![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
The first six chapters and Appendix 1 of this book appeared in Japanese in a book of the same title 15years aga (Jikkyo, Tokyo, 1980).At the request of some people who do not wish to learn Japanese, I decided to rewrite my old work in English. This time, I added a chapter on the arithmetic of quadratic maps (Chapter 7) and Appendix 2, A Short Survey of Subsequent Research on Congruent Numbers, by M. Kida. Some 20 years ago, while rifling through the pages of Selecta Heinz Hopj (Springer, 1964), I noticed a system of three quadratic forms in four variables with coefficientsin Z that yields the map of the 3-sphere to the 2-sphere with the Hopf invariant r =1 (cf. Selecta, p. 52). Immediately I feit that one aspect of classical and modern number theory, including quadratic forms (Pythagoras, Fermat, Euler, and Gauss) and space elliptic curves as intersection of quadratic surfaces (Fibonacci, Fermat, and Euler), could be considered as the number theory of quadratic maps-especially of those maps sending the n-sphere to the m-sphere, i.e., the generalized Hopf maps. Having these in mind, I deliveredseverallectures at The Johns Hopkins University (Topics in Number Theory, 1973-1974, 1975-1976, 1978-1979, and 1979-1980). These lectures necessarily contained the following three basic areas of mathematics: v vi Preface Theta Simple Functions Aigebras Elliptic Curves Number Theory Figure P.l.
This volume contains the proceedings of the 19th International Conference on Difference Equations and Applications, held at Sultan Qaboos University, Muscat, Oman in May 2013. The conference brought together experts and novices in the theory and applications of difference equations and discrete dynamical systems. The volume features papers in difference equations and discrete time dynamical systems with applications to mathematical sciences and, in particular, mathematical biology, ecology, and epidemiology. It includes four invited papers and eight contributed papers. Topics covered include: competitive exclusion through discrete time models, Benford solutions of linear difference equations, chaos and wild chaos in Lorenz-type systems, advances in periodic difference equations, the periodic decomposition problem, dynamic selection systems and replicator equations, and asymptotic equivalence of difference equations in Banach Space. This book will appeal to researchers, scientists, and educators who work in the fields of difference equations, discrete time dynamical systems and their applications.
Considering integral transformations of Volterra type, F. Riesz and B. Sz.-Nagy no ticed in 1952 that [49]: "The existence of such a variety of linear transformations, having the same spectrum concentrated at a single point, brings out the difficulties of characterization of linear transformations of general type by means of their spectra." Subsequently, spectral analysis has been developed for different classes of non selfadjoint operators [6,7,14,20,21,36,44,46,54]. It was then realized that this analysis forms a natural basis for the theory of systems interacting with the environment. The success of this theory in the single operator case inspired attempts to create a general theory in the much more complicated case of several commuting operators with finite-dimensional imaginary parts. During the past 10-15 years such a theory has been developed, yielding fruitful connections with algebraic geometry and sys tem theory. Our purpose in this book is to formulate the basic problems appearing in this theory and to present its main results. It is worth noting that, in addition to the joint spectrum, the corresponding algebraic variety and its global topological characteristics play an important role in the classification of commuting operators. For the case of a pair of operators these are: 1. The corresponding algebraic curve, and especially its genus. 2. Certain classes of divisors - or certain line bundles - on this curve.
The book deals with the representation in series form of compact linear operators acting between Banach spaces, and provides an analogue of the classical Hilbert space results of this nature that have their roots in the work of D. Hilbert, F. Riesz and E. Schmidt. The representation involves a recursively obtained sequence of points on the unit sphere of the initial space and a corresponding sequence of positive numbers that correspond to the eigenvectors and eigenvalues of the map in the Hilbert space case. The lack of orthogonality is partially compensated by the systematic use of polar sets. There are applications to the p-Laplacian and similar nonlinear partial differential equations. Preliminary material is presented in the first chapter, the main results being established in Chapter 2. The final chapter is devoted to the problems encountered when trying to represent non-compact maps.
For more than 250 years partial di?erential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at ?rst and then those originating from - man activity and technological development. Mechanics, physics and their engineering applications were the ?rst to bene't from the impact of partial di?erential equations on modeling and design, but a little less than a century ago the Schr] odinger equation was the key opening the door to the application of partial di?erential equations to quantum chemistry, for small atomic and molecular systems at ?rst, but then for systems of fast growing complexity. The place of partial di?erential equations in mathematics is a very particular one: initially, the partial di?erential equations modeling natural phenomena were derived by combining calculus with physical reasoning in order to - press conservation laws and principles in partial di?erential equation form, leading to the wave equation, the heat equation, the equations of elasticity, the Euler and Navier-Stokes equations for ?uids, the Maxwell equations of electro-magnetics, etc. It is in order to solve 'constructively' the heat equation that Fourier developed the series bearing his name in the early 19th century; Fourier series (and later integrals) have played (and still play) a fundamental roleinbothpureandappliedmathematics, includingmanyareasquiteremote from partial di?erential equations. On the other hand, several areas of mathematics such as di?erential ge- etry have bene?ted from their interactions with partial di?erential equations."
For the past 25 years the theory of pseudodifferential operators has played an important role in many exciting and deep investigations into linear PDE. Over the past decade, this tool has also begun to yield interesting results in nonlinear PDE. This book is devoted to a summary and reconsideration of some used of pseudodifferential operator techniques in nonlinear PDE. The book should be of interest to graduate students, instructors, and researchers interested in partial differential equations, nonlinear analysis in classical mathematical physics and differential geometry, and in harmonic analysis.
the many different applications that this theory provides. We mention that the existing literature on this subject includes the books of J. P. Aubin, J. P. Aubin-A. Cellina, J. P. Aubin-H. Frankowska, C. Castaing-M. Valadier, K. Deimling, M. Kisielewicz and E. Klein-A. Thompson. However, these books either deal with one particular domain of the subject or present primarily the finite dimensional aspects of the theory. In this volume, we have tried very hard to give a much more complete picture of the subject, to include some important new developments that occurred in recent years and a detailed bibliography. Although the presentation of the subject requires some knowledge in various areas of mathematical analysis, we have deliberately made this book more or less self-contained, with the help of an extended appendix in which we have gathered several basic notions and results from topology, measure theory and nonlinear functional analysis. In this volume we present the theory of the subject, while in the second volume we will discuss mainly applications. This volume is divided into eight chapters. The flow of chapters follows more or less the historical development of the subject. We start with the topological theory, followed by the measurability study of multifunctions. Chapter 3 deals with the theory of monotone and accretive operators. The closely related topics of the degree theory and fixed points of multifunctions are presented in Chapters 4 and 5, respectively.
This monograph aims to fill a void by making available a source book which first systematically describes all the available uniqueness and nonuniqueness criteria for ordinary differential equations, and compares and contrasts the merits of these criteria, and second, discusses open problems and offers some directions towards possible solutions.
Vsevolod Alekseevich Solonnikov is known as one of the outstanding mathema- ciansfromtheSt.PetersburgMathematicalSchool.Hisremarkableresultsonexact estimates of solutions to boundary and initial-boundary value problems for linear elliptic, parabolic, and Stokes systems, his methods and contributions to the - vestigation of free boundary problems, in particular in ?uid mechanics, are well known to specialists all over the world. The International Conference on "Trends in Partial Di?erential Equations of th ' Mathematical Physics" was held on the occasion of his 70 birthday in Obidos (Portugal), from June 7 to 10, 2003. It was an organization of the "Centro de Matem' atica e Aplica, c" oes Fundamentais da Universidade Lisboa", in collaboration with the "Centro de Matem' atica da Universidade de Coimbra", the "Centro de Matem' atica Aplicada do IST/Universidade T' ecnica de Lisboa", the "Centro de Matem' atica da Universidade da Beira Interior",from Portugal,and with the L- oratory of Mathematical Physics of the St.Petersburg Department of the Steklov Institute of Mathematics from Russia. The conference consisted of thirty eight invited and contributed lectures and ' gathered,inthecharminganduniquemedievaltownofObidos,aboutsixtypart- ipants from ?fteen countries, namely USA, Switzerland, Spain, Russia, Portugal, Poland, Lithuania, Korea, Japan, Italy, Germany, France, Canada, Australia and Argentina.Severalcolleaguesgaveusahelpinghandintheorganizationofthec- ference. We are thankful to all of them, and in particular to Stanislav Antontsev, Anvarbek Meirmanov and Ad' elia Sequeira, that integrated also the Organizing Committee. A special acknowledgement is due to Elena Frolova that helped us in compiling the short and necessarily incomplete bio-bibliographical notes below.
This book provides a selection of reports and survey articles on the latest research in the area of single and multivariable operator theory and related fields. The latter include singular integral equations, ordinary and partial differential equations, complex analysis, numerical linear algebra, and real algebraic geometry - all of which were among the topics presented at the 26th International Workshop in Operator Theory and its Applications, held in Tbilisi, Georgia, in the summer of 2015. Moreover, the volume includes three special commemorative articles. One of them is dedicated to the memory of Leiba Rodman, another to Murray Marshall, and a third to Boris Khvedelidze, an outstanding Georgian mathematician and one of the founding fathers of the theory of singular integral equations. The book will be of interest to a broad range of mathematicians, from graduate students to researchers, whose primary interests lie in operator theory, complex analysis and applications, as well as specialists in mathematical physics.
"Concrete Functional Calculus" focuses primarily on differentiability of some nonlinear operators on functions or pairs of functions. This includes composition of two functions, and the product integral, taking a matrix- or operator-valued coefficient function into a solution of a system of linear differential equations with the given coefficients. In this book existence and uniqueness of solutions are proved under suitable assumptions for nonlinear integral equations with respect to possibly discontinuous functions having unbounded variation. Key features and topics: Extensive usage of p-variation of functions, and applications to stochastic processes. This work will serve as a thorough reference on its main topics for researchers and graduate students with a background in real analysis and, for Chapter 12, in probability."
From the author of the highly-acclaimed "A First Course in Real Analysis" comes a volume designed specifically for a short one-semester course in real analysis. Many students of mathematics and the physical and computer sciences need a text that presents the most important material in a brief and elementary fashion. The author meets this need with such elementary topics as the real number system, the theory at the basis of elementary calculus, the topology of metric spaces and infinite series. There are proofs of the basic theorems on limits at a pace that is deliberate and detailed, backed by illustrative examples throughout and no less than 45 figures.
This book is an introduction to convolution operators with
matrix-valued almost periodic or semi-almost periodic symbols.The
basic tools for the treatment of the operators are Wiener-Hopf
factorization and almost periodic factorization. These
factorizations are systematically investigated and explicitly
constructed for interesting concrete classes of matrix functions.
The material covered by the book ranges from classical results
through a first comprehensive presentation of the core of the
theory of almost periodic factorization up to the latest
achievements, such as the construction of factorizations by means
of the Portuguese transformation and the solution of corona
theorems.
The last thirty years were a period of continuous and intense growth in the subject of dynamical systems. New concepts and techniques and at the same time new areas of applications of the theory were found. The 31st session of the Seminaire de Mathematiques Superieures (SMS) held at the Universite de Montreal in July 1992 was on dynamical systems having as its center theme "Bifurcations and periodic orbits of vector fields." This session of the SMS was a NATO Advanced Study Institute (ASI). This ASI had the purpose of acquainting the participants with some of the most recent developments and of stimulating new research around the chosen center theme. These developments include the major tools of the new resummation techniques with applications, in particular to the proof of the non-accumulation of limit-cycles for real-analytic plane vector fields. One of the aims of the ASI was to bring together methods from real and complex dy namical systems. There is a growing awareness that an interplay between real and complex methods is both useful and necessary for the solution of some of the problems. Complex techniques become powerful tools which yield valuable information when applied to the study of the dynamics of real vector fields. The recent developments show that no rigid frontiers between disciplines exist and that interesting new developments occur when ideas and techniques from diverse disciplines are married. One of the aims of the ASI was to show these multiple interactions at work."
This volume consists of eighteen peer-reviewed papers related to lectures on pseudo-differential operators presented at the meeting of the ISAAC Group in Pseudo-Differential Operators (IGPDO) held at Imperial College London on July 13-18, 2009. Featured in this volume are the analysis, applications and computations of pseudo-differential operators in mathematics, physics and signal analysis. This volume is a useful complement to the volumes "Advances in Pseudo-Differential Operators", "Pseudo-Differential Operators and Related Topics", "Modern Trends in Pseudo-Differential Operators", "New Developments in Pseudo-Differential Operators" and "Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations" published in the same series in, respectively, 2004, 2006, 2007, 2009 and 2010.
Self-contained, and collating for the first time material that has until now only been published in journals - often in Russian - this book will be of interest to functional analysts, especially those with interests in topological vector spaces, and to algebraists concerned with category theory. The closed graph theorem is one of the corner stones of functional analysis, both as a tool for applications and as an object for research. However, some of the spaces which arise in applications and for which one wants closed graph theorems are not of the type covered by the classical closed graph theorem of Banach or its immediate extensions. To remedy this, mathematicians such as Schwartz and De Wilde (in the West) and Rajkov (in the East) have introduced new ideas which have allowed them to establish closed graph theorems suitable for some of the desired applications. In this book, Professor Smirnov uses category theory to provide a very general framework, including the situations discussed by De Wilde, Rajkov and others. General properties of the spaces involved are discussed and applications are provided in measure theory, global analysis and differential equations.
One service mathematics has rendered the 'Et moi, ..., si j'avait su comment en revenir, je n'y serais point aIle: ' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ... '; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics ... '. All arguably true. And all statements obtainable this way form part of the raison d'elre of this series."
This volume presents a carefully written introduction to nonlinear waves in the natural sciences and engineering. It contains many classical results as well as more recent results, dealing with topics such as the forced Korteweg--de Vries equation and material relating to X-ray crystallography. The volume contains nine chapters. Chapter 1 concerns asymptotics and nonlinear ordinary differential equations. Conservation laws are discussed in Chapter 2, and Chapter 3 considers water waves. The scattering and inverse scattering method is described in Chapter 4, which also contains a full explanation of using the inverse scattering method for finding 1-, 2- and 3-soliton solutions of the Korteweg--de Vries equation. After dealing with the Burgers equation in Chapter 5, Chapter 6 discusses the forced Korteweg--de Vries equations. Here the emphasis is on steady-state bifurcations and unsteady-state periodic soliton generation. The Sine--Gordon and nonlinear SchrAdinger equations are the subject of Chapter 7. The final two chapters consider wave instability and resonance. Every chapter contains problems and exercises, together with guidance for their solution. The volume concludes with some appendices which describe symbolic derivations of certain results on solitons. Several user-friendly MATHEMATICA packages are included. The prerequisite for using this book is a background knowledge of basic physics, linear algebra and differential equations. For graduates and researchers in mathematics, physics and engineering wishing to have a good introduction to nonlinear wave theory and its applications. This volume is also highly recommended as a course book.
This is the second of three major volumes which present a comprehensive treatment of the theory of the main classes of special functions from the point of view of the theory of group representations. This volume deals with the properties of special functions and orthogonal polynomials (Legendre, Gegenbauer, Jacobi, Laguerre, Bessel and others) which are related to the class 1 representations of various groups. The tree method for the construction of bases for representation spaces is given. Continuous' bases in the spaces of functions on hyperboloids and cones and corresponding Poisson kernels are found. Also considered are the properties of the q-analogs of classical orthogonal polynomials, related to representations of the Chevalley groups and of special functions connected with fields of p-adic numbers. Much of the material included appears in book form for the first time and many of the topics are presented in a novel way. This volume will be of great interest to specialists in group representations, special functions, differential equations with partial derivatives and harmonic anlysis. Subscribers to the complete set of three volumes will be entitled to a discount of 15%.
This book presents two natural generalizations of continuous mappings, namely usco and quasicontinuous mappings. The first class considers set-valued mappings, the second class relaxes the definition of continuity. Both these topological concepts stem naturally from basic mathematical considerations and have numerous applications that are covered in detail.
The notions of positive functions and of reproducing kernel
Hilbert spaces play an important role in various fields of
mathematics, such as stochastic processes, linear systems theory,
operator theory, and the theory of analytic functions. Also they
are relevant for many applications, for example to statistical
learning theory and pattern recognition.
This volume focuses on recent developments in non-linear and hyperbolic equations. It will be a most valuable resource for researchers in applied mathematics, the theory of wavelets, and in mathematical and theoretical physics. Nine up-to-date contributions have been written on invitation by experts in the respective fields. The book is the third volume of the subseries "Advances in Partial Differential Equations."
This monograph presents a concise yet elementary account of exterior differential system theory so that it can be quickly applied to problems. The first part of the monograph, Chapters 1-5, deals with the general theory: the Cartan-Kaehler theorem is proved, the notions of involution and prolongation are carefully laid out, quasi-linear differential systems are examined in detail, and explicit examples of the Spencer cohomology groups and the characteristic variety are given. The second part of the monograph, Chapters 6 and 7, deals with applications to problems in differential geometry: the isometric embedding theorem of Cartan-Janet and its various geometric ramifications are discussed, a proof of the Andreotti-Hill theorem on the O-R embedding problem is given, and embeddings of abstract projective structures are discussed. For researchers and graduate students who would like a good introduction to exterior differential systems. This volume will also be particularly useful to those whose work involves differential geometry and partial differential equations.
The purpose of this book is to provide core material in nonlinear analysis for mathematicians, physicists, engineers, and mathematical biologists. The main goal is to provide a working knowledge of manifolds, dynamical systems, tensors, and differential forms. Some applications to Hamiltonian mechanics, fluid mechanics, electromagnetism, plasma dynamics and control theory are given using both invariant and index notation. The prerequisites required are solid undergraduate courses in linear algebra and advanced calculus.
This book presents a panorama of operator theory. It treats a variety of classes of linear operators which illustrate the richness of the theory, both in its theoretical developments and its applications. For each of the classes various differential and integral operators motivate or illustrate the main results. The topics have been updated and enhanced by new developments, many of which appear here for the first time. Interconnections appear frequently and unexpectedly. This second volume consists of five parts: triangular representations, classes of Toeplitz operators, contractive operators and characteristic operator functions, Banach algebras and algebras of operators, and extension and completion problems. The exposition is self-contained and has been simplified and polished in an effort to make advanced topics accessible to a wide audience of students and researchers in mathematics, science and engineering. Contents: Vol. I - This book presents a panorama of operator theory. It treats a variety of classes of linear operators which illustrate the richness of the theory, both in its theoretical developments and its applications. For each of the classes various differential and integral operators motivate or illustrate the main results. The topics have been updated and enhanced by new developments, many of which appear here for the first time. Interconnections appear frequently and unexpectedly. The present volume consists of four parts: general spectral theory, classes of compact operators, Fredholm and Wiener-Hopf operators, and classes of unbounded operators: The exposition is self-contained and has been simplified and polished in an effort to make advanced topics accessible to a wide audience of students and researchers in mathematics, science and engineering. ..". Used as a graduate textbook, the book allows the instructor several good selections of topics to build a course. ... The authors took great care to polish and simplify the exposition; as a result, the book can serve also as an excellent basis for reading courses or for self-study. ... Besides being a textbook, the book is a valuable reference source for a wide audience of mathematicians, physicists and engineers. The specialists in functional analysis and operator theory will find most of the topics familiar, although the exposition is often novel or non-traditional, making the material more accessible. ..." (Zentralblatt fA1/4r Mathematik) / "This book presents an excellently chosen panorama of operator theory. It shows for several times the fruitful application of complex analysis to problems in operator theory. ... Each part contains interesting exercises and comments on the literature of the topic." (Monatshefte fA1/4r Mathematik) |
You may like...
Extremal Problems in Interpolation…
Sergey Kislyakov, Natan Kruglyak
Hardcover
R2,691
Discovery Miles 26 910
Agent-Based Models and Complexity…
Liliana Perez, Eun-Kyeong Kim, …
Hardcover
R4,011
Discovery Miles 40 110
What's Where in the APPLE - Enhanced…
Bill Martens, Brian Wiser, …
Hardcover
R1,754
Discovery Miles 17 540
Applied Evolutionary Algorithms in Java
Robert Ghanea-Hercock
Hardcover
R2,666
Discovery Miles 26 660
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
(1)
|