![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
As far as the number of new results and quoted papers is concerned the present book may be considered a monograph. However, it also has some features of a textbook. Firstly, it proceeds from concrete problems to abstract ones, and secondly, all considerations and procedures are presented in much detail when met for the first time (such very elementary expositions can be found especially at the beginning of Chapters III and V). Finally, the authors focus their attention on elementary problems which can be dealt with by relatively simple methods. The authors hope that all this will make it possible also for an applied or technical research worker with some mathematical training to read this book. Naturally, the reader is supposed to be familiar with some basic notions from mathematical analysis, functional analysis and theory of partial differential equations. Also, the arguments and procedures which are repeated in the book are presented more briefly when met again, the reader being expected to become gradually more thoroughly acquainted with them. The authors have tried to provide a complete bibliography of all relevant publications (their number reaches about 500) from the theory of time-periodic solutions to non-linear partial and abstract differential equations whose origin may be put in the early thirties of this century.
A development of some of the principal applications of function theory in several complex variables to Banach algebras. The authors do not presuppose any knowledge of several complex variables on the part of the reader, and all relevant material is developed within the text. Furthermore, the book deals with problems of uniform approximation on compact subsets of the space of n complex variables. This third edition contains new material on maximum modulus algebras and subharmonicity, the hull of a smooth curve, integral kernels, perturbations of the Stone-Weierstrass Theorem, boundaries of analytic varieties, polynomial hulls of sets over the circle, areas, and the topology of hulls. The authors have also included a new chapter commenting on history and recent developments, as well as an updated and expanded reading list.
The aim of this book is a detailed study of topological effects related to continuity of the dependence of solutions on initial values and parameters. This allows us to develop cheaply a theory which deals easily with equations having singularities and with equations with multivalued right hand sides (differential inclusions). An explicit description of corresponding topological structures expands the theory in the case of equations with continuous right hand sides also. In reality, this is a new science where Ordinary Differential Equations, General Topology, Integration theory and Functional Analysis meet. In what concerns equations with discontinuities and differential inclu sions, we do not restrict the consideration to the Cauchy problem, but we show how to develop an advanced theory whose volume is commensurable with the volume of the existing theory of Ordinary Differential Equations. The level of the account rises in the book step by step from second year student to working scientist."
In the study of integrable systems, two different approaches in particular have attracted considerable attention during the past twenty years. (1) The inverse scattering transform (IST), using complex function theory, which has been employed to solve many physically significant equations, the soliton' equations. (2) Twistor theory, using differential geometry, which has been used to solve the self-dual Yang--Mills (SDYM) equations, a four-dimensional system having important applications in mathematical physics. Both soliton and the SDYM equations have rich algebraic structures which have been extensively studied. Recently, it has been conjectured that, in some sense, all soliton equations arise as special cases of the SDYM equations; subsequently many have been discovered as either exact or asymptotic reductions of the SDYM equations. Consequently what seems to be emerging is that a natural, physically significant system such as the SDYM equations provides the basis for a unifying framework underlying this class of integrable systems, i.e. soliton' systems. This book contains several articles on the reduction of the SDYM equations to soliton equations and the relationship between the IST and twistor methods. The majority of nonlinear evolution equations are nonintegrable, and so asymptotic, numerical perturbation and reduction techniques are often used to study such equations. This book also contains articles on perturbed soliton equations. PainlevA(c) analysis of partial differential equations, studies of the PainlevA(c) equations and symmetry reductions of nonlinear partial differential equations. (ABSTRACT) In the study of integrable systems, two different approaches in particularhave attracted considerable attention during the past twenty years; the inverse scattering transform (IST), for soliton' equations and twistor theory, for the self-dual Yang--Mills (SDYM) equations. This book contains several articles on the reduction of the SDYM equations to soliton equations and the relationship between the IST and twistor methods. Additionally, it contains articles on perturbed soliton equations, Painleve analysis of partial differential equations, studies of the Painleve equations and symmetry reductions of nonlinear partial differential equations.
In view of the eminent importance of spectral theory of linear operators in many fields of mathematics and physics, it is not surprising that various attempts have been made to define and study spectra also for nonlinear operators. This book provides a comprehensive and self-contained treatment of the theory, methods, and applications of nonlinear spectral theory. The first chapter briefly recalls the definition and properties of the spectrum and several subspectra for bounded linear operators. Then some numerical characteristics for nonlinear operators are introduced which are useful for describing those classes of operators for which there exists a spectral theory. Since spectral values are closely related to solvability results for operator equations, various conditions for the local or global invertibility of a nonlinear operator are collected in the third chapter. The following two chapters are concerned with spectra for certain classes of continuous, Lipschitz continuous, or differentiable operators. These spectra, however, simply adapt the corresponding definitions from the linear theory which somehow restricts their applicability. Other spectra which are defined in a completely different way, but seem to have useful applications, are defined and studied in the following four chapters. The remaining three chapters are more application-oriented and deal with nonlinear eigenvalue problems, numerical ranges, and selected applications to nonlinear problems. The only prerequisite for understanding this book is a modest background in functional analysis and operator theory. It is addressed to non-specialists who want to get an idea of the development of spectral theory for nonlinear operators in the last 30 years, as well as a glimpse of the diversity of the directions in which current research is moving.
These two volumes contain eighteen invited papers by distinguished mathematicians in honor of the eightieth birthday of Israel M. Gelfand, one of the most remarkable mathematicians of our time. Gelfand has played a crucial role in the development of functional analysis during the last half-century. His work and his philosophy have in fact helped shape our understanding of the term 'functional analysis'. The papers in these volumes largely concern areas in which Gelfand has a very strong interest today, including geometric quantum field theory, representation theory, combinatorial structures underlying various 'continuous' constructions, quantum groups and geometry.
This volume is a collection of up-to-date research and expository papers on different aspects of complex analysis, including relations to operator theory and hypercomplex analysis. The articles cover many important and essential subjects, such as the SchrAdinger equation, subelliptic operators, Lie algebras and superalgebras, Toeplitz and Hankel operators, reproducing kernels and Qp spaces, among others. Most of the papers were presented at the International Symposium on Complex Analysis and Related Topics held in Cuernavaca (Morelos), Mexico, in November 1996, which was attended by approximately 50 experts in the field. The book can be used as a reference work on recent research in the subjects covered. It is one of the few books stressing the relation between operator theory and complex and hypercomplex analyses. The book is addressed to researchers and postgraduate students in the fields named here and in related ones.
This volume provides a comprehensive review of the developments which have taken place during the last thirty years concerning the asymptotic properties of solutions of nonautonomous ordinary differential equations. The conditions of oscillation of solutions are established, and some general theorems on the classification of equations according to their oscillatory properties are proved. In addition, the conditions are found under which nonlinear equations do not have singular, proper, oscillatory and monotone solutions. The book has five chapters: Chapter I deals with linear differential equations; Chapter II with quasilinear equations; Chapter III with general nonlinear differential equations; and Chapter IV and V deal, respectively, with higher-order and second-order differential equations of the Emden-Fowler type. Each section contains problems, including some which presently remain unsolved. The volume concludes with an extensive list of references. For researchers and graduate students interested in the qualitative theory of differential equations.
The monograph is devoted to the systematic presentation of the so called dressing method for solving differential equations (both linear and nonlinear) of mathematical physics. The essence of the dressing method consists in a generation of new non-trivial solutions of a given equation from (maybe trivial) solution of the same or related equation. The Moutard and Darboux transformations discovered in XIX century as applied to linear equations, the Backlund transformation in differential geometry of surfaces, the factorization method, the Riemann-Hilbert problem in the form proposed by Shabat and Zakharov for soliton equations and its extension in terms of the d-bar formalism comprise the main objects of the book. Throughout the text, a generally sufficient linear experience of readers is exploited, with a special attention to the algebraic aspects of the main mathematical constructions and to practical rules of obtaining new solutions.
The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators. In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book.
Methods in Nonlinear Integral Equations presents several extremely
fruitful methods for the analysis of systems and nonlinear integral
equations. They include: fixed point methods (the Schauder and
Leray-Schauder principles), variational methods (direct variational
methods and mountain pass theorems), and iterative methods (the
discrete continuation principle, upper and lower solutions
techniques, Newton's method and the generalized quasilinearization
method). Many important applications for several classes of
integral equations and, in particular, for initial and boundary
value problems, are presented to complement the theory. Special
attention is paid to the existence and localization of solutions in
bounded domains such as balls and order intervals. The presentation
is essentially self-contained and leads the reader from classical
concepts to current ideas and methods of nonlinear analysis.
The Plancherel formula says that the "L" DEGREES2 norm of the function is equal to the "L" DEGREES2 norm of its Fourier transform. This implies that at least on average, the Fourier transform of an "L" DEGREES2 function decays at infinity. This book is dedicated to the study of the rate of this decay under various assumptions and circumstances, far beyond the original "L" DEGREES2 setting. Analytic and geometric properties of the underlying functions interact in a seamless symbiosis which underlines the wide range influences and applications of the concepts under consideration.
Many physical problems are meaningfully formulated in a
cylindrical domain. When the size of the cylinder goes to infinity,
the solutions, under certain symmetry conditions, are expected to
be identical in every cross-section of the domain. The proof of
this, however, is sometimes difficult and almost never given in the
literature. The present book partially fills this gap by providing
proofs of the asymptotic behaviour of solutions to various
important cases of linear and nonlinear problems in the theory of
elliptic and parabolic partial differential equations.
The aim of this book is to develop a new approach which we called the hyper geometric one to the theory of various integral transforms, convolutions, and their applications to solutions of integro-differential equations, operational calculus, and evaluation of integrals. We hope that this simple approach, which will be explained below, allows students, post graduates in mathematics, physicists and technicians, and serious mathematicians and researchers to find in this book new interesting results in the theory of integral transforms, special functions, and convolutions. The idea of this approach can be found in various papers of many authors, but systematic discussion and development is realized in this book for the first time. Let us explain briefly the basic points of this approach. As it is known, in the theory of special functions and its applications, the hypergeometric functions play the main role. Besides known elementary functions, this class includes the Gauss's, Bessel's, Kummer's, functions et c. In general case, the hypergeometric functions are defined as a linear combinations of the Mellin-Barnes integrals. These ques tions are extensively discussed in Chapter 1. Moreover, the Mellin-Barnes type integrals can be understood as an inversion Mellin transform from the quotient of products of Euler's gamma-functions. Thus we are led to the general construc tions like the Meijer's G-function and the Fox's H-function."
This thesis contains results of Dr. Guilong Gui during his PhD period with the aim to understand incompressible Navier-Stokes equations. It is devoted to the study of the stability to the incompressible Navier-Stokes equations. There is great potential for further theoretical and numerical research in this field. The techniques developed in carrying out this work are expected to be useful for other physical model equations. It is also hopeful that the thesis could serve as a valuable reference on current developments in research topics related to the incompressible Navier-Stokes equations. It was nominated by the Graduate University of Chinese Academy of Sciences as an outstanding PhD thesis.
Functional Analysis is based on the lecture notes of distinguished authors and is designed to cater to the needs of students who are yet to be exposed to the subject, as well as senior undergraduate- and graduate-level students at universities the world over. The text begins with a preliminary chapter that establishes uniform notations and covers background material in real analysis, linear algebra, and metric spaces. It is followed by chapters on Normed and Banach Spaces, Bounded Linear Operators and Bounded Linear Functional. This text also deals with the concept and specific geometry of Hilbert Spaces, Functional and Operators on Hilbert Spaces, and an Introduction to Spectral Theory. The appendix provides an introduction to Schauder Bases. This is a second edition, written in a more simple and lucid language and illustrated with familiar examples. It is an ideal textbook for easy comprehension of the subject. The clear explanations, numerous examples, problems and illustrative figures also make the text invaluable for self-study and as a reference book.
This comprehensive monograph details polynomially convex sets. It presents the general properties of polynomially convex sets with particular attention to the theory of the hulls of one-dimensional sets. Coverage examines in considerable detail questions of uniform approximation for the most part on compact sets but with some attention to questions of global approximation on noncompact sets. The book also discusses important applications and motivates the reader with numerous examples and counterexamples, which serve to illustrate the general theory and to delineate its boundaries.
Inverse scattering theory is an important area of applied mathematics due to its central role in such areas as medical imaging , nondestructive testing and geophysical exploration. Until recently all existing algorithms for solving inverse scattering problems were based on using either a weak scattering assumption or on the use of nonlinear optimization techniques. The limitations of these methods have led in recent years to an alternative approach to the inverse scattering problem which avoids the incorrect model assumptions inherent in the use of weak scattering approximations as well as the strong a priori information needed in order to implement nonlinear optimization techniques. These new methods come under the general title of qualitative methods in inverse scattering theory and seek to determine an approximation to the shape of the scattering object as well as estimates on its material properties without making any weak scattering assumption and using essentially no a priori information on the nature of the scattering object. This book is designed to be an introduction to this new approach in inverse scattering theory focusing on the use of sampling methods and transmission eigenvalues. In order to aid the reader coming from a discipline outside of mathematics we have included background material on functional analysis, Sobolev spaces, the theory of ill posed problems and certain topics in in the theory of entire functions of a complex variable. This book is an updated and expanded version of an earlier book by the authors published by Springer titled Qualitative Methods in Inverse Scattering Theory Review of Qualitative Methods in Inverse Scattering Theory All in all, the authors do exceptionally well in combining such a wide variety of mathematical material and in presenting it in a well-organized and easy-to-follow fashion. This text certainly complements the growing body of work in inverse scattering and should well suit both new researchers to the field as well as those who could benefit from such a nice codified collection of profitable results combined in one bound volume. SIAM Review, 2006
In this book signals or images described by functions whose number of arguments varies from one to five are considered. This arguments can be time, spatial dimensions, or wavelength in a polychromatic signal. The book discusses the basics of mathematical models of signals, their transformations in technical pre-processing systems, and criteria of the systems quality. The models are used for the solution of practical tasks of system analysis, measurement and optimization, and signal restoration. Several examples are given.
The study of surfaces with constant mean curvature (CMC) is one of the main topics in classical differential geometry. Moreover, CMC surfaces are important mathematical models for the physics of interfaces in the absence of gravity, where they separate two different media or for capillary phenomena. Further, as most techniques used in the theory of CMC surfaces not only involve geometric methods but also PDE and complex analysis, the theory is also of great interest for many other mathematical fields. While minimal surfaces and CMC surfaces in general have already been treated in the literature, the present work is the first to present a comprehensive study of compact surfaces with boundaries, narrowing its focus to a geometric view. Basic issues include the discussion whether the symmetries of the curve inherit to the surface; the possible values of the mean curvature, area and volume; stability; the circular boundary case and the existence of the Plateau problem in the non-parametric case. The exposition provides an outlook on recent research but also a set of techniques that allows the results to be expanded to other ambient spaces. Throughout the text, numerous illustrations clarify the results and their proofs. The book is intended for graduate students and researchers in the field of differential geometry and especially theory of surfaces, including geometric analysis and geometric PDEs. It guides readers up to the state-of-the-art of the theory and introduces them to interesting open problems."
This book contains the extended abstracts presented at the 12th International Conference on Power Series and Algebraic Combinatorics (FPSAC '00) that took place at Moscow State University, June 26-30, 2000. These proceedings cover the most recent trends in algebraic and bijective combinatorics, including classical combinatorics, combinatorial computer algebra, combinatorial identities, combinatorics of classical groups, Lie algebra and quantum groups, enumeration, symmetric functions, young tableaux etc...
The Heisenberg group plays an important role in several branches of mathematics, such as representation theory, partial differential equations, number theory, several complex variables and quantum mechanics. This monograph deals with various aspects of harmonic analysis on the Heisenberg group, which is the most commutative among the non-commutative Lie groups, and hence gives the greatest opportunity for generalizing the remarkable results of Euclidean harmonic analysis. The aim of this text is to demonstrate how the standard results of abelian harmonic analysis take shape in the non-abelian setup of the Heisenberg group. Thangavelu 's exposition is clear and well developed, and leads to several problems worthy of further consideration. Any reader who is interested in pursuing research on the Heisenberg group will find this unique and self-contained text invaluable.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The SCQlldIII of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gu ik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with . physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They. draw upon widely different sections of mathematics."
This book provides readers with a detailed insight into diverse and exciting recent developments in computational solid mechanics, documenting new perspectives and horizons. The topics addressed cover a wide range of current research, from computational materials modeling, including crystal plasticity, micro-structured materials, and biomaterials, to multi-scale simulations of multi-physics phenomena. Particular emphasis is placed on pioneering discretization methods for the solution of coupled non-linear problems at different length scales. The book, written by leading experts, reflects the remarkable advances that have been made in the field over the past decade and more, largely due to the development of a sound mathematical background and efficient computational strategies. The contents build upon the 2014 IUTAM symposium celebrating the 60th birthday of Professor Michael Ortiz, to whom this book is dedicated. His work has long been recognized as pioneering and is a continuing source of inspiration for many researchers. It is hoped that by providing a "taste" of the field of computational mechanics, the book will promote its popularity among the mechanics and physics communities. |
You may like...
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
(1)
Calculus, Metric Edition
James Stewart, Saleem Watson, …
Hardcover
|