![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
The manuscript gives a coherent and detailed account of the theory of series in the eighteenth and early nineteenth centuries. It provides in one place an account of many results that are generally to be found - if at all - scattered throughout the historical and textbook literature. It presents the subject from the viewpoint of the mathematicians of the period, and is careful to distinguish earlier conceptions from ones that prevail today.
The book is a graduate text on unbounded self-adjoint operators on Hilbert space and their spectral theory with the emphasis on applications in mathematical physics (especially, Schroedinger operators) and analysis (Dirichlet and Neumann Laplacians, Sturm-Liouville operators, Hamburger moment problem) . Among others, a number of advanced special topics are treated on a text book level accompanied by numerous illustrating examples and exercises. The main themes of the book are the following: - Spectral integrals and spectral decompositions of self-adjoint and normal operators - Perturbations of self-adjointness and of spectra of self-adjoint operators - Forms and operators - Self-adjoint extension theory :boundary triplets, Krein-Birman-Vishik theory of positive self-adjoint extension
This volume of papers presented at the conference in honor of Calixto P. Calderon by his friends, colleagues, and students is intended to make the mathematical community aware of his important scholarly and research contributions in contemporary Harmonic Analysis and Mathematical Models applied to Biology and Medicine, and to stimulate further research in the future in this area of pure and applied mathematics.
Extending the well-known connection between classical linear potential theory and probability theory (through the interplay between harmonic functions and martingales) to the nonlinear case of tug-of-war games and their related partial differential equations, this unique book collects several results in this direction and puts them in an elementary perspective in a lucid and self-contained fashion.
This book presents the very concept of an index matrix and its related augmented matrix calculus in a comprehensive form. It mostly illustrates the exposition with examples related to the generalized nets and intuitionistic fuzzy sets which are examples of an extremely wide array of possible application areas. The present book contains the basic results of the author over index matrices and some of its open problems with the aim to stimulating more researchers to start working in this area.
Here is a modern introduction to the theory of tensor algebra and tensor analysis. It discusses tensor algebra and introduces differential manifold. Coverage also details tensor analysis, differential forms, connection forms, and curvature tensor. In addition, the book investigates Riemannian and pseudo-Riemannian manifolds in great detail. Throughout, examples and problems are furnished from the theory of relativity and continuum mechanics.
The theory of functional equations has been developed in a rapid and productive way in the second half of the Twentieth Century. First of all, this is due to the fact that the mathematical applications raised the investigations of newer and newer types of functional equations. At the same time, the self development of this theory was also very fruitful. This can be followed in many monographs that treat and discuss the various methods and approaches. These developments were also essentially influenced by a number jour nals, for instance, by the Publicationes Mathematicae Debrecen (founded in 1953) and by the Aequationes Mathematicae (founded in 1968), be cause these journals published papers from the field of functional equa tions readily and frequently. The latter journal also publishes the yearly report of the International Symposia on Functional Equations and a comprehensive bibliography of the most recent papers. At the same time, there are periodically and traditionally organized conferences in Poland and in Hungary devoted to functional equations and inequali ties. In 2000, the 38th International Symposium on Functional Equations was organized by the Institute of Mathematics and Informatics of the University of Debrecen in Noszvaj, Hungary. The report about this meeting can be found in Aequationes Math. 61 (2001), 281-320."
Our book is devoted to the topological fixed point theory both for single-valued and multivalued mappings in locally convex spaces, including its application to boundary value problems for ordinary differential equations (inclusions) and to (multivalued) dynamical systems. It is the first monograph dealing with the topo- logical fixed point theory in non-metric spaces. Although the theoretical material was tendentially selected with respect to ap- plications, we wished to have a self-consistent text (see the scheme below). There- fore, we supplied three appendices concerning almost-periodic and derivo-periodic single-valued {multivalued) functions and (multivalued) fractals. The last topic which is quite new can be also regarded as a contribution to the fixed point theory in hyperspaces. Nevertheless, the reader is assumed to be at least partly famil- iar in some related sections with the notions like the Bochner integral, the Au- mann multivalued integral, the Arzela-Ascoli lemma, the Gronwall inequality, the Brouwer degree, the Leray-Schauder degree, the topological (covering) dimension, the elemens of homological algebra, ...Otherwise, one can use the recommended literature. Hence, in Chapter I, the topological and analytical background is built. Then, in Chapter II (and partly already in Chapter I), topological principles necessary for applications are developed, namely: the fixed point index theory (resp. the topological degree theory), the Lefschetz and the Nielsen theories both in absolute and relative cases, periodic point theorems, topological essentiality, continuation-type theorems.
This monograph is devoted to a rapidly developing area of research of the qualitative theory of difference and functional differential equations. In fact, in the last 25 years Oscillation Theory of difference and functional differential equations has attracted many researchers. This has resulted in hundreds of research papers in every major mathematical journal, and several books. In the first chapter of this monograph, we address oscillation of solutions to difference equations of various types. Here we also offer several new fundamental concepts such as oscillation around a point, oscillation around a sequence, regular oscillation, periodic oscillation, point-wise oscillation of several orthogonal polynomials, global oscillation of sequences of real valued functions, oscillation in ordered sets, ( , R, )-oscillate, oscillation in linear spaces, oscillation in Archimedean spaces, and oscillation across a family. These concepts are explained through examples and supported by interesting results. In the second chapter we present recent results pertaining to the oscil lation of n-th order functional differential equations with deviating argu ments, and functional differential equations of neutral type. We mainly deal with integral criteria for oscillation. While several results of this chapter were originally formulated for more complicated and/or more general differ ential equations, we discuss here a simplified version to elucidate the main ideas of the oscillation theory of functional differential equations. Further, from a large number of theorems presented in this chapter we have selected the proofs of only those results which we thought would best illustrate the various strategies and ideas involved."
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics.
This book contains a collection of research articles and surveys on recent developments on operator theory as well as its applications covered in the IWOTA 2011 conference held at Sevilla University in the summer of 2011. The topics include spectral theory, differential operators, integral operators, composition operators, Toeplitz operators, and more. The book also presents a large number of techniques in operator theory.
Introduction to Dynamical Systems and Geometric Mechanics provides a comprehensive tour of two fields that are intimately entwined: dynamical systems is the study of the behavior of physical systems that may be described by a set of nonlinear first-order ordinary differential equations in Euclidean space, whereas geometric mechanics explore similar systems that instead evolve on differentiable manifolds. The first part discusses the linearization and stability of trajectories and fixed points, invariant manifold theory, periodic orbits, Poincare maps, Floquet theory, the Poincare-Bendixson theorem, bifurcations, and chaos. The second part of the book begins with a self-contained chapter on differential geometry that introduces notions of manifolds, mappings, vector fields, the Jacobi-Lie bracket, and differential forms.
This is a text for students who have had a three-course calculus sequence and who are ready to explore the logical structure of analysis as the backbone of calculus. It begins with a development of the real numbers, building this system from more basic objects (natural numbers, integers, rational numbers, Cauchy sequences), and it produces basic algebraic and metric properties of the real number line as propositions, rather than axioms. The text also makes use of the complex numbers and incorporates this into the development of differential and integral calculus. For example, it develops the theory of the exponential function for both real and complex arguments, and it makes a geometrical study of the curve (expit)(expit), for real tt, leading to a self-contained development of the trigonometric functions and to a derivation of the Euler identity that is very different from what one typically sees. Further topics include metric spaces, the Stone–Weierstrass theorem, and Fourier series.
This work, consisting of expository articles as well as research papers, highlights recent developments in nonlinear analysis and differential equations. The material is largely an outgrowth of autumn school courses and seminars held at the University of Lisbon and has been thoroughly refereed. Several topics in ordinary differential equations and partial differential equations are the focus of key articles, including: * periodic solutions of systems with p-Laplacian type operators (J. Mawhin) * bifurcation in variational inequalities (K. Schmitt) * a geometric approach to dynamical systems in the plane via twist theorems (R. Ortega) * asymptotic behavior and periodic solutions for Navier--Stokes equations (E. Feireisl) * mechanics on Riemannian manifolds (W. Oliva) * techniques of lower and upper solutions for ODEs (C. De Coster and P. Habets) A number of related subjects dealing with properties of solutions, e.g., bifurcations, symmetries, nonlinear oscillations, are treated in other articles. This volume reflects rich and varied fields of research and will be a useful resource for mathematicians and graduate students in the ODE and PDE community.
Developed in this book are several deep connections between time-frequency (Fourier/Gabor) analysis and time-scale (wavelet) analysis, emphasizing the powerful adaptive methods that emerge when separate techniques from each area are properly assembled in a larger context. While researchers at the forefront of these areas are well aware of the benefits of such a unified approach, there remains a knowledge gap in the larger community of practitioners about the precise strengths and limitations of Fourier/Gabor analysis versus wavelets. This book fills that gap by presenting the interface of time-frequency and time-scale methods as a rich area of work. "Foundations of Time-Frequency and Time-Scale Methods" will be suitable for applied mathematicians and engineers in signal/image processing and communication theory, as well as researchers and students in mathematical analysis, signal analysis, and mathematical physics.
This volume collects the edited and reviewed contribution presented in the 7th iTi Conference in Bertinoro, covering fundamental and applied aspects in turbulence. In the spirit of the iTi conference, the volume is produced after the conference so that the authors had the opportunity to incorporate comments and discussions raised during the meeting. In the present book, the contributions have been structured according to the topics: I Theory II Wall bounded flows III Pipe flow IV Modelling V Experiments VII Miscellaneous topics
This research-level book presents up-to-date information concerning
recent developments in convex functions and partial orderings and
some applications in mathematics, statistics, and reliability
theory. The book will serve researchers in mathematical and
statistical theory and theoretical and applied reliabilists.
This book provides an overview of some of the most active topics in the theory of transformation groups over the past decades and stresses advances obtained in the last dozen years. The emphasis is on actions of Lie groups on manifolds and CW complexes. Manifolds and actions of Lie groups on them are studied in the linear, semialgebraic, definable, analytic, smooth, and topological categories. Equivalent vector bundles play an important role. The work is divided into fifteen articles and will be of interest to anyone researching or studying transformations groups. The references make it easy to find details and original accounts of the topics surveyed, including tools and theories used in these accounts.
This book gives an account of an ellipsoidal calculus and ellipsoidal techniques developed by the authors. The text ranges from a specially developed theory of exact set-valued solutions to the description of ellipsoidal calculus, related ellipsoidal-based methods and examples worked out with computer graphics.
Award-winning monograph of the Ferran Sunyer i Balaguer Prize 1997. This book is a self-contained exposition of the spectral theory
of Toeplitz operators with piecewise continuous symbols and
singular integral operators with piecewise continuous coefficients.
It includes an introduction to Carleson curves, Muckenhoupt
weights, weighted norm inequalities, local principles, Wiener-Hopf
factorization, and Banach algebras generated by idempotents. Some
basic phenomena in the field and the techniques for treating them
came to be understood only in recent years and are comprehensively
presented here for the first time.
The aim of this proceeding is addressed to present recent developments of the mathematical research on the Navier-Stokes equations, the Euler equations and other related equations. In particular, we are interested in such problems as: 1) existence, uniqueness and regularity of weak solutions2) stability and its asymptotic behavior of the rest motion and the steady state3) singularity and blow-up of weak and strong solutions4) vorticity and energy conservation5) fluid motions around the rotating axis or outside of the rotating body6) free boundary problems7) maximal regularity theorem and other abstract theorems for mathematical fluid mechanics.
This volume presents the lectures given during the second French-Uzbek Colloquium on Algebra and Operator Theory which took place in Tashkent in 1997, at the Mathematical Institute of the Uzbekistan Academy of Sciences. Among the algebraic topics discussed here are deformation of Lie algebras, cohomology theory, the algebraic variety of the laws of Lie algebras, Euler equations on Lie algebras, Leibniz algebras, and real K-theory. Some contributions have a geometrical aspect, such as supermanifolds. The papers on operator theory deal with the study of certain types of operator algebras. This volume also contains a detailed introduction to the theory of quantum groups. Audience: This book is intended for graduate students specialising in algebra, differential geometry, operator theory, and theoretical physics, and for researchers in mathematics and theoretical physics.
Weak convergence is a basic tool of modern nonlinear analysis because it enjoys the same compactness properties that finite dimensional spaces do: basically, bounded sequences are weak relatively compact sets. Nonetheless, weak conver gence does not behave as one would desire with respect to nonlinear functionals and operations. This difficulty is what makes nonlinear analysis much harder than would normally be expected. Parametrized measures is a device to under stand weak convergence and its behavior with respect to nonlinear functionals. Under suitable hypotheses, it yields a way of representing through integrals weak limits of compositions with nonlinear functions. It is particularly helpful in comprehending oscillatory phenomena and in keeping track of how oscilla tions change when a nonlinear functional is applied. Weak convergence also plays a fundamental role in the modern treatment of the calculus of variations, again because uniform bounds in norm for se quences allow to have weak convergent subsequences. In order to achieve the existence of minimizers for a particular functional, the property of weak lower semicontinuity should be established first. This is the crucial and most delicate step in the so-called direct method of the calculus of variations. A fairly large amount of work has been devoted to determine under what assumptions we can have this lower semicontinuity with respect to weak topologies for nonlin ear functionals in the form of integrals. The conclusion of all this work is that some type of convexity, understood in a broader sense, is usually involved."
This volume contains contributions written by participants of the 4th Workshop on Operator Theory in Krein Spaces and Applications, held at the TU Berlin, Germany, December 17 to 19, 2004. The workshop covered topics from spectral, perturbation, and extension theory of linear operators and relations in inner product spaces.
This text serves as an introduction to the use of nonlinear symmetries in studying, simplifying and solving nonlinear equations. Part One provides a self-contained introduction to the theory. This emphasizes an intuitive understanding of jet spaces and the geometry of differential equations, and a special treatment of evolution problems and dynamical systems, including original results. In Part Two the theory is applied to equivariant dynamics, to bifurcation theory and to gauge symmetries, reporting recent results by the author. In particular, the fundamental results of equivariant bifurcation theory are extended to the case of nonlinear symmetries. The final part of the book gives an overview of new developments, including a number of applications, mainly in the physical sciences. A list of references dealing with nonlinear symmetries completes the volume. This volume should be of interest to researchers in mathematics and mathematical physics. |
![]() ![]() You may like...
Calculus - A Complete Course
Robert Adams, Christopher Essex
Hardcover
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,968
Discovery Miles 29 680
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
Calculus, Metric Edition
James Stewart, Saleem Watson, …
Hardcover
|