![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
Intended as an undergraduate text on real analysis, this book includes all the standard material such as sequences, infinite series, continuity, differentiation, and integration, together with worked examples and exercises. By unifying and simplifying all the various notions of limit, the author has successfully presented a novel approach to the subject matter, which has not previously appeared in book form. The author defines the term limit once only, and all of the subsequent limiting processes are seen to be special cases of this one definition. Accordingly, the subject matter attains a unity and coherence that is not to be found in the traditional approach. Students will be able to fully appreciate and understand the common source of the topics they are studying while also realising that they are "variations on a theme", rather than essentially different topics, and therefore, will gain a better understanding of the subject.
This book contains a selection of papers presented at the session "Quaternionic and Clifford Analysis" at the 10th ISAAC Congress held in Macau in August 2015. The covered topics represent the state-of-the-art as well as new trends in hypercomplex analysis and its applications.
This book is about normal forms--the simplest form into which a dynamical system can be put for the purpose of studying its behavior in the neighborhood of a rest point--and about unfoldings--used to study the local bifurcations that the system can exhibit under perturbation. The book presents the advanced theory of normal forms, showing their interaction with representation theory, invariant theory, Groebner basis theory, and structure theory of rings and modules. A complete treatment is given both for the popular "inner product style" of normal forms and the less well known "sl(2) style" due to Cushman and Sanders, as well as the author's own "simplified" style. In addition, this book includes algorithms suitable for use with computer algebra systems for computing normal forms. The interaction between the algebraic structure of normal forms and their geometrical consequences is emphasized. The book contains previously unpublished results in both areas (algebraic and geometrical) and includes suggestions for further research. The book begins with two nonlinear examples--one semisimple, one nilpotent--for which normal forms and unfoldings are computed by a variety of elementary methods. After treating some required topics in linear algebra, more advanced normal form methods are introduced, first in the context of linear normal forms for matrix perturbation theory, and then for nonlinear dynamical systems. Then the emphasis shifts to applications: geometric structures in normal forms, computation of unfoldings, and related topics in bifurcation theory. This book will be useful to researchers and advanced students in dynamical systems, theoretical physics, and engineering.
This introductory course on the classical Boundary Element Method also contains advanced topics such as the Dual Reciprocity and the Hybrid Boundary Element Methods. The latter methods are extensions that permit the application of BME to anisotropic materials, as well as multi-field problems and fluid-structure interaction. The class-tested textbook offers a clear and easy-to-understand introduction to the subject, including worked-out examples that describe all the basic features of the method. The first two chapters not only establish the mathematical basis for BEM but also review the basics of continuum mechanics for field problems, perhaps a unique feature for a text on numerical methods. This helps the reader to understand the physical principles of the field problems, to apply the method judiciously, and toe critically evaluate the results.
Karl Menger, one of the founders of dimension theory, belongs to the most original mathematicians and thinkers of the twentieth century. He was a member of the Vienna Circle and the founder of its mathematical equivalent, the Viennese Mathematical Colloquium. Both during his early years in Vienna and, after his emigration, in the United States, Karl Menger made significant contributions to a wide variety of mathematical fields, and greatly influenced some of his colleagues. The Selecta Mathematica contain Menger's major mathematical papers, based on his own selection from his extensive writings. They deal with topics as diverse as topology, geometry, analysis and algebra, as well as writings on economics, sociology, logic, philosophy and mathematical results. The two volumes are a monument to the diversity and originality of Menger's ideas.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
Statistical inferential methods are widely used in the study of various physical, biological, social, and other phenomena. Parametric estimation is one such method. Although there are many books which consider problems of statistical point estimation, this volume is the first to be devoted solely to the problem of unbiased estimation. It contains three chapters dealing, respectively, with the theory of point statistical estimation, techniques for constructing unbiased estimators, and applications of unbiased estimation theory. These chapters are followed by a comprehensive appendix which classifies and lists, in the form of tables, all known results relating to unbiased estimators of parameters for univariate distributions. About one thousand minimum variance unbiased estimators are listed. The volume also contains numerous examples and exercises. This volume will serve as a handbook on point unbiased estimation for researchers whose work involves statistics. It can also be recommended as a supplementary text for graduate students.
Blaschke Products and Their Applications presents a collection of survey articles that examine Blaschke products and several of its applications to fields such as approximation theory, differential equations, dynamical systems, harmonic analysis, to name a few. Additionally, this volume illustrates the historical roots of Blaschke products and highlights key research on this topic. For nearly a century, Blaschke products have been researched. Their boundary behaviour, the asymptomatic growth of various integral means and their derivatives, their applications within several branches of mathematics, and their membership in different function spaces and their dynamics, are a few examples of where Blaschke products have shown to be important. The contributions written by experts from various fields of mathematical research will engage graduate students and researches alike, bringing the reader to the forefront of research in the topic. The readers will also discover the various open problems, enabling them to better pursue their own research."
This text contains a series of self-contained reviews on the state of the art in different areas of partial differential equations, presented by French mathematicians. Topics include qualitative properties of reaction-diffusion equations, multiscale methods coupling atomistic and continuum mechanics, adaptive semi-Lagrangian schemes for the Vlasov-Poisson equation, and coupling of scalar conservation laws.
The papers collected in this volume are contributions to the 33rd session of the Seminaire de Mathematiques Superieures (SMS) on "Topological Methods in Differential Equations and Inclusions." This session of the SMS took place at the Universite de Montreal in July 1994 and was a NATO Advanced Study Institute (ASI). The aim of the ASI was to bring together a considerable group of young researchers from various parts of the world and to present to them coherent surveys of some of the most recent advances in this area of Nonlinear Analysis. During the meeting 89 mathematicians from 20 countries have had the opportunity to get acquainted with various aspects of the subjects treated in the lectures as well as the chance to exchange ideas and learn about new problems arising in the field. The main topics teated in this ASI were the following: Fixed point theory for single- and multi-valued mappings including topological degree and its generalizations, and topological transversality theory; existence and multiplicity results for ordinary differential equations and inclusions; bifurcation and stability problems; ordinary differential equations in Banach spaces; second order differential equations on manifolds; the topological structure of the solution set of differential inclusions; effects of delay perturbations on dynamics of retarded delay differential equations; dynamics of reaction diffusion equations; non smooth critical point theory and applications to boundary value problems for quasilinear elliptic equations.
Clifford Algebras continues to be a fast-growing discipline, with ever-increasing applications in many scientific fields. This volume contains the lectures given at the Fourth Conference on Clifford Algebras and their Applications in Mathematical Physics, held at RWTH Aachen in May 1996. The papers represent an excellent survey of the newest developments around Clifford Analysis and its applications to theoretical physics. Audience: This book should appeal to physicists and mathematicians working in areas involving functions of complex variables, associative rings and algebras, integral transforms, operational calculus, partial differential equations, and the mathematics of physics.
This book is intended to be an introduction to Delay Differential Equations for upper level undergraduates or beginning graduate mathematics students who have a reasonable background in ordinary differential equations and who would like to get to the applications quickly. The author has used preliminary notes in teaching such a course at Arizona State University over the past two years. This book focuses on the key tools necessary to understand the applications literature involving delay equations and to construct and analyze mathematical models involving delay differential equations. The book begins with a survey of mathematical models involving delay equations.
The twentieth-century view of the analysis of functions is dominated by the study of classes of functions. This volume of the Encyclopaedia covers the origins, development and applications of linear functional analysis, explaining along the way how one is led naturally to the modern approach.
In 1821, Augustin-Louis Cauchy (1789-1857) published a textbook, the Cours d analyse, to accompany his course in analysis at the Ecole Polytechnique. It is one of the most influential mathematics books ever written. Not only did Cauchy provide a workable definition of limits and a means to make them the basis of a rigorous theory of calculus, but he also revitalized the idea that all mathematics could be set on such rigorous foundations. Today, the quality of a work of mathematics is judged in part on the quality of its rigor, and this standard is largely due to the transformation brought about by Cauchy and the Cours d analyse. For this translation, the authors have also added commentary, notes, references, and an index.
Key topics in the theory of real analytic functions are covered in this text,and are rather difficult to pry out of the mathematics literature.; This expanded and updated 2nd ed. will be published out of Boston in Birkhauser Adavaned Texts series.; Many historical remarks, examples, references and an excellent index should encourage the reader study this valuable and exciting theory.; Superior advanced textbook or monograph for a graduate course or seminars on real analytic functions.; New to the second edition a revised and comprehensive treatment of the Faa de Bruno formula, topologies on the space of real analytic functions,; alternative characterizations of real analytic functions, surjectivity of partial differential operators, And the Weierstrass preparation theorem.
The 1985 Castel vecchio-Pas coli NATO Advanced Study Institute is aimed to complete the trilogy with the two former institutes I organized: "Boundary Value Problem for Evolution Partial Differential Operators," Liege, 1976 and "Singularities in Boundary Value Problems," Maratea, 1980. It was indeed necessary to record the considerable progress realized in the field of the propagation of singularities of Schwartz Distri butions which led recently to the birth of a new branch of Mathema tical Analysis called Microlocal Analysis. Most of this theory was mainly built to be applied to distribution solutions of linear partial differential problems. A large part of this institute still went in this direction. But, on the other hand, it was also time to explore the new trend to use microlocal analysis In non linear differential problems. I hope that the Castelvecchio NATO ASI reached its purposes with the help of the more famous authorities in the field. The meeting was held in Tuscany (Italy) at Castelvecchio-Pascoli, little village in the mountains north of Lucca on September 2-12, 1985. It was hosted by "11 Ciocco" an international vacation Center, In a comfortable hotel located in magnificent mountain surroundings and provided with all conference and sport facilities."
Hans Duistermaat, an influential geometer-analyst, made substantial contributions to the theory of ordinary and partial differential equations, symplectic, differential, and algebraic geometry, minimal surfaces, semisimple Lie groups, mechanics, mathematical physics, and related fields. Written in his honor, the invited and refereed articles in this volume contain important new results as well as surveys in some of these areas, clearly demonstrating the impact of Duistermaat's research and, in addition, exhibiting interrelationships among many of the topics.
In April of 1996 an array of mathematicians converged on Cambridge, Massachusetts, for the Rotafest and Umbral Calculus Workshop, two con ferences celebrating Gian-Carlo Rota's 64th birthday. It seemed appropriate when feting one of the world's great combinatorialists to have the anniversary be a power of 2 rather than the more mundane 65. The over seventy-five par ticipants included Rota's doctoral students, coauthors, and other colleagues from more than a dozen countries. As a further testament to the breadth and depth of his influence, the lectures ranged over a wide variety of topics from invariant theory to algebraic topology. This volume is a collection of articles written in Rota's honor. Some of them were presented at the Rotafest and Umbral Workshop while others were written especially for this Festschrift. We will say a little about each paper and point out how they are connected with the mathematical contributions of Rota himself."
The history of martingale theory goes back to the early fifties when Doob [57] pointed out the connection between martingales and analytic functions. On the basis of Burkholder's scientific achievements the mar tingale theory can perfectly well be applied in complex analysis and in the theory of classical Hardy spaces. This connection is the main point of Durrett's book [60]. The martingale theory can also be well applied in stochastics and mathematical finance. The theories of the one-parameter martingale and the classical Hardy spaces are discussed exhaustively in the literature (see Garsia [83], Neveu [138], Dellacherie and Meyer [54, 55], Long [124], Weisz [216] and Duren [59], Stein [193, 194], Stein and Weiss [192], Lu [125], Uchiyama [205]). The theory of more-parameter martingales and martingale Hardy spaces is investigated in Imkeller [107] and Weisz [216]. This is the first mono graph which considers the theory of more-parameter classical Hardy spaces. The methods of proofs for one and several parameters are en tirely different; in most cases the theorems stated for several parameters are much more difficult to verify. The so-called atomic decomposition method that can be applied both in the one-and more-parameter cases, was considered for martingales by the author in [216].
The history of continued fractions is certainly one of the longest among those of mathematical concepts, since it begins with Euclid's algorithm for the great est common divisor at least three centuries B.C. As it is often the case and like Monsieur Jourdain in Moliere's "Ie bourgeois gentilhomme" (who was speak ing in prose though he did not know he was doing so), continued fractions were used for many centuries before their real discovery. The history of continued fractions and Pade approximants is also quite im portant, since they played a leading role in the development of some branches of mathematics. For example, they were the basis for the proof of the tran scendence of 11' in 1882, an open problem for more than two thousand years, and also for our modern spectral theory of operators. Actually they still are of great interest in many fields of pure and applied mathematics and in numerical analysis, where they provide computer approximations to special functions and are connected to some convergence acceleration methods. Con tinued fractions are also used in number theory, computer science, automata, electronics, etc ..."
Elliptic boundary problems have enjoyed interest recently, espe cially among C* -algebraists and mathematical physicists who want to understand single aspects of the theory, such as the behaviour of Dirac operators and their solution spaces in the case of a non-trivial boundary. However, the theory of elliptic boundary problems by far has not achieved the same status as the theory of elliptic operators on closed (compact, without boundary) manifolds. The latter is nowadays rec ognized by many as a mathematical work of art and a very useful technical tool with applications to a multitude of mathematical con texts. Therefore, the theory of elliptic operators on closed manifolds is well-known not only to a small group of specialists in partial dif ferential equations, but also to a broad range of researchers who have specialized in other mathematical topics. Why is the theory of elliptic boundary problems, compared to that on closed manifolds, still lagging behind in popularity? Admittedly, from an analytical point of view, it is a jigsaw puzzle which has more pieces than does the elliptic theory on closed manifolds. But that is not the only reason."
This is the first thorough examination of weakly nonlocal solitary waves, which are just as important in applications as their classical counterparts. The book describes a class of waves that radiate away from the core of the disturbance but are nevertheless very long-lived nonlinear disturbances.
This book describes the inferential and modeling advantages that this distribution, together with its generalizations and modifications, offers. The exposition systematically unfolds with many examples, tables, illustrations, and exercises. A comprehensive index and extensive bibliography also make this book an ideal text for a senior undergraduate and graduate seminar on statistical distributions, or for a short half-term academic course in statistics, applied probability, and finance.
In this paper we shall discuss the construction of formal short-wave asymp totic solutions of problems of mathematical physics. The topic is very broad. It can somewhat conveniently be divided into three parts: 1. Finding the short-wave asymptotics of a rather narrow class of problems, which admit a solution in an explicit form, via formulas that represent this solution. 2. Finding formal asymptotic solutions of equations that describe wave processes by basing them on some ansatz or other. We explain what 2 means. Giving an ansatz is knowing how to give a formula for the desired asymptotic solution in the form of a series or some expression containing a series, where the analytic nature of the terms of these series is indicated up to functions and coefficients that are undetermined at the first stage of consideration. The second stage is to determine these functions and coefficients using a direct substitution of the ansatz in the equation, the boundary conditions and the initial conditions. Sometimes it is necessary to use different ansiitze in different domains, and in the overlapping parts of these domains the formal asymptotic solutions must be asymptotically equivalent (the method of matched asymptotic expansions). The basis for success in the search for formal asymptotic solutions is a suitable choice of ansiitze. The study of the asymptotics of explicit solutions of special model problems allows us to "surmise" what the correct ansiitze are for the general solution."
This book is an introduction to the theory of linear one-dimensional singular integral equations. It is essentually a graduate textbook. Singular integral equations have attracted more and more attention, because, on one hand, this class of equations appears in many applications and, on the other, it is one of a few classes of equations which can be solved in explicit form. In this book material of the monograph [2] of the authors on one-dimensional singular integral operators is widely used. This monograph appeared in 1973 in Russian and later in German translation [3]. In the final text version the authors included many addenda and changes which have in essence changed character, structure and contents of the book and have, in our opinion, made it more suitable for a wider range of readers. Only the case of singular integral operators with continuous coefficients on a closed contour is considered herein. The case of discontinuous coefficients and more general contours will be considered in the second volume. We are grateful to the editor Professor G. Heinig of the volume and to the translators Dr. B. Luderer and Dr. S. Roch, and to G. Lillack, who did the typing of the manuscript, for the work they have done on this volume. |
![]() ![]() You may like...
Mathematical Modeling for Smart…
Debabrata Samanta, Debabrata Singh
Hardcover
R12,400
Discovery Miles 124 000
Organizational Processes and Received…
Daniel J. Svyantek, Kevin T. Mahoney
Hardcover
R3,197
Discovery Miles 31 970
The Oxford Handbook of Gender in…
Savita Kumra, Ruth Simpson, …
Hardcover
R4,802
Discovery Miles 48 020
Advanced communication skills - For…
Marietta Swart, Maretha Hairbottle, …
Paperback
R640
Discovery Miles 6 400
|