![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
This unique text is an introduction to harmonic analysis on the simplest symmetric spaces, namely Euclidean space, the sphere, and the Poincare upper half plane. This book is intended for beginning graduate students in mathematics or researchers in physics or engineering. Written with an informal style, the book places an emphasis on motivation, concrete examples, history, and, above all, applications in mathematics, statistics, physics, and engineering. Many corrections and updates have been incorporated in this new edition. Updates include discussions of P. Sarnak and others' work on quantum chaos, the work of T. Sunada, Marie-France Vigneras, Carolyn Gordon, and others on Mark Kac's question "Can you hear the shape of a drum?," A. Lubotzky, R. Phillips and P. Sarnak's examples of Ramanujan graphs, and, finally, the author's comparisons of continuous theory with the finite analogues. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, Poisson's summation formula and applications in crystallography and number theory, applications of spherical harmonic analysis to the hydrogen atom, the Radon transform, non-Euclidean geometry on the Poincare upper half plane H or unit disc and applications to microwave engineering, fundamental domains in H for discrete groups, tessellations of H from such discrete group actions, automorphic forms, and the Selberg trace formula and its applications in spectral theory as well as number theory."
The evolution of the state of many systems modeled by linear partial di?erential equations (PDEs) or linear delay di?erential equations can be described by ope- torsemigroups.Thestate ofsucha systemis anelementin anin?nite-dimensional normed space, whence the name "in?nite-dimensional linear system". The study of operator semigroups is a mature area of functional analysis, which is still very active. The study of observation and control operators for such semigroups is relatively more recent. These operators are needed to model the - teraction of a system with the surrounding world via outputs or inputs. The main topicsofinterestaboutobservationandcontroloperatorsareadmissibility,obse- ability, controllability, stabilizability and detectability. Observation and control operators are an essential ingredient of well-posed linear systems (or more gen- ally system nodes). In this book we deal only with admissibility, observability and controllability. We deal only with operator semigroups acting on Hilbert spaces. This book is meant to be an elementary introduction into the topics m- tioned above. By "elementary" we mean that we assume no prior knowledge of ?nite-dimensional control theory, and no prior knowledge of operator semigroups or of unbounded operators. We introduce everything needed from these areas. We do assume that the reader has a basic understanding of bounded operators on Hilbert spaces, di?erential equations, Fourier and Laplace transforms, dist- butions and Sobolev spaces on n-dimensional domains. Much of the background needed in these areas is summarized in the appendices, often with proofs.
This book begins with the fundamentals of the generalized inverses, then moves to more advanced topics. It presents a theoretical study of the generalization of Cramer's rule, determinant representations of the generalized inverses, reverse order law of the generalized inverses of a matrix product, structures of the generalized inverses of structured matrices, parallel computation of the generalized inverses, perturbation analysis of the generalized inverses, an algorithmic study of the computational methods for the full-rank factorization of a generalized inverse, generalized singular value decomposition, imbedding method, finite method, generalized inverses of polynomial matrices, and generalized inverses of linear operators. This book is intended for researchers, postdocs, and graduate students in the area of the generalized inverses with an undergraduate-level understanding of linear algebra.
This book presents a consistent development of the Kohn-Nirenberg type global quantization theory in the setting of graded nilpotent Lie groups in terms of their representations. It contains a detailed exposition of related background topics on homogeneous Lie groups, nilpotent Lie groups, and the analysis of Rockland operators on graded Lie groups together with their associated Sobolev spaces. For the specific example of the Heisenberg group the theory is illustrated in detail. In addition, the book features a brief account of the corresponding quantization theory in the setting of compact Lie groups. The monograph is the winner of the 2014 Ferran Sunyer i Balaguer Prize.
This monograph provides a unified and comprehensive treatment of an order-theoretic fixed point theory in partially ordered sets and its various useful interactions with topological structures. The material progresses systematically, by presenting the preliminaries before moving to more advanced topics. In the treatment of the applications a wide range of mathematical theories and methods from nonlinear analysis and integration theory are applied; an outline of which has been given an appendix chapter to make the book self-contained. Graduate students and researchers in nonlinear analysis, pure and applied mathematics, game theory and mathematical economics will find this book useful.
This book presents the mathematical theory of vector variational inequalities and their relations with vector optimization problems. It is the first-ever book to introduce well-posedness and sensitivity analysis for vector equilibrium problems. The first chapter provides basic notations and results from the areas of convex analysis, functional analysis, set-valued analysis and fixed-point theory for set-valued maps, as well as a brief introduction to variational inequalities and equilibrium problems. Chapter 2 presents an overview of analysis over cones, including continuity and convexity of vector-valued functions. The book then shifts its focus to solution concepts and classical methods in vector optimization. It describes the formulation of vector variational inequalities and their applications to vector optimization, followed by separate chapters on linear scalarization, nonsmooth and generalized vector variational inequalities. Lastly, the book introduces readers to vector equilibrium problems and generalized vector equilibrium problems. Written in an illustrative and reader-friendly way, the book offers a valuable resource for all researchers whose work involves optimization and vector optimization.
This volume is a collection of chapters covering recent advances
in stochastic optimal control theory and algebraic systems theory.
The book will be a useful reference for researchers and graduate
students in systems and control, algebraic systems theory, and
applied mathematics. Requiring only knowledge of
undergraduate-level control and systems theory, the work may be
used as a supplementary textbook in a graduate course on optimal
control or algebraic systems theory.
Energy is one of the worlds most challenging problems, and power systems are an important aspect of energy related issues. This handbook contains state-of-the-art contributions on power systems modeling and optimization. The book is separated into two volumes with six sections, which cover the most important areas of energy systems. The first volume covers the topics operations planning and expansion planning while the second volume focuses on transmission and distribution modeling, forecasting in energy, energy auctions and markets, as well as risk management. The contributions are authored by recognized specialists in their fields and consist in either state-of-the-art reviews or examinations of state-of-the-art developments. The articles are not purely theoretical, but instead also discuss specific applications in power systems.
This book is a comprehensive, unifying introduction to the field of mathematical analysis and the mathematics of computing. It develops the relevant theory at a modern level and it directly relates modern mathematical ideas to their diverse applications. The authors develop the whole theory. Starting with a simple axiom system for the real numbers, they then lay the foundations, developing the theory, exemplifying where it's applicable, in turn motivating further development of the theory. They progress from sets, structures, and numbers to metric spaces, continuous functions in metric spaces, linear normed spaces and linear mappings; and then differential calculus and its applications, the integral calculus, the gamma function, and linear integral operators. They then present important aspects of approximation theory, including numerical integration. The remaining parts of the book are devoted to ordinary differential equations, the discretization of operator equations, and numerical solutions of ordinary differential equations. This textbook contains many exercises of varying degrees of difficulty, suitable for self-study, and at the end of each chapter the authors present more advanced problems that shed light on interesting features, suitable for classroom seminars or study groups. It will be valuable for undergraduate and graduate students in mathematics, computer science, and related fields such as engineering. This is a rich field that has experienced enormous development in recent decades, and the book will also act as a reference for graduate students and practitioners who require a deeper understanding of the methodologies, techniques, and foundations.
The objective of this self-contained book is two-fold. First, the reader is introduced to the modelling and mathematical analysis used in fluid mechanics, especially concerning the Navier-Stokes equations which is the basic model for the flow of incompressible viscous fluids. Authors introduce mathematical tools so that the reader is able to use them for studying many other kinds of partial differential equations, in particular nonlinear evolution problems. The background needed are basic results in calculus,
integration, and functional analysis. Some sections certainly
contain more advanced topics than others. Nevertheless, the authors
aim is that graduate or PhD students, as well as researchers who
are not specialized in nonlinear analysis or in mathematical fluid
mechanics, can find a detailed introduction to this subject.
Historically, for metric spaces the quest for universal spaces in dimension theory spanned approximately a century of mathematical research. The history breaks naturally into two periods - the classical (separable metric) and the modern (not-necessarily separable metric). The classical theory is now well documented in several books. This monograph is the first book to unify the modern theory from 1960-2007. Like the classical theory, the modern theory fundamentally involves the unit interval. Unique features include: This monograph will be useful to topologists, to mathematicians working in fractal geometry, and to historians of mathematics. Being the first monograph to focus on the connection between generalized fractals and universal spaces in dimension theory, it will be a natural text for graduate seminars or self-study - the interested reader will find many relevant open problems which will create further research into these topics.
This book provides readers with modern computational techniques for solving variety of problems from electrical, mechanical, civil and chemical engineering. Mathematical methods are presented in a unified manner, so they can be applied consistently to problems in applied electromagnetics, strength of materials, fluid mechanics, heat and mass transfer, environmental engineering, biomedical engineering, signal processing, automatic control and more.
The first of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.
This is the second edition of the book which has two additional new chapters on Maxwell's equations as well as a section on properties of solution spaces of Maxwell's equations and their trace spaces. These two new chapters, which summarize the most up-to-date results in the literature for the Maxwell's equations, are sufficient enough to serve as a self-contained introductory book on the modern mathematical theory of boundary integral equations in electromagnetics. The book now contains 12 chapters and is divided into two parts. The first six chapters present modern mathematical theory of boundary integral equations that arise in fundamental problems in continuum mechanics and electromagnetics based on the approach of variational formulations of the equations. The second six chapters present an introduction to basic classical theory of the pseudo-differential operators. The aforementioned corresponding boundary integral operators can now be recast as pseudo-differential operators. These serve as concrete examples that illustrate the basic ideas of how one may apply the theory of pseudo-differential operators and their calculus to obtain additional properties for the corresponding boundary integral operators. These two different approaches are complementary to each other. Both serve as the mathematical foundation of the boundary element methods, which have become extremely popular and efficient computational tools for boundary problems in applications. This book contains a wide spectrum of boundary integral equations arising in fundamental problems in continuum mechanics and electromagnetics. The book is a major scholarly contribution to the modern approaches of boundary integral equations, and should be accessible and useful to a large community of advanced graduate students and researchers in mathematics, physics, and engineering.
The first of a two volume set on novel methods in harmonic analysis, this book draws on a number of original research and survey papers from well-known specialists detailing the latest innovations and recently discovered links between various fields. Along with many deep theoretical results, these volumes contain numerous applications to problems in signal processing, medical imaging, geodesy, statistics, and data science. The chapters within cover an impressive range of ideas from both traditional and modern harmonic analysis, such as: the Fourier transform, Shannon sampling, frames, wavelets, functions on Euclidean spaces, analysis on function spaces of Riemannian and sub-Riemannian manifolds, Fourier analysis on manifolds and Lie groups, analysis on combinatorial graphs, sheaves, co-sheaves, and persistent homologies on topological spaces. Volume I is organized around the theme of frames and other bases in abstract and function spaces, covering topics such as: The advanced development of frames, including Sigma-Delta quantization for fusion frames, localization of frames, and frame conditioning, as well as applications to distributed sensor networks, Galerkin-like representation of operators, scaling on graphs, and dynamical sampling. A systematic approach to shearlets with applications to wavefront sets and function spaces. Prolate and generalized prolate functions, spherical Gauss-Laguerre basis functions, and radial basis functions. Kernel methods, wavelets, and frames on compact and non-compact manifolds.
The monograph is devoted to integral representations for holomorphic functions in several complex variables, such as Bochner-Martinelli, Cauchy-Fantappie, Koppelman, multidimensional logarithmic residue etc., and their boundary properties. The applications considered are problems of analytic continuation of functions from the boundary of a bounded domain in C^n. In contrast to the well-known Hartogs-Bochner theorem, this book investigates functions with the one-dimensional property of holomorphic extension along complex lines, and includes the problems of receiving multidimensional boundary analogs of the Morera theorem. This book is a valuable resource for specialists in complex analysis, theoretical physics, as well as graduate and postgraduate students with an understanding of standard university courses in complex, real and functional analysis, as well as algebra and geometry.
This book contains the proceedings of the 23rd International Workshop on Operator Theory and its Applications (IWOTA2012), which was held at the University of New South Wales (Sydney, Australia) from 16 July to 20 July 2012. It includes twelve articles presenting both surveys of current research in operator theory and original results."
A memorial conference for Leon Ehrenpreis was held at Temple University, November 15-16, 2010. In the spirit of Ehrenpreis's contribution to mathematics, the papers in this volume, written by prominent mathematicians, represent the wide breadth of subjects that Ehrenpreis traversed in his career, including partial differential equations, combinatorics, number theory, complex analysis and a bit of applied mathematics. With the exception of one survey article, the papers in this volume are all new results in the various fields in which Ehrenpreis worked . There are papers in pure analysis, papers in number theory, papers in what may be called applied mathematics such as population biology and parallel refractors and papers in partial differential equations. The mature mathematician will find new mathematics and the advanced graduate student will find many new ideas to explore. A biographical sketch of Leon Ehrenpreis by his daughter, a professional journalist, enhances the memorial tribute and gives the reader a glimpse into the life and career of a great mathematician."
One of the current main challenges in the area of scientific computing is the design and implementation of accurate numerical models for complex physical systems which are described by time dependent coupled systems of nonlinear PDEs. This volume integrates the works of experts in computational mathematics and its applications, with a focus on modern algorithms which are at the heart of accurate modeling: adaptive finite element methods, conservative finite difference methods and finite volume methods, and multilevel solution techniques. Fundamental theoretical results are revisited in survey articles and new techniques in numerical analysis are introduced. Applications showcasing the efficiency, reliability and robustness of the algorithms in porous media, structural mechanics and electromagnetism are presented. Researchers and graduate students in numerical analysis and numerical solutions of PDEs and their scientific computing applications will find this book useful.
This is the second, completely revised and expanded edition of the author's first book, covering numerous new topics and recent developments in ultrametric summability theory. Ultrametric analysis has emerged as an important branch of mathematics in recent years. This book presents a brief survey of the research to date in ultrametric summability theory, which is a fusion of a classical branch of mathematics (summability theory) with a modern branch of analysis (ultrametric analysis). Several mathematicians have contributed to summability theory as well as functional analysis. The book will appeal to both young researchers and more experienced mathematicians who are looking to explore new areas in analysis. The book is also useful as a text for those who wish to specialize in ultrametric summability theory.
This work gathers a selection of outstanding papers presented at the 25th Conference on Differential Equations and Applications / 15th Conference on Applied Mathematics, held in Cartagena, Spain, in June 2017. It supports further research into both ordinary and partial differential equations, numerical analysis, dynamical systems, control and optimization, trending topics in numerical linear algebra, and the applications of mathematics to industry. The book includes 14 peer-reviewed contributions and mainly addresses researchers interested in the applications of mathematics, especially in science and engineering. It will also greatly benefit PhD students in applied mathematics, engineering and physics.
This volume contains 14 research papers, which cover various topics, including blowup questions for quasilinear equations in 2-D, uniqueness results for systems of conservation laws in 1-D, conservation effects for critical nonlinear wave equations, diffraction of nonlinear waves, propagation of singularities in scattering theory,and caustics for semilinear oscillations. Other topics linked to microlocal analysis which are discussed are Sobolev spaces in Weyl-Hormander calculus, local solvability for pseudodifferential equations, and hypoellipticity for highly degenerate operators. A result for the Cauchy problem under partial analyticity assumptions and an article on the regularity of solutions for the characteristic initial boundary value problem are also included. Most of the papers contain detailed proofs which are accessible to graduate students and active researchers in connected areas.
the recent IWOTA meetings, IWOTA 2006 was focused on a few special themes, without loss of the general IWOTA mission. Our special interest areas were Hilbert/Krein space operator theory; Complex function theory related to Hilbert space operators; Systems theory related to Hilbert space operators. This volume contains 16 contributions, which re?ect the recent development in operator theory and applications. The organizers gratefully acknowledge the support of the following institutions: KRF (Korea Research Foundation); Department of Mathematics, Seoul National University; Research Institute of Mathematics, Seoul National University. Tsuyoshi Ando, Raul ' Curto Il Bong Jung, Woo Young Lee (Editors) OperatorTheory: Advances andApplications,Vol.187, 1-16 c 2008Birkh. auserVerlagBasel/Switzerland AConnectionbetweenSzegoandNehari SequencesintheMatrix-valuedCase Daniel Alpay and Israel Gohberg Abstract. One can associate to a rational function which is moreover strictly positive on the unit circle two sequences of numbers in the open unit disk, called the Szeg. o sequence and the Nehari sequence. In the scalar case, they coincide up to multiplication by?1. We study the corresponding result in the matrix-valued case. Mathematics Subject Classi?cation (2000). Primary: 34A55, 49N45, 70G30; Secondary: 93B15, 47B35. Keywords. Inverse problems, scattering matrix, Schurparameters, state space method, extension problems. 1. Introduction Letw(z) be a scalar rational function strictly positive on the unit circle. One can associate to it an in?nite sequence of numbers in the open unit disk, called in [1] a Szeg. o sequence. This sequence characterizes in a unique wayw(z)providedsome normalization is chosen; we will take 2? 1 it w(e )dt=1.
Green's Functions and Infinite Products provides a thorough introduction to the classical subjects of the construction of Green's functions for the two-dimensional Laplace equation and the infinite product representation of elementary functions. Every chapter begins with a review guide, outlining the basic concepts covered. A set of carefully designed challenging exercises is available at the end of each chapter to provide the reader with the opportunity to explore the concepts in more detail. Hints, comments, and answers to most of those exercises can be found at the end of the text. In addition, several illustrative examples are offered at the end of most sections. This text is intended for an elective graduate course or seminar within the scope of either pure or applied mathematics. |
![]() ![]() You may like...
AI, IoT, and Blockchain Breakthroughs in…
Kavita Saini, N.S. Gowri Ganesh, …
Hardcover
R6,439
Discovery Miles 64 390
Fractional Order Systems - Optimization…
Ahmad Taher Azar, Ahmed G Radwan, …
Paperback
Truth Decay How Bitcoin Fixes This…
Victoria Collette Jones
Hardcover
Competition and Regulation in the Data…
Gintare Surblyte-Namaviciene
Hardcover
R3,338
Discovery Miles 33 380
|