![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
Variational and boundary integral equation techniques are two of the most useful methods for solving time-dependent problems described by systems of equations of the form 2 ? u = Au, 2 't 2 where u = u(x, t) is a vector-valued function, x is a point in a domain inR or 3 R, and A is a linear elliptic di?erential operator. To facilitate a better und- standing of these two types of methods, below we propose to illustrate their mechanisms in action on a speci?c mathematical model rather than in a more impersonal abstract setting. For this purpose, we have chosen the hyperbolic system of partial di?erential equations governing the nonstationary bending of elastic plates with transverse shear deformation. The reason for our choice is twofold. On the one hand, in a certain sense this is a hybrid system, c- sistingofthreeequationsforthreeunknownfunctionsinonlytwoindependent variables, which makes it more unusual and thereby more interesting to the analyst than other systems arising in solid mechanics. On the other hand, this particular plate model has received very little attention compared to the so-called classical one, based on Kirchho? s simplifying hypotheses, although, as acknowledged by practitioners, it represents a substantial re?nement of the latter and therefore needs a rigorous discussion of the existence, uniqueness, and continuous dependence of its solution on the data before any construction of numerical approximation algorithms can be contemplated."
From its origins in the minimization of integral functionals, the notion of 'variations' has evolved greatly in connection with applications in optimization, equilibrium, and control. It refers not only to constrained movement away from a point, but also to modes of perturbation and approximation that are best describable by 'set convergence', variational convergence of functions' and the like. This book develops a unified framework and, in finite dimensions, provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, maximal monotone mappings, second-order subderivatives, measurable selections and normal integrands.
Many phenomena of interest for applications are represented by differential equations which are defined in a domain whose boundary is a priori unknown, and is accordingly named a "free boundary." A further quantitative condition is then provided in order to exclude indeterminacy. Free boundary problems thus encompass a broad spectrum which is represented in this state-of-the-art volume by a variety of contributions of researchers in mathematics and applied fields like physics, biology and material sciences. Special emphasis has been reserved for mathematical modelling and for the formulation of new problems.
The Abel Symposium 2008 focused on the modern theory of differential equations and their applications in geometry, mechanics, and mathematical physics. Following the tradition of Monge, Abel and Lie, the scientific program emphasized the role of algebro-geometric methods, which nowadays permeate all mathematical models in natural and engineering sciences. The ideas of invariance and symmetry are of fundamental importance in the geometric approach to differential equations, with a serious impact coming from the area of integrable systems and field theories. This volume consists of original contributions and broad overview lectures of the participants of the Symposium. The papers in this volume present the modern approach to this classical subject.
Sobolev Spaces presents an introduction to the theory of Sobolev
Spaces and other related spaces of function, also to the imbedding
characteristics of these spaces. This theory is widely used in pure
and Applied Mathematics and in the Physical Sciences.
Applied Mathematics: Body & Soul is a mathematics education reform project developed at Chalmers University of Technology and includes a series of volumes and software. The program is motivated by the computer revolution opening new possibilitites of computational mathematical modeling in mathematics, science and engineering. It consists of a synthesis of Mathematical Analysis (Soul), Numerical Computation (Body) and Application. Volumes I-III present a modern version of Calculus and Linear Algebra, including constructive/numerical techniques and applications intended for undergraduate programs in engineering and science. Further volumes present topics such as Dynamical Systems, Fluid Dynamics, Solid Mechanics and Electro-Magnetics on an advanced undergraduate/graduate level. Volume I (Derivatives and Geometry in R3) presents basics of Calculus starting with the construction of the natural, rational, real and complex numbers, and proceeding to analytic geometry in two and three space dimensions, Lipschitz continuous functions and derivatives, together with a variety of applications. Volume II (Integrals and Geomtery in Rn) develops the Riemann integral as the solution to the problem of determining a function given its derivative, and proceeds to generalizations in the form of initial value problems for general systems of ordinary differential equations, including a variety of applications. Linear algebra including numerics is also presented. Volume III (Calculus in Several Dimensions) presents Calculus in several variables including partial derivatives, multi-dimensional integrals, partial differential equations and finite element methods, together with a variety of applications modeled as systems of partial differential equations. The authors are leading researchers in Computational Mathematics who have written various successful books. Further information on Applied Mathematics: Body and Soul can be found at http://www.phi.chalmers.se/bodysoul/.
Solving efficiently the wave equations involved in modeling acoustic, elastic or electromagnetic wave propagation remains a challenge both for research and industry. To attack the problems coming from the propagative character of the solution, the author constructs higher-order numerical methods to reduce the size of the meshes, and consequently the time and space stepping, dramatically improving storage and computing times. This book surveys higher-order finite difference methods and develops various mass-lumped finite (also called spectral) element methods for the transient wave equations, and presents the most efficient methods, respecting both accuracy and stability for each sort of problem. A central role is played by the notion of the dispersion relation for analyzing the methods. The last chapter is devoted to unbounded domains which are modeled using perfectly matched layer (PML) techniques. Numerical examples are given.
This monograph explores the early development of the calculus of variations in continental Europe during the Eighteenth Century by illustrating the mathematics of its founders. Closely following the original papers and correspondences of Euler, Lagrange, the Bernoullis, and others, the reader is immersed in the challenge of theory building. We see what the founders were doing, the difficulties they faced, the mistakes they made, and their triumphs. The authors guide the reader through these works with instructive commentaries and complements to the original proofs, as well as offering a modern perspective where useful. The authors begin in 1697 with Johann Bernoulli's work on the brachystochrone problem and the events leading up to it, marking the dawn of the calculus of variations. From there, they cover key advances in the theory up to the development of Lagrange's -calculus, including: * The isoperimetrical problems * Shortest lines and geodesics * Euler's Methodus Inveniendi and the two Additamenta Finally, the authors give the readers a sense of how vast the calculus of variations has become in centuries hence, providing some idea of what lies outside the scope of the book as well as the current state of affairs in the field. This book will be of interest to anyone studying the calculus of variations who wants a deeper intuition for the techniques and ideas that are used, as well as historians of science and mathematics interested in the development and evolution of modern calculus and analysis.
This book presents a rational scheme of analysis for the periodic and quasi-periodic solution of a broad class of problems within technical and celestial mechanics. It develops steps for the determination of sufficiently general averaged equations of motion, which have a clear physical interpretation and are valid for a broad class of weak-interaction problems in mechanics. The criteria of stability regarding stationary solutions of these equations are derived explicitly and correspond to the extremum of a special "potential" function. Much consideration is given to applications in vibrational technology, electrical engineering and quantum mechanics, and a number of results are presented that are immediately useful in engineering practice. The book is intended for mechanical engineers, physicists, as well as applied mathematicians specializing in the field of ordinary differential equations.
The present monograph is the successor of Direct methods in the calculus of variations which was published in the Applied Mathematical Sciences series and is currently out of print. Although the core and the structure of the present book is similar to the old one, it is much more than a revised version. Fifteen years have passed since the publication of the Direct methods in the calculus of variations book and since the subject is a very active one, almost half of the book presently consists of new material. The perspective has also slightly changed, which is reflected in the change of the title. Indeed a new subject, quasiconvex analysis has now been developed. The present monograph, which is essentially a reference book on the subject of quasiconvex analysis, can be used, as was the earlier book for an advanced course on the calculus of variations.
The revised and enlarged third edition of this successful book presents a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied and updated applications. In an effort to make the book more useful for a diverse readership, updated modern examples of applications are chosen from areas of fluid dynamics, gas dynamics, plasma physics, nonlinear dynamics, quantum mechanics, nonlinear optics, acoustics, and wave propagation. "Nonlinear Partial Differential Equations for Scientists and Engineers, Third Edition, "improves onanalready highlycomplete and accessible resource for graduate students and professionals in mathematics, physics, science, and engineering. It may be used to great effect as a course textbook, research reference, or self-study guide."
Nonlinear Optimization is an intriguing area of study where mathematical theory, algorithms and applications converge to calculate the optimal values of continuous functions. Within this subject, Global Optimization aims at finding global optima for difficult problems in which many local optima might exist. This book provides a compelling introduction to global and non-linear optimization providing interdisciplinary readers with a strong background to continue their studies into these and other related fields. The book offers insight in relevant concepts such as "region of attraction" and "Branch-and-Bound" by elaborating small numerical examples and exercises for the reader to follow.
This is a collection of contributed papers which focus on recent results in areas of differential equations, function spaces, operator theory and interpolation theory. In particular, it covers current work on measures of non-compactness and real interpolation, sharp Hardy-Littlewood-Sobolev inequalites, the HELP inequality, error estimates and spectral theory of elliptic operators, pseudo differential operators with discontinuous symbols, variable exponent spaces and entropy numbers. These papers contribute to areas of analysis which have been and continue to be heavily influenced by the leading British analysts David Edmunds and Des Evans. This book marks their respective 80th and 70th birthdays.
This book provides a comprehensive and timely report in the area of non-additive measures and integrals. It is based on a panel session on fuzzy measures, fuzzy integrals and aggregation operators held during the 9th International Conference on Modeling Decisions for Artificial Intelligence (MDAI 2012) in Girona, Spain, November 21-23, 2012. The book complements the MDAI 2012 proceedings book, published in Lecture Notes in Computer Science (LNCS) in 2012. The individual chapters, written by key researchers in the field, cover fundamental concepts and important definitions (e.g. the Sugeno integral, definition of entropy for non-additive measures) as well some important applications (e.g. to economics and game theory) of non-additive measures and integrals. The book addresses students, researchers and practitioners working at the forefront of their field.
This book is comprehensive in its classical mathematical physics presentation, providing the reader with detailed instructions for obtaining Green's functions from scratch. Green's functions is an instrument easily accessible to practitioners who are engaged in design and exploitation of machines and structures in modern engineering practice. To date, there are no books available on the market that are devoted to the Green's function formalism for equations covered in this volume. The reader, with an undergraduate background in applied mathematics, can become an active user of the Green's function approach. For the first time, Green's functions are discussed for a specific class of problems dealing with potential fields induced in thin-wall structures and therefore, the reader will have first-hand access to a novel issue. This Work is accessible to researchers in applied mathematics, mechanics, and relevant disciplines such as engineering, as well as to upper level undergraduates and graduate students.
This book is an introduction to the theory of complex manifolds. The authors¿ intent is to familiarize the reader with the most important branches and methods in complex analysis of several variables and to do this as simply as possible. Therefore, the abstract concepts involving sheaves, coherence, and higher-dimensional cohomology have been completely avoided. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional cocycles are used. Nevertheless, deep results can be proved. The book can be used as a first introduction to several complex variables as well as a reference for the expert.
This volume provides a broad and uniform introduction of PDE-constrained optimization as well as to document a number of interesting and challenging applications. Many science and engineering applications necessitate the solution of optimization problems constrained by physical laws that are described by systems of partial differential equations (PDEs) . As a result, PDE-constrained optimization problems arise in a variety of disciplines including geophysics, earth and climate science, material science, chemical and mechanical engineering, medical imaging and physics. This volume is divided into two parts. The first part provides a comprehensive treatment of PDE-constrained optimization including discussions of problems constrained by PDEs with uncertain inputs and problems constrained by variational inequalities. Special emphasis is placed on algorithm development and numerical computation. In addition, a comprehensive treatment of inverse problems arising in the oil and gas industry is provided. The second part of this volume focuses on the application of PDE-constrained optimization, including problems in optimal control, optimal design, and inverse problems, among other topics.
This book focuses on the recent development of fractional differential equations, integro-differential equations, and inclusions and inequalities involving the Hadamard derivative and integral. Through a comprehensive study based in part on their recent research, the authors address the issues related to initial and boundary value problems involving Hadamard type differential equations and inclusions as well as their functional counterparts. The book covers fundamental concepts of multivalued analysis and introduces a new class of mixed initial value problems involving the Hadamard derivative and Riemann-Liouville fractional integrals. In later chapters, the authors discuss nonlinear Langevin equations as well as coupled systems of Langevin equations with fractional integral conditions. Focused and thorough, this book is a useful resource for readers and researchers interested in the area of fractional calculus.
This important book provides a concise exposition of the basic ideas of the theory of distribution and Fourier transforms and its application to partial differential equations. The author clearly presents the ideas, precise statements of theorems, and explanations of ideas behind the proofs. Methods in which techniques are used in applications are illustrated, and many problems are included. The book also introduces several significant recent topics, including pseudodifferential operators, wave front sets, wavelets, and quasicrystals. Background mathematical prerequisites have been kept to a minimum, with only a knowledge of multidimensional calculus and basic complex variables needed to fully understand the concepts in the book.A Guide to Distribution Theory and Fourier Transforms can serve as a textbook for parts of a course on Applied Analysis or Methods of Mathematical Physics, and in fact it is used that way at Cornell.
This volume presents the recent theory of function spaces, paying special attention to some recent developments related to neighboring areas such as numerics, signal processing, and fractal analysis. Local building blocks, in particular (non-smooth) atoms, quarks, wavelet bases and wavelet frames are considered in detail and applied to diverse problems, including a local smoothness theory, spaces on Lipschitz domains, and fractal analysis.
The book collects the most relevant results from the INdAM Workshop "Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics" held in Rome, September 14-18, 2015. The contributions discuss recent major advances in the study of nonlinear hyperbolic systems, addressing general theoretical issues such as symmetrizability, singularities, low regularity or dispersive perturbations. It also investigates several physical phenomena where such systems are relevant, such as nonlinear optics, shock theory (stability, relaxation) and fluid mechanics (boundary layers, water waves, Euler equations, geophysical flows, etc.). It is a valuable resource for researchers in these fields.
Presenting an overview of most aspects of modern Banach space theory and its applications, this handbook offers up-to-date surveys by a range of expert authors. The surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory and partial differential equations. It begins with a chapter on basic concepts in Banach space theory, which contains all the background needed for reading any other chapter. Each of the 21 articles after his is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods and open problems in its specific direction. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. The handbook should be useful to researchers in Banach theory, as well as graduate students and mathematicians who want to get an idea of the various developments in Banach space theory.
During its 2004 meeting in Warsaw the General Assembly of the International Union of Theoretical and Applied Mechanics (IUTAM) decided to support a proposal of the Georgian National Committee to hold in Tbilisi (Georgia), on April 23-27, 2007, the IUTAM Symposium on the Relation of Shell, Plate, Beam, and 3D Models, dedicated to the Centenary of Ilia Vekua. The sci- ti?c organization was entrusted to an international committee consisting of Philipppe G. Ciarlet (Hong Kong), the late Anatoly Gerasimovich Gorshkov (Russia),JornHansen(Canada),GeorgeV.Jaiani(Georgia,Chairman),Re- hold Kienzler (Germany), Herbert A. Mang (Austria), Paolo Podio-Guidugli (Italy), and Gangan Prathap (India). The main topics to be included in the scienti?c programme were c- sen to be: hierarchical, re?ned mathematical and technical models of shells, plates, and beams; relation of 2D and 1D models to 3D linear, non-linear and physical models; junction problems. The main aim of the symposium was to thoroughly discuss the relations of shell, plate, and beam models to the 3D physicalmodels.Inparticular,peculiaritiesofcuspedshells,plates,andbeams were to be emphasized and special attention paid to junction, multibody and ? uid-elastic shell (plate, beam) interaction problems, and their applications. The expected contributions of the invited participants were anticipated to be theoretical, practical, and numerical in character.
This text gives a rigorous treatment of the foundations of calculus. In contrast to more traditional approaches, infinite sequences and series are placed at the forefront. The approach taken has not only the merit of simplicity, but students are well placed to understand and appreciate more sophisticated concepts in advanced mathematics. The authors mitigate potential difficulties in mastering the material by motivating definitions, results and proofs. Simple examples are provided to illustrate new material and exercises are included at the end of most sections. Noteworthy topics include: an extensive discussion of convergence tests for infinite series, Wallis's formula and Stirling's formula, proofs of the irrationality of and e and a treatment of Newton's method as a special instance of finding fixed points of iterated functions. |
You may like...
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
Calculus - A Complete Course
Robert Adams, Christopher Essex
Hardcover
R2,018
Discovery Miles 20 180
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
(1)
Calculus, Metric Edition
James Stewart, Saleem Watson, …
Hardcover
|