![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
The theory of difference equations is now enjoying a period of Renaissance. Witness the large number of papers in which problems, having at first sight no common features, are reduced to the investigation of subsequent iterations of the maps f* IR. m ~ IR. m, m > 0, or (which is, in fact, the same) to difference equations The world of difference equations, which has been almost hidden up to now, begins to open in all its richness. Those experts, who usually use differential equations and, in fact, believe in their universality, are now discovering a completely new approach which re sembles the theory of ordinary differential equations only slightly. Difference equations, which reflect one of the essential properties of the real world-its discreteness-rightful ly occupy a worthy place in mathematics and its applications. The aim of the present book is to acquaint the reader with some recently discovered and (at first sight) unusual properties of solutions for nonlinear difference equations. These properties enable us to use difference equations in order to model complicated os cillating processes (this can often be done in those cases when it is difficult to apply ordinary differential equations). Difference equations are also a useful tool of syn ergetics- an emerging science concerned with the study of ordered structures. The application of these equations opens up new approaches in solving one of the central problems of modern science-the problem of turbulence.
Multigrid Methods for Finite Elements combines two rapidly developing fields: finite element methods, and multigrid algorithms. At the theoretical level, Shaidurov justifies the rate of convergence of various multigrid algorithms for self-adjoint and non-self-adjoint problems, positive definite and indefinite problems, and singular and spectral problems. At the practical level these statements are carried over to detailed, concrete problems, including economical constructions of triangulations and effective work with curvilinear boundaries, quasilinear equations and systems. Great attention is given to mixed formulations of finite element methods, which allow the simplification of the approximation of the biharmonic equation, the steady-state Stokes, and Navier--Stokes problems.
Nonlinear partial differential equations abound in modern physics. The problems arising in these fields lead to fascinating questions and, at the same time, progress in understanding the mathematical structures is of great importance to the models. Nevertheless, activity in one of the approaches is not always sufficiently in touch with developments in the other field. The book presents the joint efforts of mathematicians and physicists involved in modelling reactive flows, in particular superconductivity and superfluidity. Certain contributions are fundamental to an understanding of such cutting-edge research topics as rotating Bose-Einstein condensates, Kolmogorov-Zakharov solutions for weak turbulence equations, and the propagation of fronts in heterogeneous media.
The theory of operator algebras acting on a Hilbert space was initiated in thirties by papers of Murray and von Neumann. In these papers they have studied the structure of algebras which later were called von Neu mann algebras or W* -algebras. They are weakly closed complex *-algebras of operators on a Hilbert space. At present the theory of von Neumann algebras is a deeply developed theory with various applications. In the framework of von Neumann algebras theory the study of fac tors (i.e. W* -algebras with trivial centres) is very important, since they are comparatively simple and investigation of general W* -algebras can be reduced to the case of factors. Therefore the theory of factors is one of the main tools in the structure theory of von Neumann algebras. In the middle of sixtieth Topping [To 1] and Stormer [S 2] have ini tiated the study of Jordan (non associative and real) analogues of von Neumann algebras - so called JW-algebras, i.e. real linear spaces of self adjoint opera.tors on a complex Hilbert space, which contain the identity operator 1. closed with respect to the Jordan (i.e. symmetrised) product INTRODUCTION 2 x 0 y = ~(Xy + yx) and closed in the weak operator topology. The structure of these algebras has happened to be close to the struc ture of von Neumann algebras and it was possible to apply ideas and meth ods similar to von Neumann algebras theory in the study of JW-algebras.
Starting with an introduction to fractional derivatives and numerical approximations, this book presents finite difference methods for fractional differential equations, including time-fractional sub-diffusion equations, time-fractional wave equations, and space-fractional differential equations, among others. Approximation methods for fractional derivatives are developed and approximate accuracies are analyzed in detail.
Distributions in the Physical and Engineering Sciences is a comprehensive exposition on analytic methods for solving science and engineering problems. It is written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important for practitioners and researchers. The goal of the books is to give the reader, specialist and non-specialist, useable and modern mathematical tools in their research and analysis. Volume 2: Linear and Nonlinear Dynamics of Continuous Media continues the multivolume project which endeavors to show how the theory of distributions, also called the theory of generalized functions, can be used by graduate students and researchers in applied mathematics, physical sciences, and engineering. It contains an analysis of the three basic types of linear partial differential equations--elliptic, parabolic, and hyperbolic--as well as chapters on first-order nonlinear partial differential equations and conservation laws, and generalized solutions of first-order nonlinear PDEs. Nonlinear wave, growing interface, and Burger's equations, KdV equations, and the equations of gas dynamics and porous media are also covered. The careful explanations, accessible writing style, many illustrations/examples and solutions also make it suitable for use as a self-study reference by anyone seeking greater understanding and proficiency in the problem solving methods presented. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. Features * Application oriented exposition of distributional (Dirac delta) methods in the theory of partial differential equations. Abstract formalism is keep to a minimum. * Careful and rich selection of examples and problems arising in real-life situations. Complete solutions to all exercises appear at the end of the book. * Clear explanations, motivations, and illustration of all necessary mathematical concepts.
This monograph presents the newly developed method of rigged Hilbert spaces as a modern approach in singular perturbation theory. A key notion of this approach is the Lax-Berezansky triple of Hilbert spaces embedded one into another, which specifies the well-known Gelfand topological triple. All kinds of singular interactions described by potentials supported on small sets (like the Dirac -potentials, fractals, singular measures, high degree super-singular expressions) admit a rigorous treatment only in terms of the equipped spaces and their scales. The main idea of the method is to use singular perturbations to change inner products in the starting rigged space, and the construction of the perturbed operator by the Berezansky canonical isomorphism (which connects the positive and negative spaces from a new rigged triplet). The approach combines three powerful tools of functional analysis based on the Birman-Krein-Vishik theory of self-adjoint extensions of symmetric operators, the theory of singular quadratic forms, and the theory of rigged Hilbert spaces. The book will appeal to researchers in mathematics and mathematical physics studying the scales of densely embedded Hilbert spaces, the singular perturbations phenomenon, and singular interaction problems.
In this book we develop various mathematical models of information dynamics, I -dynamics (including the process of thinking), based on methods of classical and quantum physics. The main aim of our investigations is to describe mathematically the phenomenon of consciousness. We would like to realize a kind of Newton-Descartes program (corrected by the lessons of statistical and quantum mechanics) for information processes. Starting from the ideas of Newton and Descartes, in physics there was developed an adequate description of the dynamics of material systems. We would like to develop an analogous mathematical formalism for information and, in particular, mental processes. At the beginning of the 21st century it is clear that it would be impossible to create a deterministic model for general information processes. A deterministic model has to be completed by a corresponding statistical model of information flows and, in particular, flows of minds. It might be that such an information statistical model should have a quantum-like structure.
Self-contained, and collating for the first time material that has until now only been published in journals - often in Russian - this book will be of interest to functional analysts, especially those with interests in topological vector spaces, and to algebraists concerned with category theory. The closed graph theorem is one of the corner stones of functional analysis, both as a tool for applications and as an object for research. However, some of the spaces which arise in applications and for which one wants closed graph theorems are not of the type covered by the classical closed graph theorem of Banach or its immediate extensions. To remedy this, mathematicians such as Schwartz and De Wilde (in the West) and Rajkov (in the East) have introduced new ideas which have allowed them to establish closed graph theorems suitable for some of the desired applications. In this book, Professor Smirnov uses category theory to provide a very general framework, including the situations discussed by De Wilde, Rajkov and others. General properties of the spaces involved are discussed and applications are provided in measure theory, global analysis and differential equations.
The first six chapters and Appendix 1 of this book appeared in Japanese in a book of the same title 15years aga (Jikkyo, Tokyo, 1980).At the request of some people who do not wish to learn Japanese, I decided to rewrite my old work in English. This time, I added a chapter on the arithmetic of quadratic maps (Chapter 7) and Appendix 2, A Short Survey of Subsequent Research on Congruent Numbers, by M. Kida. Some 20 years ago, while rifling through the pages of Selecta Heinz Hopj (Springer, 1964), I noticed a system of three quadratic forms in four variables with coefficientsin Z that yields the map of the 3-sphere to the 2-sphere with the Hopf invariant r =1 (cf. Selecta, p. 52). Immediately I feit that one aspect of classical and modern number theory, including quadratic forms (Pythagoras, Fermat, Euler, and Gauss) and space elliptic curves as intersection of quadratic surfaces (Fibonacci, Fermat, and Euler), could be considered as the number theory of quadratic maps-especially of those maps sending the n-sphere to the m-sphere, i.e., the generalized Hopf maps. Having these in mind, I deliveredseverallectures at The Johns Hopkins University (Topics in Number Theory, 1973-1974, 1975-1976, 1978-1979, and 1979-1980). These lectures necessarily contained the following three basic areas of mathematics: v vi Preface Theta Simple Functions Aigebras Elliptic Curves Number Theory Figure P.l.
This volume contains the proceedings of the 19th International Conference on Difference Equations and Applications, held at Sultan Qaboos University, Muscat, Oman in May 2013. The conference brought together experts and novices in the theory and applications of difference equations and discrete dynamical systems. The volume features papers in difference equations and discrete time dynamical systems with applications to mathematical sciences and, in particular, mathematical biology, ecology, and epidemiology. It includes four invited papers and eight contributed papers. Topics covered include: competitive exclusion through discrete time models, Benford solutions of linear difference equations, chaos and wild chaos in Lorenz-type systems, advances in periodic difference equations, the periodic decomposition problem, dynamic selection systems and replicator equations, and asymptotic equivalence of difference equations in Banach Space. This book will appeal to researchers, scientists, and educators who work in the fields of difference equations, discrete time dynamical systems and their applications.
Considering integral transformations of Volterra type, F. Riesz and B. Sz.-Nagy no ticed in 1952 that [49]: "The existence of such a variety of linear transformations, having the same spectrum concentrated at a single point, brings out the difficulties of characterization of linear transformations of general type by means of their spectra." Subsequently, spectral analysis has been developed for different classes of non selfadjoint operators [6,7,14,20,21,36,44,46,54]. It was then realized that this analysis forms a natural basis for the theory of systems interacting with the environment. The success of this theory in the single operator case inspired attempts to create a general theory in the much more complicated case of several commuting operators with finite-dimensional imaginary parts. During the past 10-15 years such a theory has been developed, yielding fruitful connections with algebraic geometry and sys tem theory. Our purpose in this book is to formulate the basic problems appearing in this theory and to present its main results. It is worth noting that, in addition to the joint spectrum, the corresponding algebraic variety and its global topological characteristics play an important role in the classification of commuting operators. For the case of a pair of operators these are: 1. The corresponding algebraic curve, and especially its genus. 2. Certain classes of divisors - or certain line bundles - on this curve.
The book deals with the representation in series form of compact linear operators acting between Banach spaces, and provides an analogue of the classical Hilbert space results of this nature that have their roots in the work of D. Hilbert, F. Riesz and E. Schmidt. The representation involves a recursively obtained sequence of points on the unit sphere of the initial space and a corresponding sequence of positive numbers that correspond to the eigenvectors and eigenvalues of the map in the Hilbert space case. The lack of orthogonality is partially compensated by the systematic use of polar sets. There are applications to the p-Laplacian and similar nonlinear partial differential equations. Preliminary material is presented in the first chapter, the main results being established in Chapter 2. The final chapter is devoted to the problems encountered when trying to represent non-compact maps.
Many developments on the cutting edge of research in operator theory and its applications are reflected in this collection of original and review articles. Particular emphasis lies on highlighting the interplay between operator theory and applications from other areas, such as multi-dimensional systems and function theory of several complex variables, distributed parameter systems and control theory, mathematical physics, wavelets, and numerical analysis.
This volume focuses on recent developments in non-linear and hyperbolic equations. It will be a most valuable resource for researchers in applied mathematics, the theory of wavelets, and in mathematical and theoretical physics. Nine up-to-date contributions have been written on invitation by experts in the respective fields. The book is the third volume of the subseries "Advances in Partial Differential Equations."
This book aims to present some analytic inequalities and their applications in partial differential equations. These inequalities include integral inequalities, differential inequalities and difference inequalities which play a crucial role in establishing (uniform) bounds, global existence, large-time behavior, decay rates and blow-up of solutions to various classes of evolutionary differential equations. The material summarizes a vast literature such as published papers, preprints and books in which inequalities are categorized in terms ofdifferent properties which are consequences of those inequalities such as (uniform)bounds, global existence, large-time behavior, decay rates and blow-up of solutions for some partial differential equations.
One service mathematics has rendered the 'Et moi, ..., si j'avait su comment en revenir, je n'y serais point aIle: ' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ... '; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics ... '. All arguably true. And all statements obtainable this way form part of the raison d'elre of this series."
The last thirty years were a period of continuous and intense growth in the subject of dynamical systems. New concepts and techniques and at the same time new areas of applications of the theory were found. The 31st session of the Seminaire de Mathematiques Superieures (SMS) held at the Universite de Montreal in July 1992 was on dynamical systems having as its center theme "Bifurcations and periodic orbits of vector fields." This session of the SMS was a NATO Advanced Study Institute (ASI). This ASI had the purpose of acquainting the participants with some of the most recent developments and of stimulating new research around the chosen center theme. These developments include the major tools of the new resummation techniques with applications, in particular to the proof of the non-accumulation of limit-cycles for real-analytic plane vector fields. One of the aims of the ASI was to bring together methods from real and complex dy namical systems. There is a growing awareness that an interplay between real and complex methods is both useful and necessary for the solution of some of the problems. Complex techniques become powerful tools which yield valuable information when applied to the study of the dynamics of real vector fields. The recent developments show that no rigid frontiers between disciplines exist and that interesting new developments occur when ideas and techniques from diverse disciplines are married. One of the aims of the ASI was to show these multiple interactions at work."
For the past 25 years the theory of pseudodifferential operators has played an important role in many exciting and deep investigations into linear PDE. Over the past decade, this tool has also begun to yield interesting results in nonlinear PDE. This book is devoted to a summary and reconsideration of some used of pseudodifferential operator techniques in nonlinear PDE. The book should be of interest to graduate students, instructors, and researchers interested in partial differential equations, nonlinear analysis in classical mathematical physics and differential geometry, and in harmonic analysis.
This volume presents a carefully written introduction to nonlinear waves in the natural sciences and engineering. It contains many classical results as well as more recent results, dealing with topics such as the forced Korteweg--de Vries equation and material relating to X-ray crystallography. The volume contains nine chapters. Chapter 1 concerns asymptotics and nonlinear ordinary differential equations. Conservation laws are discussed in Chapter 2, and Chapter 3 considers water waves. The scattering and inverse scattering method is described in Chapter 4, which also contains a full explanation of using the inverse scattering method for finding 1-, 2- and 3-soliton solutions of the Korteweg--de Vries equation. After dealing with the Burgers equation in Chapter 5, Chapter 6 discusses the forced Korteweg--de Vries equations. Here the emphasis is on steady-state bifurcations and unsteady-state periodic soliton generation. The Sine--Gordon and nonlinear SchrAdinger equations are the subject of Chapter 7. The final two chapters consider wave instability and resonance. Every chapter contains problems and exercises, together with guidance for their solution. The volume concludes with some appendices which describe symbolic derivations of certain results on solitons. Several user-friendly MATHEMATICA packages are included. The prerequisite for using this book is a background knowledge of basic physics, linear algebra and differential equations. For graduates and researchers in mathematics, physics and engineering wishing to have a good introduction to nonlinear wave theory and its applications. This volume is also highly recommended as a course book.
This book presents a panorama of operator theory. It treats a variety of classes of linear operators which illustrate the richness of the theory, both in its theoretical developments and its applications. For each of the classes various differential and integral operators motivate or illustrate the main results. The topics have been updated and enhanced by new developments, many of which appear here for the first time. Interconnections appear frequently and unexpectedly. This second volume consists of five parts: triangular representations, classes of Toeplitz operators, contractive operators and characteristic operator functions, Banach algebras and algebras of operators, and extension and completion problems. The exposition is self-contained and has been simplified and polished in an effort to make advanced topics accessible to a wide audience of students and researchers in mathematics, science and engineering. Contents: Vol. I - This book presents a panorama of operator theory. It treats a variety of classes of linear operators which illustrate the richness of the theory, both in its theoretical developments and its applications. For each of the classes various differential and integral operators motivate or illustrate the main results. The topics have been updated and enhanced by new developments, many of which appear here for the first time. Interconnections appear frequently and unexpectedly. The present volume consists of four parts: general spectral theory, classes of compact operators, Fredholm and Wiener-Hopf operators, and classes of unbounded operators: The exposition is self-contained and has been simplified and polished in an effort to make advanced topics accessible to a wide audience of students and researchers in mathematics, science and engineering. ..". Used as a graduate textbook, the book allows the instructor several good selections of topics to build a course. ... The authors took great care to polish and simplify the exposition; as a result, the book can serve also as an excellent basis for reading courses or for self-study. ... Besides being a textbook, the book is a valuable reference source for a wide audience of mathematicians, physicists and engineers. The specialists in functional analysis and operator theory will find most of the topics familiar, although the exposition is often novel or non-traditional, making the material more accessible. ..." (Zentralblatt fA1/4r Mathematik) / "This book presents an excellently chosen panorama of operator theory. It shows for several times the fruitful application of complex analysis to problems in operator theory. ... Each part contains interesting exercises and comments on the literature of the topic." (Monatshefte fA1/4r Mathematik)
the many different applications that this theory provides. We mention that the existing literature on this subject includes the books of J. P. Aubin, J. P. Aubin-A. Cellina, J. P. Aubin-H. Frankowska, C. Castaing-M. Valadier, K. Deimling, M. Kisielewicz and E. Klein-A. Thompson. However, these books either deal with one particular domain of the subject or present primarily the finite dimensional aspects of the theory. In this volume, we have tried very hard to give a much more complete picture of the subject, to include some important new developments that occurred in recent years and a detailed bibliography. Although the presentation of the subject requires some knowledge in various areas of mathematical analysis, we have deliberately made this book more or less self-contained, with the help of an extended appendix in which we have gathered several basic notions and results from topology, measure theory and nonlinear functional analysis. In this volume we present the theory of the subject, while in the second volume we will discuss mainly applications. This volume is divided into eight chapters. The flow of chapters follows more or less the historical development of the subject. We start with the topological theory, followed by the measurability study of multifunctions. Chapter 3 deals with the theory of monotone and accretive operators. The closely related topics of the degree theory and fixed points of multifunctions are presented in Chapters 4 and 5, respectively.
Vsevolod Alekseevich Solonnikov is known as one of the outstanding mathema- ciansfromtheSt.PetersburgMathematicalSchool.Hisremarkableresultsonexact estimates of solutions to boundary and initial-boundary value problems for linear elliptic, parabolic, and Stokes systems, his methods and contributions to the - vestigation of free boundary problems, in particular in ?uid mechanics, are well known to specialists all over the world. The International Conference on "Trends in Partial Di?erential Equations of th ' Mathematical Physics" was held on the occasion of his 70 birthday in Obidos (Portugal), from June 7 to 10, 2003. It was an organization of the "Centro de Matem' atica e Aplica, c" oes Fundamentais da Universidade Lisboa", in collaboration with the "Centro de Matem' atica da Universidade de Coimbra", the "Centro de Matem' atica Aplicada do IST/Universidade T' ecnica de Lisboa", the "Centro de Matem' atica da Universidade da Beira Interior",from Portugal,and with the L- oratory of Mathematical Physics of the St.Petersburg Department of the Steklov Institute of Mathematics from Russia. The conference consisted of thirty eight invited and contributed lectures and ' gathered,inthecharminganduniquemedievaltownofObidos,aboutsixtypart- ipants from ?fteen countries, namely USA, Switzerland, Spain, Russia, Portugal, Poland, Lithuania, Korea, Japan, Italy, Germany, France, Canada, Australia and Argentina.Severalcolleaguesgaveusahelpinghandintheorganizationofthec- ference. We are thankful to all of them, and in particular to Stanislav Antontsev, Anvarbek Meirmanov and Ad' elia Sequeira, that integrated also the Organizing Committee. A special acknowledgement is due to Elena Frolova that helped us in compiling the short and necessarily incomplete bio-bibliographical notes below.
This book provides a selection of reports and survey articles on the latest research in the area of single and multivariable operator theory and related fields. The latter include singular integral equations, ordinary and partial differential equations, complex analysis, numerical linear algebra, and real algebraic geometry - all of which were among the topics presented at the 26th International Workshop in Operator Theory and its Applications, held in Tbilisi, Georgia, in the summer of 2015. Moreover, the volume includes three special commemorative articles. One of them is dedicated to the memory of Leiba Rodman, another to Murray Marshall, and a third to Boris Khvedelidze, an outstanding Georgian mathematician and one of the founding fathers of the theory of singular integral equations. The book will be of interest to a broad range of mathematicians, from graduate students to researchers, whose primary interests lie in operator theory, complex analysis and applications, as well as specialists in mathematical physics.
Onc service malhemalics has rendered Ihe "Et moil ... si ravait au oomment en revcnir. je n'y serais point aU' ' human race. It has put common sense back whcre it belongs, on the topmost shelf next Iules Verne to the dUlty canister IabeUed 'discarded n- sense'. The series is divergent; therefore we may be Eric T. BeU able to do something with it. O. H eaviside Mathematics is a tool for thought, A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other pans and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'are of this series." |
![]() ![]() You may like...
Channel Coding: Theory, Algorithms, and…
David Declercq, Marc Fossorier, …
Paperback
Test Generation of Crosstalk Delay…
S. Jayanthy, M.C. Bhuvaneswari
Hardcover
R4,102
Discovery Miles 41 020
Artificial Intelligence Applications for…
Mohamed Elhoseny, K Shankar, …
Hardcover
R4,585
Discovery Miles 45 850
|