![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
This book collects papers presented at the International Conference on Mathematical Modelling and Computational Intelligence Techniques (ICMMCIT) 2021, held at the Department of Mathematics, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, Tamil Nadu, India, from 10-12 February 2021. Significant contributions from renowned researchers from fields of applied analysis, mathematical modelling and computing techniques have been received for this conference. Chapters emphasize on the research of computational nature focusing on new algorithms, their analysis and numerical results, as well as applications in physical, biological, social, and behavioural sciences. The accepted papers are organized in topical sections as mathematical modelling, image processing, control theory, graphs and networks, and inventory control.
Variational and boundary integral equation techniques are two of the most useful methods for solving time-dependent problems described by systems of equations of the form 2 ? u = Au, 2 't 2 where u = u(x, t) is a vector-valued function, x is a point in a domain inR or 3 R, and A is a linear elliptic di?erential operator. To facilitate a better und- standing of these two types of methods, below we propose to illustrate their mechanisms in action on a speci?c mathematical model rather than in a more impersonal abstract setting. For this purpose, we have chosen the hyperbolic system of partial di?erential equations governing the nonstationary bending of elastic plates with transverse shear deformation. The reason for our choice is twofold. On the one hand, in a certain sense this is a hybrid system, c- sistingofthreeequationsforthreeunknownfunctionsinonlytwoindependent variables, which makes it more unusual and thereby more interesting to the analyst than other systems arising in solid mechanics. On the other hand, this particular plate model has received very little attention compared to the so-called classical one, based on Kirchho? s simplifying hypotheses, although, as acknowledged by practitioners, it represents a substantial re?nement of the latter and therefore needs a rigorous discussion of the existence, uniqueness, and continuous dependence of its solution on the data before any construction of numerical approximation algorithms can be contemplated."
The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications related to phenomena such as: boundary layer phenomena for viscous fluids, population dynamics,, dead core phenomena, etc. It addresses researchers and post-graduate students working at the interplay between mathematics and other fields of science and technology and is a comprehensive introduction to the theory of nonlinear partial differential equations and its main principles also presents their real-life applications in various contexts: mathematical physics, chemistry, mathematical biology, and population genetics. Based on the authors' original work, this volume provides an overview of the field, with examples suitable for researchers but also for graduate students entering research. The method of presentation appeals to readers with diverse backgrounds in partial differential equations and functional analysis. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. The content demonstrates in a firm way that partial differential equations can be used to address a large variety of phenomena occurring in and influencing our daily lives. The extensive reference list and index make this book a valuable resource for researchers working in a variety of fields and who are interested in phenomena modeled by nonlinear partial differential equations.
From its origins in the minimization of integral functionals, the notion of 'variations' has evolved greatly in connection with applications in optimization, equilibrium, and control. It refers not only to constrained movement away from a point, but also to modes of perturbation and approximation that are best describable by 'set convergence', variational convergence of functions' and the like. This book develops a unified framework and, in finite dimensions, provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, maximal monotone mappings, second-order subderivatives, measurable selections and normal integrands.
This text gives a rigorous treatment of the foundations of calculus. In contrast to more traditional approaches, infinite sequences and series are placed at the forefront. The approach taken has not only the merit of simplicity, but students are well placed to understand and appreciate more sophisticated concepts in advanced mathematics. The authors mitigate potential difficulties in mastering the material by motivating definitions, results and proofs. Simple examples are provided to illustrate new material and exercises are included at the end of most sections. Noteworthy topics include: an extensive discussion of convergence tests for infinite series, Wallis's formula and Stirling's formula, proofs of the irrationality of and e and a treatment of Newton's method as a special instance of finding fixed points of iterated functions.
This collection of articles and surveys is devoted to Harmonic Analysis, related Partial Differential Equations and Applications and in particular to the fields of research to which Richard L. Wheeden made profound contributions. The papers deal with Weighted Norm inequalities for classical operators like Singular integrals, fractional integrals and maximal functions that arise in Harmonic Analysis. Other papers deal with applications of Harmonic Analysis to Degenerate Elliptic equations, variational problems, Several Complex variables, Potential theory, free boundaries and boundary behavior of functions.
The Abel Symposium 2008 focused on the modern theory of differential equations and their applications in geometry, mechanics, and mathematical physics. Following the tradition of Monge, Abel and Lie, the scientific program emphasized the role of algebro-geometric methods, which nowadays permeate all mathematical models in natural and engineering sciences. The ideas of invariance and symmetry are of fundamental importance in the geometric approach to differential equations, with a serious impact coming from the area of integrable systems and field theories. This volume consists of original contributions and broad overview lectures of the participants of the Symposium. The papers in this volume present the modern approach to this classical subject.
This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences. The foundational issues regarding stationary processes dealt with in the beginning of the book have a long history, starting in the 1940s with the work of Kolmogorov, Wiener, Cramer and his students, in particular Wold, and have since been refined and complemented by many others. Problems concerning the filtering and modeling of stationary random signals and systems have also been addressed and studied, fostered by the advent of modern digital computers, since the fundamental work of R.E. Kalman in the early 1960s. The book offers a unified and logically consistent view of the subject based on simple ideas from Hilbert space geometry and coordinate-free thinking. In this framework, the concepts of stochastic state space and state space modeling, based on the notion of the conditional independence of past and future flows of the relevant signals, are revealed to be fundamentally unifying ideas. The book, based on over 30 years of original research, represents a valuable contribution that will inform the fields of stochastic modeling, estimation, system identification, and time series analysis for decades to come. It also provides the mathematical tools needed to grasp and analyze the structures of algorithms in stochastic systems theory.
Sobolev Spaces presents an introduction to the theory of Sobolev
Spaces and other related spaces of function, also to the imbedding
characteristics of these spaces. This theory is widely used in pure
and Applied Mathematics and in the Physical Sciences.
Applied Mathematics: Body & Soul is a mathematics education reform project developed at Chalmers University of Technology and includes a series of volumes and software. The program is motivated by the computer revolution opening new possibilitites of computational mathematical modeling in mathematics, science and engineering. It consists of a synthesis of Mathematical Analysis (Soul), Numerical Computation (Body) and Application. Volumes I-III present a modern version of Calculus and Linear Algebra, including constructive/numerical techniques and applications intended for undergraduate programs in engineering and science. Further volumes present topics such as Dynamical Systems, Fluid Dynamics, Solid Mechanics and Electro-Magnetics on an advanced undergraduate/graduate level. Volume I (Derivatives and Geometry in R3) presents basics of Calculus starting with the construction of the natural, rational, real and complex numbers, and proceeding to analytic geometry in two and three space dimensions, Lipschitz continuous functions and derivatives, together with a variety of applications. Volume II (Integrals and Geomtery in Rn) develops the Riemann integral as the solution to the problem of determining a function given its derivative, and proceeds to generalizations in the form of initial value problems for general systems of ordinary differential equations, including a variety of applications. Linear algebra including numerics is also presented. Volume III (Calculus in Several Dimensions) presents Calculus in several variables including partial derivatives, multi-dimensional integrals, partial differential equations and finite element methods, together with a variety of applications modeled as systems of partial differential equations. The authors are leading researchers in Computational Mathematics who have written various successful books. Further information on Applied Mathematics: Body and Soul can be found at http://www.phi.chalmers.se/bodysoul/.
Many problems in celestial mechanics, physics and engineering involve the study of oscillating systems governed by nonlinear ordinary differential equations or partial differential equations. This volume represents an important contribution to the available methods of solution for such systems. The contents are divided into six chapters. Chapter 1 presents a study of periodic solutions for nonlinear systems of evolution equations including differential equations with lag, systems of neutral type, various classes of nonlinear systems of integro-differential equations, etc. A numerical-analytic method for the investigation of periodic solutions of these evolution equations is presented. In chapters 2 and 3, problems concerning the existence of periodic and quasiperiodic solutions for systems with lag are examined. For a nonlinear system with quasiperiodic coefficients and lag, the conditions under which quasiperiodic solutions exist are established. Chapter 4 is devoted to the study of invariant toroidal manifolds for various classes of systems of differential equations with quasiperiodic coefficients. Chapter 5 examines the problem concerning the reducibility of a linear system of different equations with quasiperiodic coefficients to a linear system of difference equations with constant coefficients. Chapter 6 contains an investigation of invariant toroidal sets for systems of difference equations with quasiperiodic coefficients.
Solving efficiently the wave equations involved in modeling acoustic, elastic or electromagnetic wave propagation remains a challenge both for research and industry. To attack the problems coming from the propagative character of the solution, the author constructs higher-order numerical methods to reduce the size of the meshes, and consequently the time and space stepping, dramatically improving storage and computing times. This book surveys higher-order finite difference methods and develops various mass-lumped finite (also called spectral) element methods for the transient wave equations, and presents the most efficient methods, respecting both accuracy and stability for each sort of problem. A central role is played by the notion of the dispersion relation for analyzing the methods. The last chapter is devoted to unbounded domains which are modeled using perfectly matched layer (PML) techniques. Numerical examples are given.
Lagrangian systems constitute a very important and old class in dynamics. Their origin dates back to the end of the eighteenth century, with Joseph-Louis Lagrange s reformulation of classical mechanics. The main feature of Lagrangian dynamics is its variational flavor: orbits are extremal points of an action functional. The development of critical point theory in the twentieth century provided a powerful machinery to investigate existence and multiplicity questions for orbits of Lagrangian systems. This monograph gives a modern account of the application of critical point theory, and more specifically Morse theory, to Lagrangian dynamics, with particular emphasis toward existence and multiplicity of periodic orbits of non-autonomous and time-periodic systems.
This monograph explores the early development of the calculus of variations in continental Europe during the Eighteenth Century by illustrating the mathematics of its founders. Closely following the original papers and correspondences of Euler, Lagrange, the Bernoullis, and others, the reader is immersed in the challenge of theory building. We see what the founders were doing, the difficulties they faced, the mistakes they made, and their triumphs. The authors guide the reader through these works with instructive commentaries and complements to the original proofs, as well as offering a modern perspective where useful. The authors begin in 1697 with Johann Bernoulli's work on the brachystochrone problem and the events leading up to it, marking the dawn of the calculus of variations. From there, they cover key advances in the theory up to the development of Lagrange's -calculus, including: * The isoperimetrical problems * Shortest lines and geodesics * Euler's Methodus Inveniendi and the two Additamenta Finally, the authors give the readers a sense of how vast the calculus of variations has become in centuries hence, providing some idea of what lies outside the scope of the book as well as the current state of affairs in the field. This book will be of interest to anyone studying the calculus of variations who wants a deeper intuition for the techniques and ideas that are used, as well as historians of science and mathematics interested in the development and evolution of modern calculus and analysis.
This book contains nine well-organized survey articles by leading researchers in positivity, with a strong emphasis on functional analysis. It provides insight into the structure of classical spaces of continuous functions, f-algebras, and integral operators, but also contains contributions to modern topics like vector measures, operator spaces, ordered tensor products, non-commutative Banach function spaces, and frames. Contributors: B. Banerjee, D.P. Blecher, K. Boulabiar, Q. Bu, G. Buskes, G.P. Curbera, M. Henriksen, A.G. Kusraev, J. Marti-nez, B. de Pagter, W.J. Ricker, A.R. Schep, A. Triki, A.W. Wickstead
Current and historical research methods in approximation theory are presented in this book beginning with the 1800s and following the evolution of approximation theory via the refinement and extension of classical methods and ending with recent techniques and methodologies. Graduate students, postdocs, and researchers in mathematics, specifically those working in the theory of functions, approximation theory, geometric function theory, and optimization will find new insights as well as a guide to advanced topics. The chapters in this book are grouped into four themes; the first, polynomials (Chapters 1 -8), includes inequalities for polynomials and rational functions, orthogonal polynomials, and location of zeros. The second, inequalities and extremal problems are discussed in Chapters 9 -13. The third, approximation of functions, involves the approximants being polynomials, rational functions, and other types of functions and are covered in Chapters 14 -19. The last theme, quadrature, cubature and applications, comprises the final three chapters and includes an article coauthored by Rahman. This volume serves as a memorial volume to commemorate the distinguished career of Qazi Ibadur Rahman (1934-2013) of the Universite de Montreal. Rahman was considered by his peers as one of the prominent experts in analytic theory of polynomials and entire functions. The novelty of his work lies in his profound abilities and skills in applying techniques from other areas of mathematics, such as optimization theory and variational principles, to obtain final answers to countless open problems.
This is a collection of contributed papers which focus on recent results in areas of differential equations, function spaces, operator theory and interpolation theory. In particular, it covers current work on measures of non-compactness and real interpolation, sharp Hardy-Littlewood-Sobolev inequalites, the HELP inequality, error estimates and spectral theory of elliptic operators, pseudo differential operators with discontinuous symbols, variable exponent spaces and entropy numbers. These papers contribute to areas of analysis which have been and continue to be heavily influenced by the leading British analysts David Edmunds and Des Evans. This book marks their respective 80th and 70th birthdays.
This book provides a comprehensive and timely report in the area of non-additive measures and integrals. It is based on a panel session on fuzzy measures, fuzzy integrals and aggregation operators held during the 9th International Conference on Modeling Decisions for Artificial Intelligence (MDAI 2012) in Girona, Spain, November 21-23, 2012. The book complements the MDAI 2012 proceedings book, published in Lecture Notes in Computer Science (LNCS) in 2012. The individual chapters, written by key researchers in the field, cover fundamental concepts and important definitions (e.g. the Sugeno integral, definition of entropy for non-additive measures) as well some important applications (e.g. to economics and game theory) of non-additive measures and integrals. The book addresses students, researchers and practitioners working at the forefront of their field.
This book is an introduction to the theory of complex manifolds. The authors¿ intent is to familiarize the reader with the most important branches and methods in complex analysis of several variables and to do this as simply as possible. Therefore, the abstract concepts involving sheaves, coherence, and higher-dimensional cohomology have been completely avoided. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional cocycles are used. Nevertheless, deep results can be proved. The book can be used as a first introduction to several complex variables as well as a reference for the expert.
This is a proceedings of the international conference "Painleve Equations and Related Topics" which was taking place at the Euler International Mathematical Institute, a branch of the Saint Petersburg Department of the Steklov Institute of Mathematics of the Russian Academy of Sciences, in Saint Petersburg on June 17 to 23, 2011. The survey articles discuss the following topics: General ordinary differential equations Painleve equations and their generalizations Painleve property Discrete Painleve equations Properties of solutions of all mentioned above equations: - Asymptotic forms and asymptotic expansions - Connections of asymptotic forms of a solution near different points - Convergency and asymptotic character of a formal solution - New types of asymptotic forms and asymptotic expansions - Riemann-Hilbert problems - Isomonodromic deformations of linear systems - Symmetries and transformations of solutions - Algebraic solutions Reductions of PDE to Painleve equations and their generalizations Ordinary Differential Equations systems equivalent to Painleve equations and their generalizations Applications of the equations and the solutions
This book focuses on the recent development of fractional differential equations, integro-differential equations, and inclusions and inequalities involving the Hadamard derivative and integral. Through a comprehensive study based in part on their recent research, the authors address the issues related to initial and boundary value problems involving Hadamard type differential equations and inclusions as well as their functional counterparts. The book covers fundamental concepts of multivalued analysis and introduces a new class of mixed initial value problems involving the Hadamard derivative and Riemann-Liouville fractional integrals. In later chapters, the authors discuss nonlinear Langevin equations as well as coupled systems of Langevin equations with fractional integral conditions. Focused and thorough, this book is a useful resource for readers and researchers interested in the area of fractional calculus.
This volume presents the recent theory of function spaces, paying special attention to some recent developments related to neighboring areas such as numerics, signal processing, and fractal analysis. Local building blocks, in particular (non-smooth) atoms, quarks, wavelet bases and wavelet frames are considered in detail and applied to diverse problems, including a local smoothness theory, spaces on Lipschitz domains, and fractal analysis.
The theory of one-dimensional ergodic operators involves a beautiful synthesis of ideas from dynamical systems, topology, and analysis. Additionally, this setting includes many models of physical interest, including those operators that model crystals, disordered media, or quasicrystals. This field has seen substantial progress in recent decades, much of which has yet to be discussed in textbooks. Beginning with a refresher on key topics in spectral theory, this volume presents the basic theory of discrete one-dimensional Schrodinger operators with dynamically defined potentials. It also includes a self-contained introduction to the relevant aspects of ergodic theory and topological dynamics. This text is accessible to graduate students who have completed one-semester courses in measure theory and complex analysis. It is intended to serve as an introduction to the field for junior researchers and beginning graduate students as well as a reference text for people already working in this area. It is well suited for self-study and contains numerous exercises (many with hints).
* Metivier is an expert in the field of pdes/math physics, with a particular emphasis on shock waves. * New monograph focuses on mathematical methods, models, and applications of boundary layers, present in many problems of physics, engineering, fluid mechanics. * Metivier has good Birkhauser track record: one of the main authors of "Advances in the Theory of Shock Waves" (Freistuehler/Szepessy, eds, 4187-4). * Manuscript endorsed by N. Bellomo, MSSET series editor...should be a good sell to members of MSSET community, who by-in-large are based in Europe. * Included are self-contained introductions to different topics such as hyperbolic boundary value problems, parabolic systems, WKB methods, construction of profiles, introduction to the theory of Evans' functions, and energy methods with Kreiss' symmetrizers. |
![]() ![]() You may like...
Innovations in Artificial Intelligence…
Surbhi Bhatia, Suyel Namasudra, …
Paperback
Journal of the Convention to Form a…
Wisconsin Constitutional Convention
Paperback
R826
Discovery Miles 8 260
Information and Communication Technology…
Tomonobu Senjyu, Parikshit N. Mahalle, …
Hardcover
R5,754
Discovery Miles 57 540
Nonlinear Model Predictive Control
Frank Allgoewer, Alex Zheng
Hardcover
R4,633
Discovery Miles 46 330
|