self-contained text establishes the fundamental principles and provides a variety of applications.
The book collects the most significant contributions of the outstanding Czech mathematician Jind ich Ne as, who was honoured with the Order of Merit of the Czech Republic by President Vaclav Havel. Starting with Ne as s brief biography and short comments on his role in the beginnings of modern PDE research in Prague, the book then follows the periods of his research career. The first part is devoted to the linear theory of partial differential equations. Its topics include the variational approach to linear boundary value problems and the Rellich - Ne as inequalities, together with their applications to boundary regularity. The second part is concerned with the regularity for nonlinear elliptic systems, which are related to Hilbert s 19th and 20th problems. The third part focuses on Nonlinear Functional Analysis and its applications to non-linear PDEs, while the last part deals with topics in the mathematical theory of various models in Continuum Mechanics, including elasticity and plasticity, the Navier-Stokes equations, transonic flows, and multipolar fluids. The editorial contributions were written by: I. Babu ka, P. Ciarlet, P. Drabek, M. Feistauer, I. Hlava ek, J. Jaru ek, O. John, J. Kristensen, A. Kufner, J. Malek, G. Mingione, . Ne asova, M. Pokorny, P. Quittner, T. Roubi ek, G. Seregin and J. Stara."
This volume collects selected papers presented at the Ninth International Workshop on Meshfree Methods held in Bonn, Germany in September 2017. They address various aspects of this very active research field and cover topics from applied mathematics, physics and engineering. The numerical treatment of partial differential equations with meshfree discretization techniques has been a very active research area in recent years. While the fundamental theory of meshfree methods has been developed and considerable advances of the various methods have been made, many challenges in the mathematical analysis and practical implementation of meshfree methods remain. This symposium aims to promote collaboration among engineers, mathematicians, and computer scientists and industrial researchers to address the development, mathematical analysis, and application of meshfree and particle methods especially to multiscale phenomena. It continues the 2-year-cycled Workshops on Meshfree Methods for Partial Differential Equations.
This monograph is devoted to recent progress in the turnpike t- ory. Turnpike properties are well known in mathematical economics. The term was ?rst coined by Samuelson who showed that an e?cient expanding economy would for most of the time be in the vicinity of a balanced equilibrium path (also called a von Neumann path) [78, 79]. These properties were studied by many authors for optimal trajec- ries of a Neumann-Gale model determined by a superlinear set-valued mapping. In the monograph we discuss a number of results conce- ing turnpike properties in the calculus of variations and optimal control which were obtained by the author in the last ten years. These results showthattheturnpikepropertiesareageneralphenomenonwhichholds for various classes of variational problems and optimal control problems. Turnpike properties are studied for optimal control problems on- nite time intervals [T ,T ] of the real line. Solutions of such problems 1 2 (trajectories) always depend on the time interval [T ,T ], an optimality 1 2 criterion which is usually determined by a cost function, and on data which is some initial conditions. In the turnpike theory we are int- ested in the structure of solutions of optimal problems. We study the behavior of solutions when an optimality criterion is ?xed while T ,T 1 2 andthedatavary.
Since the seminal work of P. Anderson in 1958, localization in disordered systems has been the object of intense investigations. Mathematically speaking, the phenomenon can be described as follows: the self-adjoint operators which are used as Hamiltonians for these systems have a ten dency to have pure point spectrum, especially in low dimension or for large disorder. A lot of effort has been devoted to the mathematical study of the random self-adjoint operators relevant to the theory of localization for disordered systems. It is fair to say that progress has been made and that the un derstanding of the phenomenon has improved. This does not mean that the subject is closed. Indeed, the number of important problems actually solved is not larger than the number of those remaining. Let us mention some of the latter: * A proof of localization at all energies is still missing for two dimen sional systems, though it should be within reachable range. In the case of the two dimensional lattice, this problem has been approached by the investigation of a finite discrete band, but the limiting pro cedure necessary to reach the full two-dimensional lattice has never been controlled. * The smoothness properties of the density of states seem to escape all attempts in dimension larger than one. This problem is particularly serious in the continuous case where one does not even know if it is continuous.
Fundamentals of Convex Analysis offers an in-depth look at some of the fundamental themes covered within an area of mathematical analysis called convex analysis. In particular, it explores the topics of duality, separation, representation, and resolution. The work is intended for students of economics, management science, engineering, and mathematics who need exposure to the mathematical foundations of matrix games, optimization, and general equilibrium analysis. It is written at the advanced undergraduate to beginning graduate level and the only formal preparation required is some familiarity with set operations and with linear algebra and matrix theory. Fundamentals of Convex Analysis is self-contained in that a brief review of the essentials of these tool areas is provided in Chapter 1. Chapter exercises are also provided. Topics covered include: convex sets and their properties; separation and support theorems; theorems of the alternative; convex cones; dual homogeneous systems; basic solutions and complementary slackness; extreme points and directions; resolution and representation of polyhedra; simplicial topology; and fixed point theorems, among others. A strength of this work is how these topics are developed in a fully integrated fashion.
This book discusses some of the first principles of modern analysis. I t can be used for courses at several levels, depending upon the background and ability of the students. It was written on the premise that today's good students have unexpected enthusiasm and nerve. When hard work is put to them, they work harder and ask for more. The honors course (at the University of Wisconsin) which inspired this book was, I think, more fun than the book itself. And better. But then there is acting in teaching, and a typewriter is a poor substitute for an audience. The spontaneous, creative disorder that characterizes an exciting course becomes silly in a book. To write, one must cut and dry. Yet, I hope enough of the spontaneity, enough of the spirit of that course, is left to enable those using the book to create exciting courses of their own. Exercises in this book are not designed for drill. They are designed to clarify the meanings of the theorems, to force an understanding of the proofs, and to call attention to points in a proof that might otherwise be overlooked. The exercises, therefore, are a real part of the theory, not a collection of side issues, and as such nearly all of them are to be done. Some drill is, of course, necessary, particularly in the calculation of integrals.
In recent years many researchers in material science have focused their attention on the study of composite materials, equilibrium of crystals and crack distribution in continua subject to loads. At the same time several new issues in computer vision and image processing have been studied in depth. The understanding of many of these problems has made significant progress thanks to new methods developed in calculus of variations, geometric measure theory and partial differential equations. In particular, new technical tools have been introduced and successfully applied. For example, in order to describe the geometrical complexity of unknown patterns, a new class of problems in calculus of variations has been introduced together with a suitable functional setting: the free-discontinuity problems and the special BV and BH functions. The conference held at Villa Olmo on Lake Como in September 1994 spawned successful discussion of these topics among mathematicians, experts in computer science and material scientists.
In this book the details of many calculations are provided for access to work in quantum groups, algebraic differential calculus, noncommutative geometry, fuzzy physics, discrete geometry, gauge theory, quantum integrable systems, braiding, finite topological spaces, some aspects of geometry and quantum mechanics and gravity.
Asymptotic methods belong to the, perhaps, most romantic area of modern mathematics. They are widely known and have been used in me chanics, physics and other exact sciences for many, many decades. But more than this, asymptotic ideas are found in all branches of human knowledge, indeed in all areas of life. In this broader context they have not and perhaps cannot be fully formalized. However, they are mar velous, they leave room for fantasy, guesses and intuition; they bring us very near to the border of the realm of art. Many books have been written and published about asymptotic meth ods. Most of them presume a mathematically sophisticated reader. The authors here attempt to describe asymptotic methods on a more accessi ble level, hoping to address a wider range of readers. They have avoided the extreme of banishing formulae entirely, as done in some popular science books that attempt to describe mathematical methods with no mathematics. This is impossible (and not wise). Rather, the authors have tried to keep the mathematics at a moderate level. At the same time, using simple examples, they think they have been able to illustrate all the key ideas of asymptotic methods and approaches, to depict in de tail the results of their application to various branches of knowledg- from astronomy, mechanics, and physics to biology, psychology and art. The book is supplemented by several appendices, one of which con tains the profound ideas of R. G."
This is the first book to systematically state the fundamental theory of integrability and its development of ordinary differential equations with emphasis on the Darboux theory of integrability and local integrability together with their applications. It summarizes the classical results of Darboux integrability and its modern development together with their related Darboux polynomials and their applications in the reduction of Liouville and elementary integrabilty and in the center-focus problem, the weakened Hilbert 16th problem on algebraic limit cycles and the global dynamical analysis of some realistic models in fields such as physics, mechanics and biology. Although it can be used as a textbook for graduate students in dynamical systems, it is intended as supplementary reading for graduate students from mathematics, physics, mechanics and engineering in courses related to the qualitative theory, bifurcation theory and the theory of integrability of dynamical systems.
This volume is the first of two containing selected papers from the International Conference on Advances in Mathematical Sciences, Vellore, India, December 2017 - Volume I. This meeting brought together researchers from around the world to share their work, with the aim of promoting collaboration as a means of solving various problems in modern science and engineering. The authors of each chapter present a research problem, techniques suitable for solving it, and a discussion of the results obtained. These volumes will be of interest to both theoretical- and application-oriented individuals in academia and industry. Papers in Volume I are dedicated to active and open areas of research in algebra, analysis, operations research, and statistics, and those of Volume II consider differential equations, fluid mechanics, and graph theory.
The theory of function spaces endowed with the topology of point wise convergence, or Cp-theory, exists at the intersection of three important areas of mathematics: topological algebra, functional analysis, and general topology. Cp-theory has an important role in the classification and unification of heterogeneous results from each of these areas of research. Through over 500 carefully selected problems and exercises, this volume provides a self-contained introduction to Cp-theory and general topology. By systematically introducing each of the major topics in Cp-theory, this volume is designed to bring a dedicated reader from basic topological principles to the frontiers of modern research. Key features include: - A unique problem-based introduction to the theory of function spaces. - Detailed solutions to each of the presented problems and exercises. - A comprehensive bibliography reflecting the state-of-the-art in modern Cp-theory. - Numerous open problems and directions for further research. This volume can be used as a textbook for courses in both Cp-theory and general topology as well as a reference guide for specialists studying Cp-theory and related topics. This book also provides numerous topics for PhD specialization as well as a large variety of material suitable for graduate research.
The objective of this book is to present an introduction to the ideas, phenomena, and methods of partial differential equations. This material can be presented in one semester and requires no previous knowledge of differential equations, but assumes the reader to be familiar with advanced calculus, real analysis, the rudiments of complex analysis, and thelanguage of functional analysis. Topics discussed in the text include elliptic, hyperbolic, and parabolic equations, the energy method, maximum principle, and the Fourier Transform. The text features many historical and scientific motivations and applications. Included throughout are exercises, hints, and discussions which form an important and integral part of the course.
There is almost no field in Mathematics which does not use Mathe matical Analysis. Computer methods in Applied Mathematics, too, are often based on statements and procedures of Mathematical Analysis. An important part of Mathematical Analysis is Complex Analysis because it has many applications in various branches of Mathematics. Since the field of Complex Analysis and its applications is a focal point in the Vietnamese research programme, the Hanoi University of Technology organized an International Conference on Finite or Infinite Dimensional Complex Analysis and Applications which took place in Hanoi from August 8 - 12, 2001. This conference th was the 9 one in a series of conferences which take place alternately in China, Japan, Korea and Vietnam each year. The first one took place th at Pusan University in Korea in 1993. The preceding 8 conference was th held in Shandong in China in August 2000. The 9 conference of the was the first one which took place above mentioned series of conferences in Vietnam. Present trends in Complex Analysis reflected in the present volume are mainly concentrated in the following four research directions: 1 Value distribution theory (including meromorphic funtions, mero morphic mappings, as well as p-adic functions over fields of finite or zero characteristic) and its applications, 2 Holomorphic functions in several (finitely or infinitely many) com plex variables, 3 Clifford Analysis, i.e., complex methods in higher-dimensional real Euclidian spaces, 4 Generalized analytic functions."
This book presents complex analysis in one variable in the
context of modern mathematics, with clear connections to several
complex variables, de Rham theory, real analysis, and other
branches of mathematics. Thus, covering spaces are used explicitly
in dealing with Cauchy's theorem, real variable methods are
illustrated in the Loman-Menchoff theorem and in the corona
theorem, and the algebraic structure of the ring of holomorphic
functions is studied.
This book focuses on problems at the interplay between the theory of partitions and optimal transport with a view toward applications. Topics covered include problems related to stable marriages and stable partitions, multipartitions, optimal transport for measures and optimal partitions, and finally cooperative and noncooperative partitions. All concepts presented are illustrated by examples from game theory, economics, and learning.
This work fills an important gap in the literature by providing an important link between MAPLE and its successful use in solving problems in Operations Research (OR). The symbolic, numerical, and graphical aspects of MAPLE make this software package an ideal tool for treating certain OR problems and providing descriptive and optimization-based analyses of deterministic and stochastic models. Detailed is MAPLE's treatment of some of the mathematical techniques used in OR modeling: e.g., algebra and calculus, ordinary and partial differential equations, linear algebra, transform methods, and probability theory. A number of examples of OR techniques and applications are presented, such as linear and nonlinear programming, dynamic programming, stochastic processes, inventory models, queueing systems, and simulation. Throughout the text MAPLE statements used in the solutions of problems are clearly explained. At the same time, technical background material is presented in a rigorous mathematical manner to reach the OR novice and professional. Numerous end-of- chapter exercises, a good bibliography and overall index at the end of the book are also included, as well as MAPLE worksheets that are easily downloadable from the author's website at www.business.mcmaster.ca/msis/profs/parlar, or from the Birkhauser website at www.birkhauser.com/cgi-win/ISBN/0-8176-4165-3. The book is intended for advanced undergraduate and graduate students in operations research, management science departments of business schools, industrial and systems engineering, economics, and mathematics. As a self-study resource, the text can be used by researchers and practitioners who want a quick overview ofMAPLE's usefulness in solving realistic OR problems that would be difficult or impossible to solve with other software packages.
This book is the result of 20 years of investigations carried out by the author and his colleagues in order to bring closer and, to a certain extent, synthesize a number of well-known results, ideas and methods from the theory of function approximation, theory of differential and integral equations and numerical analysis. The book opens with an introduction on the theory of function approximation and is followed by a new approach to the Fredholm integral equations to the second kind. Several chapters are devoted to the construction of new methods for the effective approximation of solutions of several important integral, and ordinary and partial differential equations. In addition, new general results on the theory of linear differential equations with one regular singular point, as well as applications of the various new methods are discussed. |
You may like...
Schaum's Outline of Differential…
Richard Bronson, Gabriel B Costa
Paperback
R436
Discovery Miles 4 360
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
(1)
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
AP Calculus Premium, 2022-2023: 12…
David Bock, Dennis Donovan, …
Paperback
R521
Discovery Miles 5 210
|