![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
In the study of integrable systems, two different approaches in particular have attracted considerable attention during the past twenty years. (1) The inverse scattering transform (IST), using complex function theory, which has been employed to solve many physically significant equations, the soliton' equations. (2) Twistor theory, using differential geometry, which has been used to solve the self-dual Yang--Mills (SDYM) equations, a four-dimensional system having important applications in mathematical physics. Both soliton and the SDYM equations have rich algebraic structures which have been extensively studied. Recently, it has been conjectured that, in some sense, all soliton equations arise as special cases of the SDYM equations; subsequently many have been discovered as either exact or asymptotic reductions of the SDYM equations. Consequently what seems to be emerging is that a natural, physically significant system such as the SDYM equations provides the basis for a unifying framework underlying this class of integrable systems, i.e. soliton' systems. This book contains several articles on the reduction of the SDYM equations to soliton equations and the relationship between the IST and twistor methods. The majority of nonlinear evolution equations are nonintegrable, and so asymptotic, numerical perturbation and reduction techniques are often used to study such equations. This book also contains articles on perturbed soliton equations. PainlevA(c) analysis of partial differential equations, studies of the PainlevA(c) equations and symmetry reductions of nonlinear partial differential equations. (ABSTRACT) In the study of integrable systems, two different approaches in particularhave attracted considerable attention during the past twenty years; the inverse scattering transform (IST), for soliton' equations and twistor theory, for the self-dual Yang--Mills (SDYM) equations. This book contains several articles on the reduction of the SDYM equations to soliton equations and the relationship between the IST and twistor methods. Additionally, it contains articles on perturbed soliton equations, Painleve analysis of partial differential equations, studies of the Painleve equations and symmetry reductions of nonlinear partial differential equations.
In view of the eminent importance of spectral theory of linear operators in many fields of mathematics and physics, it is not surprising that various attempts have been made to define and study spectra also for nonlinear operators. This book provides a comprehensive and self-contained treatment of the theory, methods, and applications of nonlinear spectral theory. The first chapter briefly recalls the definition and properties of the spectrum and several subspectra for bounded linear operators. Then some numerical characteristics for nonlinear operators are introduced which are useful for describing those classes of operators for which there exists a spectral theory. Since spectral values are closely related to solvability results for operator equations, various conditions for the local or global invertibility of a nonlinear operator are collected in the third chapter. The following two chapters are concerned with spectra for certain classes of continuous, Lipschitz continuous, or differentiable operators. These spectra, however, simply adapt the corresponding definitions from the linear theory which somehow restricts their applicability. Other spectra which are defined in a completely different way, but seem to have useful applications, are defined and studied in the following four chapters. The remaining three chapters are more application-oriented and deal with nonlinear eigenvalue problems, numerical ranges, and selected applications to nonlinear problems. The only prerequisite for understanding this book is a modest background in functional analysis and operator theory. It is addressed to non-specialists who want to get an idea of the development of spectral theory for nonlinear operators in the last 30 years, as well as a glimpse of the diversity of the directions in which current research is moving.
This volume is a collection of up-to-date research and expository papers on different aspects of complex analysis, including relations to operator theory and hypercomplex analysis. The articles cover many important and essential subjects, such as the SchrAdinger equation, subelliptic operators, Lie algebras and superalgebras, Toeplitz and Hankel operators, reproducing kernels and Qp spaces, among others. Most of the papers were presented at the International Symposium on Complex Analysis and Related Topics held in Cuernavaca (Morelos), Mexico, in November 1996, which was attended by approximately 50 experts in the field. The book can be used as a reference work on recent research in the subjects covered. It is one of the few books stressing the relation between operator theory and complex and hypercomplex analyses. The book is addressed to researchers and postgraduate students in the fields named here and in related ones.
This book offers the reader an overview of recent developments of multivariable dynamic calculus on time scales, taking readers beyond the traditional calculus texts. Covering topics from parameter-dependent integrals to partial differentiation on time scales, the book's nine pedagogically oriented chapters provide a pathway to this active area of research that will appeal to students and researchers in mathematics and the physical sciences. The authors present a clear and well-organized treatment of the concept behind the mathematics and solution techniques, including many practical examples and exercises.
This book is intended as a fairly complete presentation of what..'We call the discretization approach to functional integrals, i.e. path integrals defined as limits of discretized axpressions. In its main parts it is based 0n the original work of the authors. We hope to have provided the readers with a rather complete and up-to-date bibliography, and we apologize to authors whose work has not been cited through ignorance ori our part. Our main concern has been to present a for malism that is practical and which can be adapted to make computations in the numerous areas where path integrals are being increasingly used. For these reasons applications, illustrative examples, and detailed calculations are included. The book is partially based on lectures given by one of us (E.T.) at the Institut de Physique Theorique of the u.c.L. (Louvain-la-Neuve). We thank Dr. M.E. Brachet (University of Paris) for his help in the redaction of chapter 8. We are indebted to many of our colleagues and especially to the members of the Instituut voor Theoretische Fysica, K.U. Leuven for their interest and encouragement. We also thank Professor Claudio Anguita, Dean of the Faculty of Physics and Mathematics of .the University of Chile, for his constant support. Special thanks are due to Christine Detroije and Lutgarde Dubois for their very fine and hard work in typing the manuscript."
The monograph is devoted to the systematic presentation of the so called dressing method for solving differential equations (both linear and nonlinear) of mathematical physics. The essence of the dressing method consists in a generation of new non-trivial solutions of a given equation from (maybe trivial) solution of the same or related equation. The Moutard and Darboux transformations discovered in XIX century as applied to linear equations, the Backlund transformation in differential geometry of surfaces, the factorization method, the Riemann-Hilbert problem in the form proposed by Shabat and Zakharov for soliton equations and its extension in terms of the d-bar formalism comprise the main objects of the book. Throughout the text, a generally sufficient linear experience of readers is exploited, with a special attention to the algebraic aspects of the main mathematical constructions and to practical rules of obtaining new solutions.
The Plancherel formula says that the "L" DEGREES2 norm of the function is equal to the "L" DEGREES2 norm of its Fourier transform. This implies that at least on average, the Fourier transform of an "L" DEGREES2 function decays at infinity. This book is dedicated to the study of the rate of this decay under various assumptions and circumstances, far beyond the original "L" DEGREES2 setting. Analytic and geometric properties of the underlying functions interact in a seamless symbiosis which underlines the wide range influences and applications of the concepts under consideration.
Many physical problems are meaningfully formulated in a
cylindrical domain. When the size of the cylinder goes to infinity,
the solutions, under certain symmetry conditions, are expected to
be identical in every cross-section of the domain. The proof of
this, however, is sometimes difficult and almost never given in the
literature. The present book partially fills this gap by providing
proofs of the asymptotic behaviour of solutions to various
important cases of linear and nonlinear problems in the theory of
elliptic and parabolic partial differential equations.
This volume provides a comprehensive review of the developments which have taken place during the last thirty years concerning the asymptotic properties of solutions of nonautonomous ordinary differential equations. The conditions of oscillation of solutions are established, and some general theorems on the classification of equations according to their oscillatory properties are proved. In addition, the conditions are found under which nonlinear equations do not have singular, proper, oscillatory and monotone solutions. The book has five chapters: Chapter I deals with linear differential equations; Chapter II with quasilinear equations; Chapter III with general nonlinear differential equations; and Chapter IV and V deal, respectively, with higher-order and second-order differential equations of the Emden-Fowler type. Each section contains problems, including some which presently remain unsolved. The volume concludes with an extensive list of references. For researchers and graduate students interested in the qualitative theory of differential equations.
For many years Serge Lang has given talks to undergraduates on selected items in mathematics which could be extracted at a level understandable by students who have had calculus. Written in a conversational tone, Lang now presents a collection of those talks as a book. The talks could be given by faculty, but even better, they may be given by students in seminars run by the students themselves. Undergraduates, and even some high school students, will enjoy the talks which cover prime numbers, the abc conjecture, approximation theorems of analysis, Bruhat-Tits spaces, harmonic and symmetric polynomials, and more in a lively and informal style.
This book provides analytical solutions to a number of classical problems in transport processes, i.e. in fluid mechanics, heat and mass transfer. Expanding computing power and more efficient numerical methods have increased the importance of computational tools. However, the interpretation of these results is often difficult and the computational results need to be tested against the analytical results, making analytical solutions a valuable commodity. Furthermore, analytical solutions for transport processes provide a much deeper understanding of the physical phenomena involved in a given process than do corresponding numerical solutions. Though this book primarily addresses the needs of researchers and practitioners, it may also be beneficial for graduate students just entering the field.
The aim of this book is a detailed study of topological effects related to continuity of the dependence of solutions on initial values and parameters. This allows us to develop cheaply a theory which deals easily with equations having singularities and with equations with multivalued right hand sides (differential inclusions). An explicit description of corresponding topological structures expands the theory in the case of equations with continuous right hand sides also. In reality, this is a new science where Ordinary Differential Equations, General Topology, Integration theory and Functional Analysis meet. In what concerns equations with discontinuities and differential inclu sions, we do not restrict the consideration to the Cauchy problem, but we show how to develop an advanced theory whose volume is commensurable with the volume of the existing theory of Ordinary Differential Equations. The level of the account rises in the book step by step from second year student to working scientist."
This book deals with the constructive Weierstrassian approach to the theory of function spaces and various applications. The first chapter is devoted to a detailed study of quarkonial (subatomic) decompositions of functions and distributions on euclidean spaces, domains, manifolds and fractals. This approach combines the advantages of atomic and wavelet representations. It paves the way to sharp inequalities and embeddings in function spaces, spectral theory of fractal elliptic operators, and a regularity theory of some semi-linear equations. The book is self-contained, although some parts may be considered as a continuation of the author's book "Fractals and Spectra" (MMA 91). It is directed to mathematicians and (theoretical) physicists interested in the topics indicated and, in particular, how they are interrelated.
This comprehensive monograph details polynomially convex sets. It presents the general properties of polynomially convex sets with particular attention to the theory of the hulls of one-dimensional sets. Coverage examines in considerable detail questions of uniform approximation for the most part on compact sets but with some attention to questions of global approximation on noncompact sets. The book also discusses important applications and motivates the reader with numerous examples and counterexamples, which serve to illustrate the general theory and to delineate its boundaries.
This book contains the extended abstracts presented at the 12th International Conference on Power Series and Algebraic Combinatorics (FPSAC '00) that took place at Moscow State University, June 26-30, 2000. These proceedings cover the most recent trends in algebraic and bijective combinatorics, including classical combinatorics, combinatorial computer algebra, combinatorial identities, combinatorics of classical groups, Lie algebra and quantum groups, enumeration, symmetric functions, young tableaux etc...
The Heisenberg group plays an important role in several branches of mathematics, such as representation theory, partial differential equations, number theory, several complex variables and quantum mechanics. This monograph deals with various aspects of harmonic analysis on the Heisenberg group, which is the most commutative among the non-commutative Lie groups, and hence gives the greatest opportunity for generalizing the remarkable results of Euclidean harmonic analysis. The aim of this text is to demonstrate how the standard results of abelian harmonic analysis take shape in the non-abelian setup of the Heisenberg group. Thangavelu 's exposition is clear and well developed, and leads to several problems worthy of further consideration. Any reader who is interested in pursuing research on the Heisenberg group will find this unique and self-contained text invaluable.
The study of quantum disorder has generated considerable research activity in mathematics and physics over past 40 years. While single-particle models have been extensively studied at a rigorous mathematical level, little was known about systems of several interacting particles, let alone systems with positive spatial particle density. Creating a consistent theory of disorder in multi-particle quantum systems is an important and challenging problem that largely remains open. Multi-scale Analysis for Random Quantum Systems with Interaction presents the progress that had been recently achieved in this area. The main focus of the book is on a rigorous derivation of the multi-particle localization in a strong random external potential field. To make the presentation accessible to a wider audience, the authors restrict attention to a relatively simple tight-binding Anderson model on a cubic lattice Zd. This book includes the following cutting-edge features: an introduction to the state-of-the-art single-particle localization theory an extensive discussion of relevant technical aspects of the localization theory a thorough comparison of the multi-particle model with its single-particle counterpart a self-contained rigorous derivation of both spectral and dynamical localization in the multi-particle tight-binding Anderson model. Required mathematical background for the book includes a knowledge of functional calculus, spectral theory (essentially reduced to the case of finite matrices) and basic probability theory. This is an excellent text for a year-long graduate course or seminar in mathematical physics. It also can serve as a standard reference for specialists.
With the first edition out of print, we decided to arrange for republi cation of Denumerrible Markov Ohains with additional bibliographic material. The new edition contains a section Additional Notes that indicates some of the developments in Markov chain theory over the last ten years. As in the first edition and for the same reasons, we have resisted the temptation to follow the theory in directions that deal with uncountable state spaces or continuous time. A section entitled Additional References complements the Additional Notes. J. W. Pitman pointed out an error in Theorem 9-53 of the first edition, which we have corrected. More detail about the correction appears in the Additional Notes. Aside from this change, we have left intact the text of the first eleven chapters. The second edition contains a twelfth chapter, written by David Griffeath, on Markov random fields. We are grateful to Ted Cox for his help in preparing this material. Notes for the chapter appear in the section Additional Notes. J.G.K., J.L.S., A.W.K."
The Markov chain approximation methods are widely used for the numerical solution of nonlinear stochastic control problems in continuous time. This book extends the methods to stochastic systems with delays. The book is the first on the subject and will be of great interest to all those who work with stochastic delay equations and whose main interest is either in the use of the algorithms or in the mathematics. An excellent resource for graduate students, researchers, and practitioners, the work may be used as a graduate-level textbook for a special topics course or seminar on numerical methods in stochastic control.
In Fourier Analysis and Approximation of Functions basics of
classical Fourier Analysis are given as well as those of
approximation by polynomials, splines and entire functions of
exponential type.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
The aim of this book is to develop a new approach which we called the hyper geometric one to the theory of various integral transforms, convolutions, and their applications to solutions of integro-differential equations, operational calculus, and evaluation of integrals. We hope that this simple approach, which will be explained below, allows students, post graduates in mathematics, physicists and technicians, and serious mathematicians and researchers to find in this book new interesting results in the theory of integral transforms, special functions, and convolutions. The idea of this approach can be found in various papers of many authors, but systematic discussion and development is realized in this book for the first time. Let us explain briefly the basic points of this approach. As it is known, in the theory of special functions and its applications, the hypergeometric functions play the main role. Besides known elementary functions, this class includes the Gauss's, Bessel's, Kummer's, functions et c. In general case, the hypergeometric functions are defined as a linear combinations of the Mellin-Barnes integrals. These ques tions are extensively discussed in Chapter 1. Moreover, the Mellin-Barnes type integrals can be understood as an inversion Mellin transform from the quotient of products of Euler's gamma-functions. Thus we are led to the general construc tions like the Meijer's G-function and the Fox's H-function."
This book contains detailed lecture notes on six topics at the forefront of current research in numerical analysis and applied mathematics. Each set of notes presents a self-contained guide to a current research area and has an extensive bibliography. In addition, most of the notes contain detailed proofs of the key results. The notes start from a level suitable for first year graduate students in applied mathematics, mathematical analysis or numerical analysis, and proceed to current research topics. The reader should therefore be able to gain quickly an insight into the important results and techniques in each area without recourse to the large research literature. Current (unsolved) problems are also described and directions for future research are given. This book is also suitable for professional mathematicians who require a succinct and accurate account of recent research in areas parallel to their own, and graduates in mathematical sciences.
Althoughsubmanifoldscomplexmanifoldshasbeenanactive?eldofstudyfor many years, in some sense this area is not su?ciently covered in the current literature. This text deals with the CR submanifolds of complex manifolds, with particular emphasis on CR submanifolds of complex projective space, and it covers the topics which are necessary for learning the basic properties of these manifolds. We are aware that it is impossible to give a complete overview of these submanifolds, but we hope that these notes can serve as an introduction to their study. We present the fundamental de?nitions and results necessary for reaching the frontiers of research in this ?eld. There are many monographs dealing with some current interesting topics in di?erential geometry, but most of these are written as encyclopedias, or research monographs, gathering recent results and giving the readers ample usefulinformationaboutthetopics. Therefore, thesekindsofmonographsare attractive to specialists in di?erential geometry and related ?elds and acce- able to professional di?erential geometers. However, for graduate students who are less advanced in di?erential geometry, these texts might be hard to read without assistance from their instructors. By contrast, the general philosophy of this book is to begin with the elementary facts about complex manifolds and their submanifolds, give some details and proofs, and introduce the reader to the study of CR submanifolds of complex manifolds; especially complex projective space. It includes only a few original results with precise proofs, while the others are cited in the reference list.
The numerous applications of optimal control theory have given an incentive to the development of approximate techniques aimed at the construction of control laws and the optimization of dynamical systems. These constructive approaches rely on small parameter methods (averaging, regular and singular perturbations), which are well-known and have been proven to be efficient in nonlinear mechanics and optimal control theory (maximum principle, variational calculus and dynamic programming). An essential feature of the procedures for solving optimal control problems consists in the necessity for dealing with two-point boundary-value problems for nonlinear and, as a rule, nonsmooth multi-dimensional sets of differential equations. This circumstance complicates direct applications of the above-mentioned perturbation methods which have been developed mostly for investigating initial-value (Cauchy) problems. There is now a need for a systematic presentation of constructive analytical per turbation methods relevant to optimal control problems for nonlinear systems. The purpose of this book is to meet this need in the English language scientific literature and to present consistently small parameter techniques relating to the constructive investigation of some classes of optimal control problems which often arise in prac tice. This book is based on a revised and modified version of the monograph: L. D. Akulenko "Asymptotic methods in optimal control." Moscow: Nauka, 366 p. (in Russian)." |
You may like...
Energy-Efficient Fault-Tolerant Systems
Jimson Mathew, Rishad A. Shafik, …
Hardcover
R4,795
Discovery Miles 47 950
Techniques and Challenges for 300 mm…
H. Richter, P. Wagner, …
Hardcover
R4,302
Discovery Miles 43 020
Energy-Efficient Communication…
Robert Fasthuber, Francky Catthoor, …
Hardcover
R4,705
Discovery Miles 47 050
Digital Afterlife - Death Matters in a…
Maggi Savin-Baden, Victoria Mason-Robbie
Hardcover
R3,087
Discovery Miles 30 870
Essentials of Microservices Architecture…
Chellammal Surianarayanan, Gopinath Ganapathy, …
Hardcover
R1,987
Discovery Miles 19 870
|