![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
Complex Analysis: Conformal Inequalities and the Bieberbach Conjecture discusses the mathematical analysis created around the Bieberbach conjecture, which is responsible for the development of many beautiful aspects of complex analysis, especially in the geometric-function theory of univalent functions. Assuming basic knowledge of complex analysis and differential equations, the book is suitable for graduate students engaged in analytical research on the topics and researchers working on related areas of complex analysis in one or more complex variables. The author first reviews the theory of analytic functions, univalent functions, and conformal mapping before covering various theorems related to the area principle and discussing Loewner theory. He then presents Schiffer's variation method, the bounds for the fourth and higher-order coefficients, various subclasses of univalent functions, generalized convexity and the class of -convex functions, and numerical estimates of the coefficient problem. The book goes on to summarize orthogonal polynomials, explore the de Branges theorem, and address current and emerging developments since the de Branges theorem.
Separation of Variables for Partial Differential Equations: An Eigenfunction Approach includes many realistic applications beyond the usual model problems. The book concentrates on the method of separation of variables for partial differential equations, which remains an integral part of the training in applied mathematics. Beyond the usual model problems, the presentation includes a number of realistic applications that illustrate the power and usefulness of the ideas behind these techniques. This complete, self-contained book includes numerous exercises and error estimates, as well as a rigorous approximation and computational tool.
Partial differential equations (PDEs) play an important role in the natural sciences and technology, because they describe the way systems (natural and other) behave. The inherent suitability of PDEs to characterizing the nature, motion, and evolution of systems, has led to their wide-ranging use in numerical models that are developed in order to analyze systems that are not otherwise easily studied. Numerical Solutions for Partial Differential Equations contains all the details necessary for the reader to understand the principles and applications of advanced numerical methods for solving PDEs. In addition, it shows how the modern computer system algebra Mathematica (R) can be used for the analytic investigation of such numerical properties as stability, approximation, and dispersion.
CR Manifolds and the Tangential Cauchy Riemann Complex provides an elementary introduction to CR manifolds and the tangential Cauchy-Riemann Complex and presents some of the most important recent developments in the field. The first half of the book covers the basic definitions and background material concerning CR manifolds, CR functions, the tangential Cauchy-Riemann Complex and the Levi form. The second half of the book is devoted to two significant areas of current research. The first area is the holomorphic extension of CR functions. Both the analytic disc approach and the Fourier transform approach to this problem are presented. The second area of research is the integral kernal approach to the solvability of the tangential Cauchy-Riemann Complex. CR Manifolds and the Tangential Cauchy Riemann Complex will interest students and researchers in the field of several complex variable and partial differential equations.
Classroom-tested and lucidly written, Multivariable Calculus gives a thorough and rigoroustreatment of differential and integral calculus of functions of several variables. Designed as ajunior-level textbook for an advanced calculus course, this book covers a variety of notions,including continuity , differentiation, multiple integrals, line and surface integrals, differentialforms, and infinite series. Numerous exercises and examples throughout the book facilitatethe student's understanding of important concepts.The level of rigor in this textbook is high; virtually every result is accompanied by a proof. Toaccommodate teachers' individual needs, the material is organized so that proofs can be deemphasizedor even omitted. Linear algebra for n-dimensional Euclidean space is developedwhen required for the calculus; for example, linear transformations are discussed for the treatmentof derivatives.Featuring a detailed discussion of differential forms and Stokes' theorem, Multivariable Calculusis an excellent textbook for junior-level advanced calculus courses and it is also usefulfor sophomores who have a strong background in single-variable calculus. A two-year calculussequence or a one-year honor calculus course is required for the most successful use of thistextbook. Students will benefit enormously from this book's systematic approach to mathematicalanalysis, which will ultimately prepare them for more advanced topics in the field.
Long employed in electrical engineering, the discrete Fourier transform (DFT) is now applied in a range of fields through the use of digital computers and fast Fourier transform (FFT) algorithms. But to correctly interpret DFT results, it is essential to understand the core and tools of Fourier analysis. Discrete and Continuous Fourier Transforms: Analysis, Applications and Fast Algorithms presents the fundamentals of Fourier analysis and their deployment in signal processing using DFT and FFT algorithms. This accessible, self-contained book provides meaningful interpretations of essential formulas in the context of applications, building a solid foundation for the application of Fourier analysis in the many diverging and continuously evolving areas in digital signal processing enterprises. It comprehensively covers the DFT of windowed sequences, various discrete convolution algorithms and their applications in digital filtering and filters, and many FFT algorithms unified under the frameworks of mixed-radix FFTs and prime factor FFTs. A large number of graphical illustrations and worked examples help explain the concepts and relationships from the very beginning of the text. Requiring no prior knowledge of Fourier analysis or signal processing, this book supplies the basis for using FFT algorithms to compute the DFT in a variety of application areas.
In most physical, chemical, biological and economic phenomena it is quite natural to assume that the system not only depends on the present state but also on past occurrences. These circumstances are mathematically described by partial differential equations with delay. This book presents, in a systematic fashion, how delay equations can be studied in Lp-history spaces. Appendices offering supplementary information and a comprehensive index make this book an ideal introduction and research tool for mathematicians, chemists, biologists and economists.
This text is concerned with the quantitative aspects of the theory
of nonlinear diffusion equations; equations which can be seen as
nonlinear variations of the classical heat equation. They appear as
mathematical models in different branches of Physics, Chemistry,
Biology, and Engineering, and are also relevant in differential
geometry and relativistic physics. Much of the modern theory of
such equations is based on estimates and functional analysis.
As a relatively new area in mathematics, stochastic partial differential equations (PDEs) are still at a tender age and have not yet received much attention in the mathematical community. Filling the void of an introductory text in the field, Stochastic Partial Differential Equations introduces PDEs to students familiar with basic probability theory and Ito's equations, highlighting several computational and analytical techniques. Without assuming specific knowledge of PDEs, the text includes many challenging problems in stochastic analysis and treats stochastic PDEs in a practical way. The author first brings the subject back to its root in classical concrete problems. He then discusses a unified theory of stochastic evolution equations and describes a few applied problems, including the random vibration of a nonlinear elastic beam and invariant measures for stochastic Navier-Stokes equations. The book concludes by pointing out the connection of stochastic PDEs to infinite-dimensional stochastic analysis. By thoroughly covering the concepts and applications of stochastic PDEs at an introductory level, this text provides a guide to current research topics and lays the groundwork for further study.
The literature on the spectral analysis of second order elliptic differential operators contains a great deal of information on the spectral functions for explicitly known spectra. The same is not true, however, for situations where the spectra are not explicitly known. Over the last several years, the author and his colleagues have developed new, innovative methods for the exact analysis of a variety of spectral functions occurring in spectral geometry and under external conditions in statistical mechanics and quantum field theory. Spectral Functions in Mathematics and Physics presents a detailed overview of these advances. The author develops and applies methods for analyzing determinants arising when the external conditions originate from the Casimir effect, dielectric media, scalar backgrounds, and magnetic backgrounds. The zeta function underlies all of these techniques, and the book begins by deriving its basic properties and relations to the spectral functions. The author then uses those relations to develop and apply methods for calculating heat kernel coefficients, functional determinants, and Casimir energies. He also explores applications in the non-relativistic context, in particular applying the techniques to the Bose-Einstein condensation of an ideal Bose gas. Self-contained and clearly written, Spectral Functions in Mathematics and Physics offers a unique opportunity to acquire valuable new techniques, use them in a variety of applications, and be inspired to make further advances.
Building on the author's previous book in the series, Complex Analysis with Applications to Flows and Fields (CRC Press, 2010), Transcendental Representations with Applications to Solids and Fluids focuses on four infinite representations: series expansions, series of fractions for meromorphic functions, infinite products for functions with infinitely many zeros, and continued fractions as alternative representations. This book also continues the application of complex functions to more classes of fields, including incompressible rotational flows, compressible irrotational flows, unsteady flows, rotating flows, surface tension and capillarity, deflection of membranes under load, torsion of rods by torques, plane elasticity, and plane viscous flows. The two books together offer a complete treatment of complex analysis, showing how the elementary transcendental functions and other complex functions are applied to fluid and solid media and force fields mainly in two dimensions. The mathematical developments appear in odd-numbered chapters while the physical and engineering applications can be found in even-numbered chapters. The last chapter presents a set of detailed examples. Each chapter begins with an introduction and concludes with related topics. Written by one of the foremost authorities in aeronautical/aerospace engineering, this self-contained book gives the necessary mathematical background and physical principles to build models for technological and scientific purposes. It shows how to formulate problems, justify the solutions, and interpret the results.
This proceedings is a collection of articles by front-line researchers in Mathematical Analysis, giving the reader a wide perspective of the current research in several areas like Functional Analysis, Complex Analysis and Measure Theory. The works are a fundamental source for current and future developments in these research fields. The articles and surveys have been collected as well as reference results scattered in the corresponding literature and thus, are highly useful to researchers.
The book provides a comprehensive overview on the theory on analysis of singularities for partial differential equations (PDEs). It contains a summarization of the formation, development and main results on this topic. Some of the author's discoveries and original contributions are also included, such as the propagation of singularities of solutions to nonlinear equations, singularity index and formation of shocks.
The analysis and topology of elliptic operators on manifolds with singularities are much more complicated than in the smooth case and require completely new mathematical notions and theories. While there has recently been much progress in the field, many of these results have remained scattered in journals and preprints. Starting from an elementary level and finishing with the most recent results, this book gives a systematic exposition of both analytical and topological aspects of elliptic theory on manifolds with singularities. The presentation includes a review of the main techniques of the theory of elliptic equations, offers a comparative analysis of various approaches to differential equations on manifolds with singularities, and devotes considerable attention to applications of the theory. These include Sobolev problems, theorems of Atiyah-Bott-Lefschetz type, and proofs of index formulas for elliptic operators and problems on manifolds with singularities, including the authors' new solution to the index problem for manifolds with nonisolated singularities. A glossary, numerous illustrations, and many examples help readers master the subject. Clear exposition, up-to-date coverage, and accessibility-even at the advanced undergraduate level-lay the groundwork for continuing studies and further advances in the field.
This is the second of three volumes that form the Encyclopedia of Special Functions, an extensive update of the Bateman Manuscript Project. Volume 2 covers multivariable special functions. When the Bateman project appeared, study of these was in an early stage, but revolutionary developments began to be made in the 1980s and have continued ever since. World-renowned experts survey these over the course of 12 chapters, each containing an extensive bibliography. The reader encounters different perspectives on a wide range of topics, from Dunkl theory, to Macdonald theory, to the various deep generalizations of classical hypergeometric functions to the several variables case, including the elliptic level. Particular attention is paid to the close relation of the subject with Lie theory, geometry, mathematical physics and combinatorics.
This book contains the written versions of lectures delivered since
1997 in the well-known weekly seminar on Applied Mathematics at the
College de France in Paris, directed by Jacques-Louis Lions. It is
the 14th and last of the series, due to the recent and untimely
death of Professor Lions. "18.07"
In the last forty years, nonlinear analysis has been broadly and rapidly developed. Lectures presented in the International Conference on Variational Methods at the Chern Institute of Mathematics in Tianjin of May 2009 reflect this development from different angles. This volume contains articles based on lectures in the following areas of nonlinear analysis: critical point theory, Hamiltonian dynamics, partial differential equations and systems, KAM theory, bifurcation theory, symplectic geometry, geometrical analysis, and celestial mechanics. Combinations of topological, analytical (especially variational), geometrical, and algebraic methods in these researches play important roles. In this proceedings, introductory materials on new theories and surveys on traditional topics are also given. Further perspectives and open problems on hopeful research topics in related areas are described and proposed. Researchers, graduate and postgraduate students from a wide range of areas in mathematics and physics will find contents in this proceedings are helpful.
Line Integral Methods for Conservative Problems explains the numerical solution of differential equations within the framework of geometric integration, a branch of numerical analysis that devises numerical methods able to reproduce (in the discrete solution) relevant geometric properties of the continuous vector field. The book focuses on a large set of differential systems named conservative problems, particularly Hamiltonian systems. Assuming only basic knowledge of numerical quadrature and Runge-Kutta methods, this self-contained book begins with an introduction to the line integral methods. It describes numerous Hamiltonian problems encountered in a variety of applications and presents theoretical results concerning the main instance of line integral methods: the energy-conserving Runge-Kutta methods, also known as Hamiltonian boundary value methods (HBVMs). The authors go on to address the implementation of HBVMs in order to recover in the numerical solution what was expected from the theory. The book also covers the application of HBVMs to handle the numerical solution of Hamiltonian partial differential equations (PDEs) and explores extensions of the energy-conserving methods. With many examples of applications, this book provides an accessible guide to the subject yet gives you enough details to allow concrete use of the methods. MATLAB codes for implementing the methods are available online.
Complex Dynamics: Families and Friends features contributions by many of the leading mathematicians in the field, such as Mikhail Lyubich, John Milnor, Mitsuhiro Shishikura, and William Thurston. Some of the chapters, including an introduction by Thurston to the general subject of complex dynamics, are classic manuscripts that were never published before but have influenced the field for more than two decades. Other chapters contain fresh, original work and bring readers to the current frontier of research. The title reflects the fruitful interplay between diverse mathematical fields bound together by the common theme of complex dynamics, including hyperbolic geometry, number theory, group theory, combinatorics, general dynamics, and many more. At the same time, the title alludes to the spirit of mathematical friendship among the researchers in this area. This book is a tribute to John Hubbard, one of the most inspiring pioneers in the field of complex dynamics.
Extremality results proved in this Monograph for an abstract operator equation provide the theoretical framework for developing new methods that allow the treatment of a variety of discontinuous initial and boundary value problems for both ordinary and partial differential equations, in explicit and implicit forms. By means of these extremality results, the authors prove the existence of extremal solutions between appropriate upper and lower solutions of first and second order discontinuous implicit and explicit ordinary and functional differential equations. They then study the dependence of these extremal solutions on the data. The authors begin by developing an existence theory for an abstract operator equation in ordered spaces and offer new tools for dealing with different kinds of discontinuous implicit and explicit differential equation problems. They present a unified approach to the existence of extremal solutions of quasilinear elliptic and parabolic problems and extend the upper and lower solution method to elliptic and parabolic inclusion of hemivariation type using variational and nonvariational methods. Nonlinear Differential Equations in Ordered Spaces includes research that appears for the first time in book form and is designed as a source book for pure and applied mathematicians. Its self-contained presentation along with numerous worked examples and complete, detailed proofs also make it accessible to researchers in engineering as well as advanced students in these fields.
"Provides a thorough introduction to the algebraic theory of systems of differential equations, as developed by the Japanese school of M. Sato and his colleagues. Features a complete review of hyperfunction-microfunction theory and the theory of D-modules. Strikes the perfect balance between analytic and algebraic aspects."
The current book makes several useful topics from the theory of special functions, in particular the theory of spherical harmonics and Legendre polynomials in arbitrary dimensions, available to undergraduates studying physics or mathematics. With this audience in mind, nearly all details of the calculations and proofs are written out, and extensive background material is covered before exploring the main subject matter.
Fuzzy differential functions are applicable to real-world problems in engineering, computer science, and social science. That relevance makes for rapid development of new ideas and theories. This volume is a timely introduction to the subject that describes the current state of the theory of fuzzy differential equations and inclusions and provides a systematic account of recent developments. The chapters are presented in a clear and logical way and include the preliminary material for fuzzy set theory; a description of calculus for fuzzy functions, an investigation of the basic theory of fuzzy differential equations, and an introduction to fuzzy differential inclusions.
A monotone iterative technique is used to obtain monotone approximate solutions that converge to the solution of nonlinear problems of partial differential equations of elliptic, parabolic and hyperbolic type. This volume describes that technique, which has played a valuable role in unifying a variety of nonlinear problems, particularly when combined with the quasilinearization method. The first part of this monograph describes the general methodology using the classic approach, while the second part develops the same basic ideas via the variational technique. The text provides a useful and timely reference for applied scientists, engineers and numerical analysts.
A rather pretty little book, written in the form of a text but more likely to be read simply for pleasure, in which the author (Professor Emeritus of Mathematics at the U. of Kansas) explores the analog of the theory of functions of a complex variable which comes into being when the complexes are re |
![]() ![]() You may like...
Regime Resilience In Malaysia And…
Greg Lopez, Bridget Welsh
Hardcover
R2,904
Discovery Miles 29 040
Civil Disobedience from Nepal to Norway…
Tapio Nykanen, Tiina Seppala, …
Paperback
R1,280
Discovery Miles 12 800
|