![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
This book collects recent research papers by respected specialists in the field. It presents advances in the field of geometric properties for parabolic and elliptic partial differential equations, an area that has always attracted great attention. It settles the basic issues (existence, uniqueness, stability and regularity of solutions of initial/boundary value problems) before focusing on the topological and/or geometric aspects. These topics interact with many other areas of research and rely on a wide range of mathematical tools and techniques, both analytic and geometric. The Italian and Japanese mathematical schools have a long history of research on PDEs and have numerous active groups collaborating in the study of the geometric properties of their solutions.
Many special functions occuring in physics and partial differential equations can be represented by integral transformatIons: the fundamental solutions of many PDE's, Newton-Coulomb potentials, hypergeometric functions, Feynman integrals, initial data of (inverse) tomography problems, etc. The general picture of such transfor- mations is as follows. There is an analytic fibre bundle E --+ T, a differential form w on E, whose restrictions on the fibres are closed, and a family of cycles in these fibres, parametrized by the points of T and depending continuously on these points. Then the integral of the form w along these cycles is a function on the base. The analytic properties of such functions depend on the monodromy action, i.e., on the natural action of the fundamental group of the base in the homology of the fibre: this action on the integration cycles defines the ramification of the analytic continuation of our function. The study of this action (which is a purely topological problem) can answer questions about the analytic behaviour of the integral function, for instance, is this function single-valued or at least algebraic, what are the singular points of this function, and what is its asymptotics close to these points. In this book, we study such analytic properties of three famous classes of func- tions: the volume functions, which appear in the Archimedes-Newton problem on in- tegrable bodies; the Newton-Coulomb potentials, and the Green functions of hyperbolic equations (studied, in particular, in the Hada- mard-Petrovskii-Atiyah-Bott-Garding lacuna theory).
The aim of this monograph is to give a unified account fo the classical topics in fixed point theory that lie on the border-line of topology and non-linear functional analysis, emphasizing the topological developments related to the Leray-Schauder theory. The first part of this book is based on "Fixed Point Theory I" which was published by PWN, Warsaw in 1982. The second part follows the outline conceived by Andrzej Granas and the late James Dugunji. The completionof this work has been awaited for many years by researchers in this area. "If the authors do equally well with the second volume they will have produced the best monograph in this particular field."Math Reviews
This new edition of Lax, Burstein, and Lax's Calculus with Applications and Computing offers meaningful explanations of the important theorems of single variable calculus. Written with students in mathematics, the physical sciences, and engineering in mind, and revised with their help, it shows that the themes of calculation, approximation, and modeling are central to mathematics and the main ideas of single variable calculus. This edition brings the innovation of the first edition to a new generation of students. New sections in this book use simple, elementary examples to show that when applying calculus concepts to approximations of functions, uniform convergence is more natural and easier to use than point-wise convergence. As in the original, this edition includes material that is essential for students in science and engineering, including an elementary introduction to complex numbers and complex-valued functions, applications of calculus to modeling vibrations and population dynamics, and an introduction to probability and information theory."
Inverse problems and optimal design have come of age as a consequence of the availability of better, more accurate, and more efficient simulation packages. Many of these simulators, which can run on small workstations, can capture the complicated behavior of the physical systems they are modeling, and have become commonplace tools in engineering and science. There is a great desire to use them as part of a process by which measured field data are analyzed or by which design of a product is automated. A major obstacle in doing precisely this is that one is ultimately confronted with a large-scale optimization problem. This volume contains expository articles on both inverse problems and design problems formulated as optimization. Each paper describes the physical problem in some detail and is meant to be accessible to researchers in optimization as well as those who work in applied areas where optimization is a key tool. What emerges in the presentations is that there are features about the problem that must be taken into account in posing the objective function, and in choosing an optimization strategy. In particular there are certain structures peculiar to the problems that deserve special treatment, and there is ample opportunity for parallel computation. THIS IS BACK COVER TEXT Inverse problems and optimal design have come of age as a consequence of the availability of better, more accurate, and more efficient, simulation packages. The problem of determining the parameters of a physical system from
"The Classical Theory of Integral Equations" is a thorough, concise, and rigorous treatment of the essential aspects of the theory of integral equations. The book provides the background and insight necessary to facilitate a complete understanding of the fundamental results in the field. With a firm foundation for the theory in their grasp, students will be well prepared and motivated for further study. Included in the presentation are: A section entitled "Tools of the Trade" at the beginning of each chapter, providing necessary background information for comprehension of the results presented in that chapter; Thorough discussions of the analytical methods used to solve many types of integral equations; An introduction to the numerical methods that are commonly used to produce approximate solutions to integral equations; Over 80 illustrative examples that are explained in meticulous
detail; This unique textbook offers a comprehensive and balanced treatment of material needed for a general understanding of the theory of integral equations by using only the mathematical background that a typical undergraduate senior should have. The self-contained book will serve as a valuable resource for advanced undergraduate and beginning graduate-level students as well as for independent study. Scientists and engineers who are working in the field will also find this text to be user friendly and informative. "
This volume of the Encyclopaedia is a survey of stochastic calculus, an increasingly important part of probability, authored by well-known experts in the field. The book addresses graduate students and researchers in probability theory and mathematical statistics, as well as physicists and engineers who need to apply stochastic methods.
The book contains the methods and bases of functional analysis that are directly adjacent to the problems of numerical mathematics and its applications; they are what one needs for the understand ing from a general viewpoint of ideas and methods of computational mathematics and of optimization problems for numerical algorithms. Functional analysis in mathematics is now just the small visible part of the iceberg. Its relief and summit were formed under the influence of this author's personal experience and tastes. This edition in English contains some additions and changes as compared to the second edition in Russian; discovered errors and misprints had been corrected again here; to the author's distress, they jump incomprehensibly from one edition to another as fleas. The list of literature is far from being complete; just a number of textbooks and monographs published in Russian have been included. The author is grateful to S. Gerasimova for her help and patience in the complex process of typing the mathematical manuscript while the author corrected, rearranged, supplemented, simplified, general ized, and improved as it seemed to him the book's contents. The author thanks G. Kontarev for the difficult job of translation and V. Klyachin for the excellent figures."
This specialized and authoritative book contains an overview of modern approaches to constructing approximations to solutions of ill-posed operator equations, both linear and nonlinear. These approximation schemes form a basis for implementable numerical algorithms for the stable solution of operator equations arising in contemporary mathematical modeling, and in particular when solving inverse problems of mathematical physics. The book presents in detail stable solution methods for ill-posed problems using the methodology of iterative regularization of classical iterative schemes and the techniques of finite dimensional and finite difference approximations of the problems under study. Special attention is paid to ill-posed Cauchy problems for linear operator differential equations and to ill-posed variational inequalities and optimization problems. The readers are expected to have basic knowledge in functional analysis and differential equations. The book will be of interest to applied mathematicians and specialists in mathematical modeling and inverse problems, and also to advanced students in these fields. Contents Introduction Regularization Methods For Linear Equations Finite Difference Methods Iterative Regularization Methods Finite-Dimensional Iterative Processes Variational Inequalities and Optimization Problems
The main theme of this book is the homotopy principle for holomorphic mappings from Stein manifolds to the newly introduced class of Oka manifolds. The book contains the first complete account of Oka-Grauert theory and its modern extensions, initiated by Mikhail Gromov and developed in the last decade by the author and his collaborators. Included is the first systematic presentation of the theory of holomorphic automorphisms of complex Euclidean spaces, a survey on Stein neighborhoods, connections between the geometry of Stein surfaces and Seiberg-Witten theory, and a wide variety of applications ranging from classical to contemporary."
This edited volume offers a state of the art overview of fast and robust solvers for the Helmholtz equation. The book consists of three parts: new developments and analysis in Helmholtz solvers, practical methods and implementations of Helmholtz solvers, and industrial applications. The Helmholtz equation appears in a wide range of science and engineering disciplines in which wave propagation is modeled. Examples are: seismic inversion, ultrasone medical imaging, sonar detection of submarines, waves in harbours and many more. The partial differential equation looks simple but is hard to solve. In order to approximate the solution of the problem numerical methods are needed. First a discretization is done. Various methods can be used: (high order) Finite Difference Method, Finite Element Method, Discontinuous Galerkin Method and Boundary Element Method. The resulting linear system is large, where the size of the problem increases with increasing frequency. Due to higher frequencies the seismic images need to be more detailed and, therefore, lead to numerical problems of a larger scale. To solve these three dimensional problems fast and robust, iterative solvers are required. However for standard iterative methods the number of iterations to solve the system becomes too large. For these reason a number of new methods are developed to overcome this hurdle. The book is meant for researchers both from academia and industry and graduate students. A prerequisite is knowledge on partial differential equations and numerical linear algebra.
With contributions by specialists in optimization and practitioners in the fields of aerospace engineering, chemical engineering, and fluid and solid mechanics, the major themes include an assessment of the state of the art in optimization algorithms as well as challenging applications in design and control, in the areas of process engineering and systems with partial differential equation models.
This Festschrift contains five research surveys and thirty-four shorter contributions by participants of the conference ''Stochastic Partial Differential Equations and Related Fields'' hosted by the Faculty of Mathematics at Bielefeld University, October 10-14, 2016. The conference, attended by more than 140 participants, including PostDocs and PhD students, was held both to honor Michael Roeckner's contributions to the field on the occasion of his 60th birthday and to bring together leading scientists and young researchers to present the current state of the art and promising future developments. Each article introduces a well-described field related to Stochastic Partial Differential Equations and Stochastic Analysis in general. In particular, the longer surveys focus on Dirichlet forms and Potential theory, the analysis of Kolmogorov operators, Fokker-Planck equations in Hilbert spaces, the theory of variational solutions to stochastic partial differential equations, singular stochastic partial differential equations and their applications in mathematical physics, as well as on the theory of regularity structures and paracontrolled distributions. The numerous research surveys make the volume especially useful for graduate students and researchers who wish to start work in the above-mentioned areas, or who want to be informed about the current state of the art.
Hysteresis effects occur in science and engineering: plasticity,
ferromagnetism, ferroelectricity are well-known examples. Modelling
and mathematical analysis of hysteresis phenomena have been
addressed by mathematicians only recently, but are now in full
development.
This book presents some of the latest research in critical point theory, describing methods and presenting the newest applications. Coverage includes extrema, even valued functionals, weak and double linking, sign changing solutions, Morse inequalities, and cohomology groups. Applications described include Hamiltonian systems, Schrodinger equations and systems, jumping nonlinearities, elliptic equations and systems, superlinear problems and beam equations. "
An approach to complexity theory which offers a means of analysing algorithms in terms of their tractability. The authors consider the problem in terms of parameterized languages and taking "k-slices" of the language, thus introducing readers to new classes of algorithms which may be analysed more precisely than was the case until now. The book is as self-contained as possible and includes a great deal of background material. As a result, computer scientists, mathematicians, and graduate students interested in the design and analysis of algorithms will find much of interest.
The aim of this book is to present the mathematical theory and the know-how to make computer programs for the numerical approximation of Optimal Control of PDE's. The computer programs are presented in a straightforward generic language. As a consequence they are well structured, clearly explained and can be translated easily into any high level programming language. Applications and corresponding numerical tests are also given and discussed. To our knowledge, this is the first book to put together mathematics and computer programs for Optimal Control in order to bridge the gap between mathematical abstract algorithms and concrete numerical ones. The text is addressed to students and graduates in Mathematics, Mechanics, Applied Mathematics, Numerical Software, Information Technology and Engineering. It can also be used for Master and Ph.D. programs.
Boundary problems constitute an essential field of common mathematical interest. The intention of this volume is to highlight several analytic and geometric aspects of boundary problems with special emphasis on their interplay. It includes surveys on classical topics presented from a modern perspective as well as reports on current research. The collection splits into two related groups: - analysis and geometry of geometric operators and their index theory - elliptic theory of boundary value problems and the Shapiro-Lopatinsky condition
In this book the author sets out to answer two important questions: 1. Which numerical methods may be combined together? 2. How can different numerical methods be matched together? In doing so the author presents a number of useful combinations, for instance, the combination of various FEMs, the combinations of FEM-FDM, REM-FEM, RGM-FDM, etc. The combined methods have many advantages over single methods: high accuracy of solutions, less CPU time, less computer storage, easy coupling with singularities as well as the complicated boundary conditions. Since coupling techniques are essential to combinations, various matching strategies among different methods are carefully discussed. The author provides the matching rules so that optimal convergence, even superconvergence, and optimal stability can be achieved, and also warns of the matching pitfalls to avoid. Audience: The book is intended for both mathematicians and engineers and may be used as text for advanced students.
Contains well-chosen examples and exercises A student-friendly introduction that follows a workbook type approach
Operational methods have been used for over a century to solve problems such as ordinary and partial differential equations. When solving such problems, in many cases it is fairly easy to obtain the Laplace transform, while it is very demanding to determine the inverse Laplace transform which is the solution of a given problem. Sometimes, after some difficult contour integration we may find that a series solution results, but this may be quite difficult to evaluate in order to get an answer at a particular time value. The advent of computers has given an impetus to developing numerical methods for the determination of the inverse Laplace transform. This book gives background material on the theory of Laplace transforms, together with a fairly comprehensive list of methods which are available at the current time. Computer programs are included for those methods which perform consistently well on a wide range of Laplace transforms.
This volume presents a selection of papers by Henry P. McKean, which illustrate the various areas in mathematics in which he has made seminal contributions. Topics covered include probability theory, integrable systems, geometry and financial mathematics. Each paper represents a contribution by Prof. McKean, either alone or together with other researchers, that has had a profound influence in the respective area.
This corrected third printing retains the authors'main emphasis on ordinary differential equations. It is most appropriate for upper level undergraduate and graduate students in the fields of mathematics, engineering, and applied mathematics, as well as the life sciences, physics and economics. The authors have taken the view that a differential equations theory defines functions; the object of the theory is to understand the behaviour of these functions. The tools the authors use include qualitative and numerical methods besides the traditional analytic methods, and the companion software, MacMath, is designed to bring these notions to life.
This book is the first monograph on a new powerful method discovered by the author for the study of nonlinear dynamical systems relying on reduction of nonlinear differential equations to the linear abstract Schroedinger-like equation in Hilbert space. Besides the possibility of unification of many apparently completely different techniques, the "quantal" Hilbert space formalism introduced enables new original methods to be discovered for solving nonlinear problems arising in investigation of ordinary and partial differential equations as well as difference equations. Applications covered in the book include symmetries and first integrals, linearization transformations, Backlund transformations, stroboscopic maps, functional equations involving the case of Feigenbaum-Cvitanovic renormalization equations and chaos. |
You may like...
Nonlinear Differential Problems with…
Dumitru Motreanu
Paperback
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
(1)
Student Solutions Manual for Thomas…
Joel Hass, Christopher Heil, …
Paperback
R2,152
Discovery Miles 21 520
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
|