![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
Stochastic differential equations (SDEs) are a powerful tool in science, mathematics, economics and finance. This book will help the reader to master the basic theory and learn some applications of SDEs. In particular, the reader will be provided with the backward SDE technique for use in research when considering financial problems in the market, and with the reflecting SDE technique to enable study of optimal stochastic population control problems. These two techniques are powerful and efficient, and can also be applied to research in many other problems in nature, science and elsewhere.
The main focus of this book is on different topics in probability theory, partial differential equations and kinetic theory, presenting some of the latest developments in these fields. It addresses mathematical problems concerning applications in physics, engineering, chemistry and biology that were presented at the Third International Conference on Particle Systems and Partial Differential Equations, held at the University of Minho, Braga, Portugal in December 2014. The purpose of the conference was to bring together prominent researchers working in the fields of particle systems and partial differential equations, providing a venue for them to present their latest findings and discuss their areas of expertise. Further, it was intended to introduce a vast and varied public, including young researchers, to the subject of interacting particle systems, its underlying motivation, and its relation to partial differential equations. This book will appeal to probabilists, analysts and those mathematicians whose work involves topics in mathematical physics, stochastic processes and differential equations in general, as well as those physicists whose work centers on statistical mechanics and kinetic theory.
This book offers a first course in analysis for scientists and engineers. It can be used at the advanced undergraduate level or as part of the curriculum in a graduate program. The book is built around metric spaces. In the first three chapters, the authors lay the foundational material and cover the all-important "four-C's": convergence, completeness, compactness, and continuity. In subsequent chapters, the basic tools of analysis are used to give brief introductions to differential and integral equations, convex analysis, and measure theory. The treatment is modern and aesthetically pleasing. It lays the groundwork for the needs of classical fields as well as the important new fields of optimization and probability theory.
Many physical phenomena are described by nonlinear evolution
equation. Those that are integrable provide various mathematical
methods, presented by experts in this tutorial book, to find
special analytic solutions to both integrable and partially
integrable equations. The direct method to build solutions includes
the analysis of singularities a la Painleve, Lie symmetries leaving
the equation invariant, extension of the Hirota method,
construction of the nonlinear superposition formula. The main
inverse method described here relies on the bi-hamiltonian
structure of integrable equations. The book also presents some
extension to equations with discrete independent and dependent
variables.
This volume consists of papers presented in the special sessions on "Complex and Numerical Analysis," "Value Distribution Theory and Complex Domains," and "Use of Symbolic Computation in Mathematics Education" of the ISAAC'97 Congress held at the University of Delaware, during June 2-7, 1997. The ISAAC Congress coincided with a U.S.-Japan Seminar also held at the University of Delaware. The latter was supported by the National Science Foundation through Grant INT-9603029 and the Japan Society for the Promotion of Science through Grant MTCS-134. It was natural that the participants of both meetings should interact and consequently several persons attending the Congress also presented papers in the Seminar. The success of the ISAAC Congress and the U.S.-Japan Seminar has led to the ISAAC'99 Congress being held in Fukuoka, Japan during August 1999. Many of the same participants will return to this Seminar. Indeed, it appears that the spirit of the U.S.-Japan Seminar will be continued every second year as part of the ISAAC Congresses. We decided to include with the papers presented in the ISAAC Congress and the U.S.-Japan Seminar several very good papers by colleagues from the former Soviet Union. These participants in the ISAAC Congress attended at their own expense.
This book is intended to provide a systematic overview of so-called smart techniques, such as nature-inspired algorithms, machine learning and metaheuristics. Despite their ubiquitous presence and widespread application to different scientific problems, such as searching, optimization and /or classification, a systematic study is missing in the current literature. Here, the editors collected a set of chapters on key topics, paying attention to provide an equal balance of theory and practice, and to outline similarities between the different techniques and applications. All in all, the book provides an unified view on the field on intelligent methods, with their current perspective and future challenges.
The present lecture note is dedicated to the study of the optimality conditions and the duality results for nonlinear vector optimization problems, in ?nite and in?nite dimensions. The problems include are nonlinear vector optimization problems, s- metric dual problems, continuous-time vector optimization problems, relationships between vector optimization and variational inequality problems. Nonlinear vector optimization problems arise in several contexts such as in the building and interpretation of economic models; the study of various technolo- cal processes; the development of optimal choices in ?nance; management science; production processes; transportation problems and statistical decisions, etc. In preparing this lecture note a special effort has been made to obtain a se- contained treatment of the subjects; so we hope that this may be a suitable source for a beginner in this fast growing area of research, a semester graduate course in nonlinear programing, and a good reference book. This book may be useful to theoretical economists, engineers, and applied researchers involved in this area of active research. The lecture note is divided into eight chapters: Chapter 1 brie?y deals with the notion of nonlinear programing problems with basic notations and preliminaries. Chapter 2 deals with various concepts of convex sets, convex functions, invex set, invex functions, quasiinvex functions, pseudoinvex functions, type I and generalized type I functions, V-invex functions, and univex functions.
For the first time in the mathematical literature this
two-volume work introduces a unified and general approach to the
asymptotic analysis of elliptic boundary value problems in
singularly perturbed domains. While the first volume is devoted to
perturbations of the boundary near isolated singular points, this
second volume treats singularities of the boundary in higher
dimensions as well as nonlocal perturbations.
This book uses techniques of Fourier series and functional analysis to deal with certain problems in differential equations. The Fourier series and functional analysis are merely tools; the authors' real interest lies in the differential equations that they study. It has been known since 1967 that a wide variety of sets {ewikt} of complex exponential functions play an important role in the control theory of systems governed by partial differential equations. However, this book is the first serious attempt to gather all of the available theory of these "nonharmonic Fourier series" in one place, combining published results with new results by the authors, to create a unique source of such material for practicing applied mathematicians, engineers and other scientific professionals.
Integral equations have wide applications in various fields, including continuum mechanics, potential theory, geophysics, electricity and magnetism, kinetic theory of gases, hereditary phenomena in physics and biology, renewal theory, quantum mechanics, radiation, optimization, optimal control systems, communication theory, mathematical economics, population genetics, queueing theory, and medicine. Computational Methods for Linear Integral Equations presents basic theoretical material that deals with numerical analysis, convergence, error estimates, and accuracy. The unique computational aspect leads the reader from theoretical and practical problems all the way through to computation with hands-on guidance for input files and the execution of computer programs. Features: * Offers all supporting MathematicaA(R) files related to the book via the Internet at the authors' Web sites: www.math.uno.edu/fac/pkythe.html or www.math.uno.edu/fac/ppuri.html * Contains identification codes for problems, related methods, and computer programs that are cross-referenced throughout the book to make the connections easy to understand * Illustrates a how-to approach to computational work in the development of algorithms, construction of input files, timing, and accuracy analysis * Covers linear integral equations of Fredholm and Volterra types of the first and second kinds as well as associated singular integral equations, integro-differential equations, and eigenvalue problems * Provides clear, step-by-step guidelines for solving difficult and complex computational problems This book is an essential reference and authoritative resource for all professionals, graduate students, and researchers in mathematics, physical sciences, and engineering. Researchers interested in the numerical solution of integral equations will find its practical problem-solving style both accessible and useful for their work.
The international workshop on which this proceedings volume is based on brought together leading researchers in the field of elliptic and parabolic equations. Particular emphasis was put on the interaction between well-established scientists and emerging young mathematicians, as well as on exploring new connections between pure and applied mathematics. The volume contains material derived after the workshop taking up the impetus to continue collaboration and to incorporate additional new results and insights.
This self-contained volume in honor of John J. Benedetto covers a wide range of topics in harmonic analysis and related areas. These include weighted-norm inequalities, frame theory, wavelet theory, time-frequency analysis, and sampling theory. The chapters are clustered by topic to provide authoritative expositions that will be of lasting interest. The original papers collected are written by prominent researchers and professionals in the field. The book pays tribute to John J. Benedetto 's achievements and expresses an appreciation for the mathematical and personal inspiration he has given to so many students, co-authors, and colleagues.
In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated, "Ramanujan's lost notebook." Its discovery has frequently been deemed the mathematical equivalent of finding Beethoven's tenth symphony. This fifth and final installment of the authors' examination of Ramanujan's lost notebook focuses on the mock theta functions first introduced in Ramanujan's famous Last Letter. This volume proves all of the assertions about mock theta functions in the lost notebook and in the Last Letter, particularly the celebrated mock theta conjectures. Other topics feature Ramanujan's many elegant Euler products and the remaining entries on continued fractions not discussed in the preceding volumes. Review from the second volume:"Fans of Ramanujan's mathematics are sure to be delighted by this book. While some of the content is taken directly from published papers, most chapters contain new material and some previously published proofs have been improved. Many entries are just begging for further study and will undoubtedly be inspiring research for decades to come. The next installment in this series is eagerly awaited."- MathSciNet Review from the first volume:"Andrews and Berndt are to be congratulated on the job they are doing. This is the first step...on the way to an understanding of the work of the genius Ramanujan. It should act as an inspiration to future generations of mathematicians to tackle a job that will never be complete."- Gazette of the Australian Mathematical Society
For two-semester courses in Calculus. Calculus for Business, Economics, Life Sciences, and Social Sciences, 14th Edition offers more built-in guidance than any other text in its field - with special emphasis on applications and prerequisite skills - and a host of student-friendly features to help students catch up or learn on their own. The text's emphasis on helping students "get the idea" is enhanced in the new edition by a design refresh and updated data and applications.
This book investigates the mathematical analysis of biological invasions. Unlike purely qualitative treatments of ecology, it draws on mathematical theory and methods, equipping the reader with sharp tools and rigorous methodology. Subjects include invasion dynamics, species interactions, population spread, long-distance dispersal, stochastic effects, risk analysis, and optimal responses to invaders. While based on the theory of dynamical systems, including partial differential equations and integrodifference equations, the book also draws on information theory, machine learning, Monte Carlo methods, optimal control, statistics, and stochastic processes. Applications to real biological invasions are included throughout. Ultimately, the book imparts a powerful principle: that by bringing ecology and mathematics together, researchers can uncover new understanding of, and effective response strategies to, biological invasions. It is suitable for graduate students and established researchers in mathematical ecology.
This textbook presents the physical principles pertinent to the mathematical modeling of soft materials used in engineering practice, including both man-made materials and biological tissues. It is intended for seniors and masters-level graduate students in engineering, physics or applied mathematics. It will also be a valuable resource for researchers working in mechanics, biomechanics and other fields where the mechanical response of soft solids is relevant. "Soft Solids: A Primer to the Theoretical Mechanics of Materials" is divided into two parts. Part I introduces the basic concepts needed to give both Eulerian and Lagrangian descriptions of the mechanical response of soft solids. Part II presents two distinct theories of elasticity and their associated theories of viscoelasticity. Seven boundary-value problems are studied over the course of the book, each pertaining to an experiment used to characterize materials. These problems are discussed at the end of each chapter, giving students the opportunity to apply what they learned in the current chapter and to build upon the material in prior chapters.
Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry, and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang's vast contribution to mathematics, this memorial volume contains articles by prominent mathematicians in a variety of areas of the field, namely Number Theory, Analysis, and Geometry, representing Lang's own breadth of interest and impact. A special introduction by John Tate includes a brief and fascinating account of the Serge Lang's life. This volume's group of 6 editors are also highly prominent mathematicians and were close to Serge Lang, both academically and personally. The volume is suitable to research mathematicians in the areas of Number Theory, Analysis, and Geometry.
The Mathieu series is a functional series introduced by Emile Leonard Mathieu for the purposes of his research on the elasticity of solid bodies. Bounds for this series are needed for solving biharmonic equations in a rectangular domain. In addition to Tomovski and his coauthors, Pogany, Cerone, H. M. Srivastava, J. Choi, etc. are some of the known authors who published results concerning the Mathieu series, its generalizations and their alternating variants. Applications of these results are given in classical, harmonic and numerical analysis, analytical number theory, special functions, mathematical physics, probability, quantum field theory, quantum physics, etc. Integral representations, analytical inequalities, asymptotic expansions and behaviors of some classes of Mathieu series are presented in this book. A systematic study of probability density functions and probability distributions associated with the Mathieu series, its generalizations and Planck's distribution is also presented. The book is addressed at graduate and PhD students and researchers in mathematics and physics who are interested in special functions, inequalities and probability distributions.
The asymptotic theory deals with the problern of determining the behaviour of a function in a neighborhood of its singular point. The function is replaced by another known function ( named the asymptotic function) close (in a sense) to the function under consideration. Many problems of mathematics, physics, and other divisions of natural sci ence bring out the necessity of solving such problems. At the present time asymptotic theory has become an important and independent branch of mathematical analysis. The present consideration is mainly based on the theory of asymp totic spaces. Each asymptotic space is a collection of asymptotics united by an associated real function which determines their growth near the given point and (perhaps) some other analytic properties. The main contents of this book is the asymptotic theory of ordinary linear differential equations with variable coefficients. The equations with power order growth coefficients are considered in detail. As the application of the theory of differential asymptotic fields, we also consider the following asymptotic problems: the behaviour of explicit and implicit functions, improper integrals, integrals dependent on a large parameter, linear differential and difference equations, etc .. The obtained results have an independent meaning. The reader is assumed to be familiar with a comprehensive course of the mathematical analysis studied, for instance at mathematical departments of universities. Further necessary information is given in this book in summarized form with proofs of the main aspects."
Menahem Max Schiffer, a mathematician of many interests, produced a body of work including topics on geometric function theory, Riemann surfaces, and partial differential equations, with a focus on applications and mathematical physics. Perhaps his best known work is that in the calculus of variations, especially extremal problem, s which find application in many scientific areas. This two volume set presents over 50 of the most groundbreaking contributions of this beloved mathematician. All of the reprints of Schiffer s works herein have extensive annotation and invited commentaries, giving new clarity and insight into the impact and legacy of Schiffer's works. A complete bibliography and brief biography make this a rounded and invaluable reference."
For the first time in the mathematical literature this
two-volume work introduces a unified and general approach to the
asymptotic analysis of elliptic boundary value problems in
singularly perturbed domains. This first volume is devoted to
domains whose boundary is smooth in the neighborhood of finitely
many conical points. In particular, the theory encompasses the
important case of domains with small holes. The second volume, on
the other hand, treats perturbations of the boundary in higher
dimensions as well as nonlocal perturbations.
This book is an interdisciplinary introduction to optical collapse of laser beams, which is modelled by singular (blow-up) solutions of the nonlinear Schroedinger equation. With great care and detail, it develops the subject including the mathematical and physical background and the history of the subject. It combines rigorous analysis, asymptotic analysis, informal arguments, numerical simulations, physical modelling, and physical experiments. It repeatedly emphasizes the relations between these approaches, and the intuition behind the results. The Nonlinear Schroedinger Equation will be useful to graduate students and researchers in applied mathematics who are interested in singular solutions of partial differential equations, nonlinear optics and nonlinear waves, and to graduate students and researchers in physics and engineering who are interested in nonlinear optics and Bose-Einstein condensates. It can be used for courses on partial differential equations, nonlinear waves, and nonlinear optics. Gadi Fibich is a Professor of Applied Mathematics at Tel Aviv University. "This book provides a clear presentation of the nonlinear Schrodinger equation and its applications from various perspectives (rigorous analysis, informal analysis, and physics). It will be extremely useful for students and researchers who enter this field." Frank Merle, Universite de Cergy-Pontoise and Institut des Hautes Etudes Scientifiques, France
This book begins with an introductory chapter summarizing the history of fluid mechanics. It then moves on to the essential mathematics and physics needed to understand and work in fluid mechanics. Analytical treatments are based on the Navier-Stokes equations.
During the past decade model predictive control (MPC), also
referred to as receding horizon control or moving horizon control,
has become the preferred control strategy for quite a number of
industrial processes. There have been many significant advances in
this area over the past years, one of the most important ones being
its extension to nonlinear systems. This book gives an up-to-date
assessment of the current state of the art in the new field of
nonlinear model predictive control (NMPC). The main topic areas
that appear to be of central importance for NMPC are covered,
namely receding horizon control theory, modeling for NMPC,
computational aspects of on-line optimization and application
issues. The book consists of selected papers presented at the
International Symposium on Nonlinear Model Predictive Control -
Assessment and Future Directions, which took place from June 3 to
5, 1998, in Ascona, Switzerland.
Mathematical modeling and numerical simulation in fluid mechanics are topics of great importance both in theory and technical applications. The present book attempts to describe the current status in various areas of research. The 10 chapters, mostly survey articles, are written by internationally renowned specialists and offer a range of approaches to and views of the essential questions and problems. In particular, the theories of incompressible and compressible Navier-Stokes equations are considered, as well as stability theory and numerical methods in fluid mechanics. Although the book is primarily written for researchers in the field, it will also serve as a valuable source of information to graduate students. |
![]() ![]() You may like...
Nonlinear Approaches in Engineering…
Liming Dai, Reza N. Jazar
Hardcover
System Dynamics for Mechanical Engineers
Matthew Davies, Tony L. Schmitz
Hardcover
R4,133
Discovery Miles 41 330
Adverse Effects of Engineered…
Bengt Fadeel, Antonio Pietroiusti, …
Hardcover
R3,441
Discovery Miles 34 410
IUTAM Symposium on Recent Developments…
Nguyen Van Dao, E.J. Kreuzer
Hardcover
R4,552
Discovery Miles 45 520
Giant Resonances in Atoms, Molecules…
J.P. Connerade, J.M. Esteva, …
Hardcover
R6,064
Discovery Miles 60 640
Reference for Modern Instrumentation…
R.N. Thurston, Allan D. Pierce
Hardcover
R4,342
Discovery Miles 43 420
|