![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
Although a wide range of mathematical techniques can apply to solving problems involving the interaction of waves with structures, few texts discuss those techniques within that context-most often they are presented without reference to any applications. Handbook of Mathematical Techniques for Wave/Structure Interactions brings together some of the most important techniques useful to applied mathematicians and engineers.
Based on selected papers presented at the 19th International Federatio Includes essential data on exact boundary controllability of thermoela Written by more than 25 specialists in various disciplines Providing o ver 1700 equations, tables, and references, this state-of-the-art refe rence is an invaluable tool for mathematical analysts in control, opti mization, distributed systems, and modeling; applied mathematicians; c ontrol, electrical, and electronics engineers; computer scientists; an d upper-level undergraduate and graduate students in these disciplines .
The new edition of Hollander and Wolfe’s classic text on nonparametric statistical methods The importance of nonparametric methods in modern statistics has grown dramatically since their inception in the mid-1930s. Requiring few or no assumptions about the populations from which data are obtained, they have emerged as the preferred methodology among statisticians and researchers performing data analysis. Today, these highly efficient techniques are being applied to an ever-widening variety of experimental designs in the social, behavioral, biological, and physical sciences. This long-awaited Second Edition of Myles Hollander and Douglas A. Wolfe’s successful Nonparametric Statistical Methods meets the needs of a new generation of users, with completely up-to-date coverage of this important statistical area. Like its highly acclaimed predecessor, the revised edition, along with its companion ftp site, aims to equip readers with the conceptual and technical skills necessary to select and apply the appropriate procedures for a given situation. An extensive array of examples drawn from actual experiments illustrates clearly how to use nonparametric approaches to handle one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. Rewritten and updated, this Second Edition now includes new or expanded coverage of:
An ideal text for an upper-level undergraduate or first-year graduate course, Nonparametric Statistical Methods, Second Edition is also an invaluable source for professionals who want to keep abreast of the latest developments within this dynamic branch of modern statistics.
A bestseller in its first edition, Wavelets and Other Orthogonal Systems: Second Edition has been fully updated to reflect the recent growth and development of this field, especially in the area of multiwavelets. The authors have incorporated more examples and numerous illustrations to help clarify concepts. They have also added a considerable amount of new material, including sections addressing impulse trains, an alternate approach to periodic wavelets, and positive wavelet s. Other new discussions include irregular sampling in wavelet subspaces, hybrid wavelet sampling, interpolating multiwavelets, and several new statistics topics.
This comprehensive two-volume work is devoted to the most general beginnings of mathematics. It goes back to Hausdorff's classic Set Theory (2nd ed., 1927), where set theory and the theory of functions were expounded as the fundamental parts of mathematics in such a way that there was no need for references to other sources. Along the lines of Hausdorff's initial work (1st ed., 1914), measure and integration theory is also included here as the third fundamental part of contemporary mathematics.The material about sets and numbers is placed in Volume 1 and the material about functions and measures is placed in Volume 2. Contents Fundamentals of the theory of classes, sets, and numbers Characterization of all natural models of Neumann - Bernays - Godel and Zermelo - Fraenkel set theories Local theory of sets as a foundation for category theory and its connection with the Zermelo - Fraenkel set theory Compactness theorem for generalized second-order language
This proceedings volume gathers together original articles and survey works that originate from presentations given at the conference Transient Transcendence in Transylvania, held in Brasov, Romania, from May 13th to 17th, 2019. The conference gathered international experts from various fields of mathematics and computer science, with diverse interests and viewpoints on transcendence. The covered topics are related to algebraic and transcendental aspects of special functions and special numbers arising in algebra, combinatorics, geometry and number theory. Besides contributions on key topics from invited speakers, this volume also brings selected papers from attendees.
A remarkable interplay exists between the fields of elliptic functions and orthogonal polynomials. In the first monograph to explore their connections, Elliptic Polynomials combines these two areas of study, leading to an interesting development of some basic aspects of each. It presents new material about various classes of polynomials and about the odd Jacobi elliptic functions and their inverses.
This book presents the arithmetic and metrical theory of regular continued fractions and is intended to be a modern version of A. Ya. Khintchine's classic of the same title. Besides new and simpler proofs for many of the standard topics, numerous numerical examples and applications are included (the continued fraction of e, Ostrowski representations and t-expansions, period lengths of quadratic surds, the general Pell's equation, homogeneous and inhomogeneous diophantine approximation, Hall's theorem, the Lagrange and Markov spectra, asymmetric approximation, etc). Suitable for upper level undergraduate and beginning graduate students, the presentation is self-contained and the metrical results are developed as strong laws of large numbers.
Extremality results proved in this Monograph for an abstract operator equation provide the theoretical framework for developing new methods that allow the treatment of a variety of discontinuous initial and boundary value problems for both ordinary and partial differential equations, in explicit and implicit forms. By means of these extremality results, the authors prove the existence of extremal solutions between appropriate upper and lower solutions of first and second order discontinuous implicit and explicit ordinary and functional differential equations. They then study the dependence of these extremal solutions on the data.
In this volume, logic starts from the observation that in everyday arguments, as brought forward say by a lawyer, statements are transformed linguistically, connecting them in formal ways irrespective of their contents. Understanding such arguments as deductive situations, or "sequents" in the technical terminology, the transformations between them can be expressed as logical rules. This leads to Gentzen's calculi of derivations, presented first for positive logic and then, depending on the requirements made on the behaviour of negation, for minimal, intuitionist and classical logic. Identifying interdeducible formulas, each of these calculi gives rise to a lattice-like ordered structure. Describing the generation of filters in these structures leads to corresponding modus ponens calculi, and these turn out to be semantically complete because they express the algorithms generating semantical consequences, as obtained in Volume One of these lectures. The operators transforming derivations from one type of calculus into the other are also studied with respect to changes of the lengths of derivations, and operators eliminating defined predicate and function symbols are described expli
Unmatched in its coverage of the topic, the first edition of
GENERALIZED VECTOR AND DYADIC ANALYSIS helped revolutionize the
treatment of boundary-value problems, establishing itself as a
classic in the field. This expanded, revised edition is the most
comprehensive book available on vector analysis founded upon the
new method symbolic vector. GENERALIZED VECTOR AND DYADIC ANALYSIS
presents a copious list of vector and dyadic identities, along with
various forms of Green's theorems with derivations. In addition,
this edition presents an historical study of the past
mis-understandings and contradictions that have occurred in vector
analysis presentations, furthering the reader's understanding of
the subject.
This volume contains papers selected from the Wavelet Analysis and Multiresolution Methods Session of the AMS meeting held at the University of Illinois at Urbana-Champaign. The contributions cover: construction, analysis, computation and application of multiwavelets; scaling vectors; nonhomogenous refinement; mulivariate orthogonal and biorthogonal wavelets; and other related topics.
This collection of 24 papers, which encompasses the construction and the qualitative as well as quantitative properties of solutions of Volterra, Fredholm, delay, impulse integral and integro-differential equations in various spaces on bounded as well as unbounded intervals, will conduce and spur further research in this direction.
Unifies the field of optimization with a few geometric principles. The number of books that can legitimately be called classics in their fields is small indeed, but David Luenberger's Optimization by Vector Space Methods certainly qualifies. Not only does Luenberger clearly demonstrate that a large segment of the field of optimization can be effectively unified by a few geometric principles of linear vector space theory, but his methods have found applications quite removed from the engineering problems to which they were first applied. Nearly 30 years after its initial publication, this book is still among the most frequently cited sources in books and articles on financial optimization. The book uses functional analysis —the study of linear vector spaces —to impose simple, intuitive interpretations on complex, infinite-dimensional problems. The early chapters offer an introduction to functional analysis, with applications to optimization. Topics addressed include linear space, Hilbert space, least-squares estimation, dual spaces, and linear operators and adjoints. Later chapters deal explicitly with optimization theory, discussing
End-of-chapter problems constitute a major component of this book and come in two basic varieties. The first consists of miscellaneous mathematical problems and proofs that extend and supplement the theoretical material in the text; the second, optimization problems, illustrates further areas of application and helps the reader formulate and solve practical problems. For professionals and graduate students in engineering, mathematics, operations research, economics, and business and finance, Optimization by Vector Space Methods is an indispensable source of problem-solving tools.
Sturm-Liouville problems arise naturally in solving technical problems in engineering, physics, and more recently in biology and the social sciences. These problems lead to eigenvalue problems for ordinary and partial differential equations. Sturm-Liouville Problems: Theory and Numerical Implementation addresses, in a unified way, the key issues that must be faced in science and engineering applications when separation of variables, variational methods, or other considerations lead to Sturm-Liouville eigenvalue problems and boundary value problems.
Enables readers to apply the fundamentals of differential calculus to solve real-life problems in engineering and the physical sciences Introduction to Differential Calculus fully engages readers by presenting the fundamental theories and methods of differential calculus and then showcasing how the discussed concepts can be applied to real-world problems in engineering and the physical sciences. With its easy-to-follow style and accessible explanations, the book sets a solid foundation before advancing to specific calculus methods, demonstrating the connections between differential calculus theory and its applications. The first five chapters introduce underlying concepts such as algebra, geometry, coordinate geometry, and trigonometry. Subsequent chapters present a broad range of theories, methods, and applications in differential calculus, including: Concepts of function, continuity, and derivative Properties of exponential and logarithmic function Inverse trigonometric functions and their properties Derivatives of higher order Methods to find maximum and minimum values of a function Hyperbolic functions and their properties Readers are equipped with the necessary tools to quickly learn how to understand a broad range of current problems throughout the physical sciences and engineering that can only be solved with calculus. Examples throughout provide practical guidance, and practice problems and exercises allow for further development and fine-tuning of various calculus skills. Introduction to Differential Calculus is an excellent book for upper-undergraduate calculus courses and is also an ideal reference for students and professionals alike who would like to gain a further understanding of the use of calculus to solve problems in a simplified manner.
Are some areas of fast Fourier transforms still unclear to you? Do the notation and vocabulary seem inconsistent? Does your knowledge of their algorithmic aspects feel incomplete? The fast Fourier transform represents one of the most important advancements in scientific and engineering computing. Until now, however, treatments have been either brief, cryptic, intimidating, or not published in the open literature. Inside the FFT Black Box brings the numerous and varied ideas together in a common notational framework, clarifying vague FFT concepts. Examples and diagrams explain algorithms completely, with consistent notation. This approach connects the algorithms explicitly to the underlying mathematics. Reviews and explanations of FFT ideas taken from engineering, mathematics, and computer science journals teach the computational techniques relevant to FFT. Two appendices familiarize readers with the design and analysis of computer algorithms, as well. This volume employs a unified and systematic approach to FFT. It closes the gap between brief textbook introductions and intimidating treatments in the FFT literature. Inside the FFT Black Box provides an up-to-date, self-contained guide for learning the FFT and the multitude of ideas and computing techniques it employs.
Clear, rigorous definitions of mathematical terms are crucial to good scientific and technical writing-and to understanding the writings of others. Scientists, engineers, mathematicians, economists, technical writers, computer programmers, along with teachers, professors, and students, all have the occasional-if not frequent-need for comprehensible, working definitions of mathematical expressions.
Presenting excellent material for a first course on functional analysis , Functional Analysis in Applied Mathematics and Engineering concentrates on material that will be useful to control engineers from the disciplines of electrical, mechanical, and aerospace engineering.
Fundamentals of Differential Equations presents the basic theory of differential equations and offers a variety of modern applications in science and engineering. This flexible text allows instructors to adapt to various course emphases (theory, methodology, applications, and numerical methods) and to use commercially available computer software.
As a satellite conference of the 1998 International Mathematical Congress and part of the celebration of the 650th anniversary of Charles University, the Partial Differential Equations Theory and Numerical Solution conference was held in Prague in August, 1998. With its rich scientific program, the conference provided an opportunity for almost 200 participants to gather and discuss emerging directions and recent developments in partial differential equations (PDEs). This volume comprises the Proceedings of that conference. In it, leading specialists in partial differential equations, calculus of variations, and numerical analysis present up-to-date results, applications, and advances in numerical methods in their fields. Conference organizers chose the contributors to bring together the scientists best able to present a complex view of problems, starting from the modeling, passing through the mathematical treatment, and ending with numerical realization. The applications discussed include fluid dynamics, semiconductor technology, image analysis, motion analysis, and optimal control. The importance and quantity of research carried out around the world in this field makes it imperative for researchers, applied mathematicians, physicists and engineers to keep up with the latest developments. With its panel of international contributors and survey of the recent ramifications of theory, applications, and numerical methods, Partial Differential Equations: Theory and Numerical Solution provides a convenient means to that end.
The late Professor Ming-Po Chen was instrumental in making the Third International Conference on Difference Equations a great success. Dedicated to his memory, these proceedings feature papers presented by many of the most prominent mathematicians in the field. It is a comprehensive collection of the latest developments in topics including stability theory, combinatorics, asymptotics, partial difference equations, as well as applications to biological, social, and natural sciences. This volume is an indispensable reference for academic and applied mathematicians, theoretical physicists, systems engineers, and computer and information scientists.
Contains 36 lectures solely on Fourier analysis and the FFT. Time and frequency domains, representation of waveforms in terms of complex exponentials and sinusoids, convolution, impulse response and the frequency transfer function, modulation and demodulation are among the topics covered. The text is linked to a complete FFT system on the accompanying disk where almost all of the exercises can be either carried out or verified. End-of-chapter exercises have been carefully constructed to serve as a development and consolidation of concepts discussed in the text.
This book is devoted to the development of optimal control theory for finite dimensional systems governed by deterministic and stochastic differential equations driven by vector measures. The book deals with a broad class of controls, including regular controls (vector-valued measurable functions), relaxed controls (measure-valued functions) and controls determined by vector measures, where both fully and partially observed control problems are considered. In the past few decades, there have been remarkable advances in the field of systems and control theory thanks to the unprecedented interaction between mathematics and the physical and engineering sciences. Recently, optimal control theory for dynamic systems driven by vector measures has attracted increasing interest. This book presents this theory for dynamic systems governed by both ordinary and stochastic differential equations, including extensive results on the existence of optimal controls and necessary conditions for optimality. Computational algorithms are developed based on the optimality conditions, with numerical results presented to demonstrate the applicability of the theoretical results developed in the book. This book will be of interest to researchers in optimal control or applied functional analysis interested in applications of vector measures to control theory, stochastic systems driven by vector measures, and related topics. In particular, this self-contained account can be a starting point for further advances in the theory and applications of dynamic systems driven and controlled by vector measures.
This book is a follow-up to the introductory text written by the same authors. The primary emphasis on this book is linear and nonlinear partial differential equations with particular concentration on the equations of viscous fluid motion. Each chapter describes a particular application of the finite element method and illustrates the concepts through example problems. A comprehensive appendix lists computer codes for 2-D fluid flow and two 3-D transient codes. |
![]() ![]() You may like...
Statutory Audits in Europe - Latest…
Michael Kend, Giulia Leoni, …
Hardcover
R3,704
Discovery Miles 37 040
Out of Turmoil - Catalysts for…
Dean P. Vesperman, Anne Aydinian-Perry, …
Hardcover
R3,036
Discovery Miles 30 360
|