![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
The book deals with the representation in series form of compact linear operators acting between Banach spaces, and provides an analogue of the classical Hilbert space results of this nature that have their roots in the work of D. Hilbert, F. Riesz and E. Schmidt. The representation involves a recursively obtained sequence of points on the unit sphere of the initial space and a corresponding sequence of positive numbers that correspond to the eigenvectors and eigenvalues of the map in the Hilbert space case. The lack of orthogonality is partially compensated by the systematic use of polar sets. There are applications to the p-Laplacian and similar nonlinear partial differential equations. Preliminary material is presented in the first chapter, the main results being established in Chapter 2. The final chapter is devoted to the problems encountered when trying to represent non-compact maps.
Many developments on the cutting edge of research in operator theory and its applications are reflected in this collection of original and review articles. Particular emphasis lies on highlighting the interplay between operator theory and applications from other areas, such as multi-dimensional systems and function theory of several complex variables, distributed parameter systems and control theory, mathematical physics, wavelets, and numerical analysis.
One service mathematics has rendered the 'Et moi, ..., si j'avait su comment en revenir, je n'y serais point aIle: ' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ... '; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics ... '. All arguably true. And all statements obtainable this way form part of the raison d'elre of this series."
The last thirty years were a period of continuous and intense growth in the subject of dynamical systems. New concepts and techniques and at the same time new areas of applications of the theory were found. The 31st session of the Seminaire de Mathematiques Superieures (SMS) held at the Universite de Montreal in July 1992 was on dynamical systems having as its center theme "Bifurcations and periodic orbits of vector fields." This session of the SMS was a NATO Advanced Study Institute (ASI). This ASI had the purpose of acquainting the participants with some of the most recent developments and of stimulating new research around the chosen center theme. These developments include the major tools of the new resummation techniques with applications, in particular to the proof of the non-accumulation of limit-cycles for real-analytic plane vector fields. One of the aims of the ASI was to bring together methods from real and complex dy namical systems. There is a growing awareness that an interplay between real and complex methods is both useful and necessary for the solution of some of the problems. Complex techniques become powerful tools which yield valuable information when applied to the study of the dynamics of real vector fields. The recent developments show that no rigid frontiers between disciplines exist and that interesting new developments occur when ideas and techniques from diverse disciplines are married. One of the aims of the ASI was to show these multiple interactions at work."
This volume presents a carefully written introduction to nonlinear waves in the natural sciences and engineering. It contains many classical results as well as more recent results, dealing with topics such as the forced Korteweg--de Vries equation and material relating to X-ray crystallography. The volume contains nine chapters. Chapter 1 concerns asymptotics and nonlinear ordinary differential equations. Conservation laws are discussed in Chapter 2, and Chapter 3 considers water waves. The scattering and inverse scattering method is described in Chapter 4, which also contains a full explanation of using the inverse scattering method for finding 1-, 2- and 3-soliton solutions of the Korteweg--de Vries equation. After dealing with the Burgers equation in Chapter 5, Chapter 6 discusses the forced Korteweg--de Vries equations. Here the emphasis is on steady-state bifurcations and unsteady-state periodic soliton generation. The Sine--Gordon and nonlinear SchrAdinger equations are the subject of Chapter 7. The final two chapters consider wave instability and resonance. Every chapter contains problems and exercises, together with guidance for their solution. The volume concludes with some appendices which describe symbolic derivations of certain results on solitons. Several user-friendly MATHEMATICA packages are included. The prerequisite for using this book is a background knowledge of basic physics, linear algebra and differential equations. For graduates and researchers in mathematics, physics and engineering wishing to have a good introduction to nonlinear wave theory and its applications. This volume is also highly recommended as a course book.
the many different applications that this theory provides. We mention that the existing literature on this subject includes the books of J. P. Aubin, J. P. Aubin-A. Cellina, J. P. Aubin-H. Frankowska, C. Castaing-M. Valadier, K. Deimling, M. Kisielewicz and E. Klein-A. Thompson. However, these books either deal with one particular domain of the subject or present primarily the finite dimensional aspects of the theory. In this volume, we have tried very hard to give a much more complete picture of the subject, to include some important new developments that occurred in recent years and a detailed bibliography. Although the presentation of the subject requires some knowledge in various areas of mathematical analysis, we have deliberately made this book more or less self-contained, with the help of an extended appendix in which we have gathered several basic notions and results from topology, measure theory and nonlinear functional analysis. In this volume we present the theory of the subject, while in the second volume we will discuss mainly applications. This volume is divided into eight chapters. The flow of chapters follows more or less the historical development of the subject. We start with the topological theory, followed by the measurability study of multifunctions. Chapter 3 deals with the theory of monotone and accretive operators. The closely related topics of the degree theory and fixed points of multifunctions are presented in Chapters 4 and 5, respectively.
This monograph aims to fill a void by making available a source book which first systematically describes all the available uniqueness and nonuniqueness criteria for ordinary differential equations, and compares and contrasts the merits of these criteria, and second, discusses open problems and offers some directions towards possible solutions.
For more than 250 years partial di?erential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at ?rst and then those originating from - man activity and technological development. Mechanics, physics and their engineering applications were the ?rst to bene't from the impact of partial di?erential equations on modeling and design, but a little less than a century ago the Schr] odinger equation was the key opening the door to the application of partial di?erential equations to quantum chemistry, for small atomic and molecular systems at ?rst, but then for systems of fast growing complexity. The place of partial di?erential equations in mathematics is a very particular one: initially, the partial di?erential equations modeling natural phenomena were derived by combining calculus with physical reasoning in order to - press conservation laws and principles in partial di?erential equation form, leading to the wave equation, the heat equation, the equations of elasticity, the Euler and Navier-Stokes equations for ?uids, the Maxwell equations of electro-magnetics, etc. It is in order to solve 'constructively' the heat equation that Fourier developed the series bearing his name in the early 19th century; Fourier series (and later integrals) have played (and still play) a fundamental roleinbothpureandappliedmathematics, includingmanyareasquiteremote from partial di?erential equations. On the other hand, several areas of mathematics such as di?erential ge- etry have bene?ted from their interactions with partial di?erential equations."
This edited volume offers a state of the art overview of fast and robust solvers for the Helmholtz equation. The book consists of three parts: new developments and analysis in Helmholtz solvers, practical methods and implementations of Helmholtz solvers, and industrial applications. The Helmholtz equation appears in a wide range of science and engineering disciplines in which wave propagation is modeled. Examples are: seismic inversion, ultrasone medical imaging, sonar detection of submarines, waves in harbours and many more. The partial differential equation looks simple but is hard to solve. In order to approximate the solution of the problem numerical methods are needed. First a discretization is done. Various methods can be used: (high order) Finite Difference Method, Finite Element Method, Discontinuous Galerkin Method and Boundary Element Method. The resulting linear system is large, where the size of the problem increases with increasing frequency. Due to higher frequencies the seismic images need to be more detailed and, therefore, lead to numerical problems of a larger scale. To solve these three dimensional problems fast and robust, iterative solvers are required. However for standard iterative methods the number of iterations to solve the system becomes too large. For these reason a number of new methods are developed to overcome this hurdle. The book is meant for researchers both from academia and industry and graduate students. A prerequisite is knowledge on partial differential equations and numerical linear algebra.
Vsevolod Alekseevich Solonnikov is known as one of the outstanding mathema- ciansfromtheSt.PetersburgMathematicalSchool.Hisremarkableresultsonexact estimates of solutions to boundary and initial-boundary value problems for linear elliptic, parabolic, and Stokes systems, his methods and contributions to the - vestigation of free boundary problems, in particular in ?uid mechanics, are well known to specialists all over the world. The International Conference on "Trends in Partial Di?erential Equations of th ' Mathematical Physics" was held on the occasion of his 70 birthday in Obidos (Portugal), from June 7 to 10, 2003. It was an organization of the "Centro de Matem' atica e Aplica, c" oes Fundamentais da Universidade Lisboa", in collaboration with the "Centro de Matem' atica da Universidade de Coimbra", the "Centro de Matem' atica Aplicada do IST/Universidade T' ecnica de Lisboa", the "Centro de Matem' atica da Universidade da Beira Interior",from Portugal,and with the L- oratory of Mathematical Physics of the St.Petersburg Department of the Steklov Institute of Mathematics from Russia. The conference consisted of thirty eight invited and contributed lectures and ' gathered,inthecharminganduniquemedievaltownofObidos,aboutsixtypart- ipants from ?fteen countries, namely USA, Switzerland, Spain, Russia, Portugal, Poland, Lithuania, Korea, Japan, Italy, Germany, France, Canada, Australia and Argentina.Severalcolleaguesgaveusahelpinghandintheorganizationofthec- ference. We are thankful to all of them, and in particular to Stanislav Antontsev, Anvarbek Meirmanov and Ad' elia Sequeira, that integrated also the Organizing Committee. A special acknowledgement is due to Elena Frolova that helped us in compiling the short and necessarily incomplete bio-bibliographical notes below.
"Concrete Functional Calculus" focuses primarily on differentiability of some nonlinear operators on functions or pairs of functions. This includes composition of two functions, and the product integral, taking a matrix- or operator-valued coefficient function into a solution of a system of linear differential equations with the given coefficients. In this book existence and uniqueness of solutions are proved under suitable assumptions for nonlinear integral equations with respect to possibly discontinuous functions having unbounded variation. Key features and topics: Extensive usage of p-variation of functions, and applications to stochastic processes. This work will serve as a thorough reference on its main topics for researchers and graduate students with a background in real analysis and, for Chapter 12, in probability."
This monograph presents an introduction to some geometric and analytic aspects of the maximum principle. In doing so, it analyses with great detail the mathematical tools and geometric foundations needed to develop the various new forms that are presented in the first chapters of the book. In particular, a generalization of the Omori-Yau maximum principle to a wide class of differential operators is given, as well as a corresponding weak maximum principle and its equivalent open form and parabolicity as a special stronger formulation of the latter. In the second part, the attention focuses on a wide range of applications, mainly to geometric problems, but also on some analytic (especially PDEs) questions including: the geometry of submanifolds, hypersurfaces in Riemannian and Lorentzian targets, Ricci solitons, Liouville theorems, uniqueness of solutions of Lichnerowicz-type PDEs and so on. Maximum Principles and Geometric Applications is written in an easy style making it accessible to beginners. The reader is guided with a detailed presentation of some topics of Riemannian geometry that are usually not covered in textbooks. Furthermore, many of the results and even proofs of known results are new and lead to the frontiers of a contemporary and active field of research.
Considering integral transformations of Volterra type, F. Riesz and B. Sz.-Nagy no ticed in 1952 that [49]: "The existence of such a variety of linear transformations, having the same spectrum concentrated at a single point, brings out the difficulties of characterization of linear transformations of general type by means of their spectra." Subsequently, spectral analysis has been developed for different classes of non selfadjoint operators [6,7,14,20,21,36,44,46,54]. It was then realized that this analysis forms a natural basis for the theory of systems interacting with the environment. The success of this theory in the single operator case inspired attempts to create a general theory in the much more complicated case of several commuting operators with finite-dimensional imaginary parts. During the past 10-15 years such a theory has been developed, yielding fruitful connections with algebraic geometry and sys tem theory. Our purpose in this book is to formulate the basic problems appearing in this theory and to present its main results. It is worth noting that, in addition to the joint spectrum, the corresponding algebraic variety and its global topological characteristics play an important role in the classification of commuting operators. For the case of a pair of operators these are: 1. The corresponding algebraic curve, and especially its genus. 2. Certain classes of divisors - or certain line bundles - on this curve.
This book is an introduction to convolution operators with
matrix-valued almost periodic or semi-almost periodic symbols.The
basic tools for the treatment of the operators are Wiener-Hopf
factorization and almost periodic factorization. These
factorizations are systematically investigated and explicitly
constructed for interesting concrete classes of matrix functions.
The material covered by the book ranges from classical results
through a first comprehensive presentation of the core of the
theory of almost periodic factorization up to the latest
achievements, such as the construction of factorizations by means
of the Portuguese transformation and the solution of corona
theorems.
In this book we develop various mathematical models of information dynamics, I -dynamics (including the process of thinking), based on methods of classical and quantum physics. The main aim of our investigations is to describe mathematically the phenomenon of consciousness. We would like to realize a kind of Newton-Descartes program (corrected by the lessons of statistical and quantum mechanics) for information processes. Starting from the ideas of Newton and Descartes, in physics there was developed an adequate description of the dynamics of material systems. We would like to develop an analogous mathematical formalism for information and, in particular, mental processes. At the beginning of the 21st century it is clear that it would be impossible to create a deterministic model for general information processes. A deterministic model has to be completed by a corresponding statistical model of information flows and, in particular, flows of minds. It might be that such an information statistical model should have a quantum-like structure.
For the past 25 years the theory of pseudodifferential operators has played an important role in many exciting and deep investigations into linear PDE. Over the past decade, this tool has also begun to yield interesting results in nonlinear PDE. This book is devoted to a summary and reconsideration of some used of pseudodifferential operator techniques in nonlinear PDE. The book should be of interest to graduate students, instructors, and researchers interested in partial differential equations, nonlinear analysis in classical mathematical physics and differential geometry, and in harmonic analysis.
This book presents two natural generalizations of continuous mappings, namely usco and quasicontinuous mappings. The first class considers set-valued mappings, the second class relaxes the definition of continuity. Both these topological concepts stem naturally from basic mathematical considerations and have numerous applications that are covered in detail.
The problem of spectral asymptotics, in particular the problem of the asymptotic dis tribution of eigenvalues, is one of the central problems in the spectral theory of partial differential operators; moreover, it is very important for the general theory of partial differential operators. I started working in this domain in 1979 after R. Seeley found a remainder estimate of the same order as the then hypothetical second term for the Laplacian in domains with boundary, and M. Shubin and B. M. Levitan suggested that I should try to prove Weyl's conjecture. During the past fifteen years I have not left the topic, although I had such intentions in 1985 when the methods I invented seemed to fai to provide furt her progress and only a couple of not very exciting problems remained to be solved. However, at that time I made the step toward local semiclassical spectral asymptotics and rescaling, and new horizons opened."
The notions of positive functions and of reproducing kernel
Hilbert spaces play an important role in various fields of
mathematics, such as stochastic processes, linear systems theory,
operator theory, and the theory of analytic functions. Also they
are relevant for many applications, for example to statistical
learning theory and pattern recognition.
This volume focuses on recent developments in non-linear and hyperbolic equations. It will be a most valuable resource for researchers in applied mathematics, the theory of wavelets, and in mathematical and theoretical physics. Nine up-to-date contributions have been written on invitation by experts in the respective fields. The book is the third volume of the subseries "Advances in Partial Differential Equations."
The purpose of this book is to provide core material in nonlinear analysis for mathematicians, physicists, engineers, and mathematical biologists. The main goal is to provide a working knowledge of manifolds, dynamical systems, tensors, and differential forms. Some applications to Hamiltonian mechanics, fluid mechanics, electromagnetism, plasma dynamics and control theory are given using both invariant and index notation. The prerequisites required are solid undergraduate courses in linear algebra and advanced calculus.
This book presents a panorama of operator theory. It treats a variety of classes of linear operators which illustrate the richness of the theory, both in its theoretical developments and its applications. For each of the classes various differential and integral operators motivate or illustrate the main results. The topics have been updated and enhanced by new developments, many of which appear here for the first time. Interconnections appear frequently and unexpectedly. This second volume consists of five parts: triangular representations, classes of Toeplitz operators, contractive operators and characteristic operator functions, Banach algebras and algebras of operators, and extension and completion problems. The exposition is self-contained and has been simplified and polished in an effort to make advanced topics accessible to a wide audience of students and researchers in mathematics, science and engineering. Contents: Vol. I - This book presents a panorama of operator theory. It treats a variety of classes of linear operators which illustrate the richness of the theory, both in its theoretical developments and its applications. For each of the classes various differential and integral operators motivate or illustrate the main results. The topics have been updated and enhanced by new developments, many of which appear here for the first time. Interconnections appear frequently and unexpectedly. The present volume consists of four parts: general spectral theory, classes of compact operators, Fredholm and Wiener-Hopf operators, and classes of unbounded operators: The exposition is self-contained and has been simplified and polished in an effort to make advanced topics accessible to a wide audience of students and researchers in mathematics, science and engineering. ..". Used as a graduate textbook, the book allows the instructor several good selections of topics to build a course. ... The authors took great care to polish and simplify the exposition; as a result, the book can serve also as an excellent basis for reading courses or for self-study. ... Besides being a textbook, the book is a valuable reference source for a wide audience of mathematicians, physicists and engineers. The specialists in functional analysis and operator theory will find most of the topics familiar, although the exposition is often novel or non-traditional, making the material more accessible. ..." (Zentralblatt fA1/4r Mathematik) / "This book presents an excellently chosen panorama of operator theory. It shows for several times the fruitful application of complex analysis to problems in operator theory. ... Each part contains interesting exercises and comments on the literature of the topic." (Monatshefte fA1/4r Mathematik)
The first part of this volume gathers the lecture notes of the courses of the "XVII Escuela Hispano-Francesa", held in Gijon, Spain, in June 2016. Each chapter is devoted to an advanced topic and presents state-of-the-art research in a didactic and self-contained way. Young researchers will find a complete guide to beginning advanced work in fields such as High Performance Computing, Numerical Linear Algebra, Optimal Control of Partial Differential Equations and Quantum Mechanics Simulation, while experts in these areas will find a comprehensive reference guide, including some previously unpublished results, and teachers may find these chapters useful as textbooks in graduate courses. The second part features the extended abstracts of selected research work presented by the students during the School. It highlights new results and applications in Computational Algebra, Fluid Mechanics, Chemical Kinetics and Biomedicine, among others, offering interested researchers a convenient reference guide to these latest advances.
First year, undergraduate, mathematics students in Japan have for many years had the opportunity of a unique experience---an introduction, at an elementary level, to some very advanced ideas in mathematics from one of the leading mathematicians of the world. Michio Kuga s lectures on Group Theory and Differential Equations are a realization of two dreams---one to see Galois groups used to attack the problems of differential equations---the other to do so in such a manner as to take students from a very basic level to an understanding of the heart of this fascinating mathematical problem. English reading students now have the opportunity to enjoy this lively presentation, from elementary ideas to cartoons to funny examples, and to follow the mind of an imaginative and creative mathematician into a world of enduring mathematical creations."
Self-contained, and collating for the first time material that has until now only been published in journals - often in Russian - this book will be of interest to functional analysts, especially those with interests in topological vector spaces, and to algebraists concerned with category theory. The closed graph theorem is one of the corner stones of functional analysis, both as a tool for applications and as an object for research. However, some of the spaces which arise in applications and for which one wants closed graph theorems are not of the type covered by the classical closed graph theorem of Banach or its immediate extensions. To remedy this, mathematicians such as Schwartz and De Wilde (in the West) and Rajkov (in the East) have introduced new ideas which have allowed them to establish closed graph theorems suitable for some of the desired applications. In this book, Professor Smirnov uses category theory to provide a very general framework, including the situations discussed by De Wilde, Rajkov and others. General properties of the spaces involved are discussed and applications are provided in measure theory, global analysis and differential equations. |
You may like...
Positive Leadership for Flourishing…
Keith D Walker, Benjamin Kutsyuruba, …
Paperback
R1,735
Discovery Miles 17 350
A Brief Introduction to Topology and…
Antonio Sergio Teixeira Pires
Paperback
R756
Discovery Miles 7 560
Scalable Multi-core Architectures…
Dimitrios Soudris, Axel Jantsch
Hardcover
R2,666
Discovery Miles 26 660
From Building Information Modelling to…
Cecilia Bolognesi, Daniele Villa
Hardcover
R5,833
Discovery Miles 58 330
Brainball - Teaching Inquiry Math as a…
Mickey Kolis, Cassandra Meinholz
Hardcover
R2,008
Discovery Miles 20 080
Handbook of Differential Equations…
Flaviano Battelli, Michal Feckan
Hardcover
R4,096
Discovery Miles 40 960
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
(1)
|