![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
This IMA Volume in Mathematics and its Applications PATTERN FORMATION IN CONTINUOUS AND COUPLED SYSTEMS is based on the proceedings of a workshop with the same title, but goes be yond the proceedings by presenting a series of mini-review articles that sur vey, and provide an introduction to, interesting problems in the field. The workshop was an integral part of the 1997-98 IMA program on "EMERG ING APPLICATIONS OF DYNAMICAL SYSTEMS." I would like to thank Martin Golubitsky, University of Houston (Math ematics) Dan Luss, University of Houston (Chemical Engineering), and Steven H. Strogatz, Cornell University (Theoretical and Applied Mechan ics) for their excellent work as organizers of the meeting and for editing the proceedings. I also take this opportunity to thank the National Science Foundation (NSF), and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr., Professor and Director v PREFACE Pattern formation has been studied intensively for most of this cen tury by both experimentalists and theoreticians, and there have been many workshops and conferences devoted to the subject. In the IMA workshop on Pattern Formation in Continuous and Coupled Systems held May 11-15, 1998 we attempted to focus on new directions in the patterns literature."
Over the course of the last century, the systematic exploration of the relationship between Fourier analysis and other branches of mathematics has lead to important advances in geometry, number theory, and analysis, stimulated in part by Hurwitzs proof of the isoperimetric inequality using Fourier series. This unified, self-contained volume is dedicated to Fourier analysis, convex geometry, and related topics. Specific topics covered include: the geometric properties of convex bodies the study of Radon transforms the geometry of numbers the study of translational tilings using Fourier analysis irregularities in distributions Lattice point problems examined in the context of number theory, probability theory, and Fourier analysis restriction problems for the Fourier transform The book presents both a broad overview of Fourier analysis and convexity as well as an intricate look at applications in some specific settings; it will be useful to graduate students and researchers in harmonic analysis, convex geometry, functional analysis, number theory, computer science, and combinatorial analysis. A wide audience will benefit from the careful demonstration of how Fourier analysis is used
The book addresses many topics not usually in "second course in
complex analysis" texts. It also contains multiple proofs of
several central results, and it has a minor historical perspective.
This book presents developments and new results on complex differential-difference equations, an area with important and interesting applications, which also gathers increasing attention. Key problems, methods, and results related to complex differential-difference equations are collected to offer an up-to-date overview of the field.
4. 1 Bergman-Toeplitz Operators Over Bounded Domains 242 4. 2 Hardy-Toeplitz Operators Over Strictly Domains Pseudoconvex 250 Groupoid C* -Algebras 4. 3 256 4. 4 Hardy-Toeplitz Operators Over Tubular Domains 267 4. 5 Bergman-Toeplitz Operators Over Tubular Domains 278 4. 6 Hardy-Toeplitz Operators Over Polycircular Domains 284 4. 7 Bergman-Toeplitz Operators Over Polycircular Domains 290 4. 8 Hopf C* -Algebras 299 4. 9 Actions and Coactions on C* -Algebras 310 4. 10 Hardy-Toeplitz Operators Over K-circular Domains 316 4. 11 Hardy-Toeplitz Operators Over Symmetric Domains 325 4. 12 Bergman-Toeplitz Operators Over Symmetric Domains 361 5. Index Theory for Multivariable Toeplitz Operators 5. 0 Introduction 371 5. 1 K-Theory for Topological Spaces 372 5. 2 Index Theory for Strictly Pseudoconvex Domains 384 5. 3 C*-Algebras K-Theory for 394 5. 4 Index Theory for Symmetric Domains 400 5. 5 Index Theory for Tubular Domains 432 5. 6 Index Theory for Polycircular Domains 455 References 462 Index of Symbols and Notations 471 In trod uction Toeplitz operators on the classical Hardy space (on the I-torus) and the closely related Wiener-Hopf operators (on the half-line) form a central part of operator theory, with many applications e. g. , to function theory on the unit disk and to the theory of integral equations.
The inverse scattering problem is central to many areas of science and technology such as radar and sonar, medical imaging, geophysical exploration and nondestructive testing. This book is devoted to the mathematical and numerical analysis of the inverse scattering problem for acoustic and electromagnetic waves. In this third edition, new sections have been added on the linear sampling and factorization methods for solving the inverse scattering problem as well as expanded treatments of iteration methods and uniqueness theorems for the inverse obstacle problem. These additions have in turn required an expanded presentation of both transmission eigenvalues and boundary integral equations in Sobolev spaces. As in the previous editions, emphasis has been given to simplicity over generality thus providing the reader with an accessible introduction to the field of inverse scattering theory. Review of earlier editions: "Colton and Kress have written a scholarly, state of the art account of their view of direct and inverse scattering. The book is a pleasure to read as a graduate text or to dip into at leisure. It suggests a number of open problems and will be a source of inspiration for many years to come." SIAM Review, September 1994 "This book should be on the desk of any researcher, any student, any teacher interested in scattering theory." Mathematical Intelligencer, June 1994"
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics."
Almost a century ago, harmonic analysis entered a (still continuing) Golden Age, with the emergence of many great masters throughout Europe. They created a wealth of profound analytic methods, to be successfully exploited and further developed by succeeding generations. This flourishing of harmonic analysis is today as lively as ever, as the papers presented here demonstrate. In addition to its own ongoing internal development and its basic role in other areas of mathematics, physics and chemistry, financial analysis, medicine, and biological signal processing, harmonic analysis has made fundamental contributions to essentially all twentieth century technology-based human endeavours, including telephone, radio, television, radar, sonar, satellite communications, medical imaging, the Internet, and multimedia. This ubiquitous nature of the subject is amply illustrated. The book not only promotes the infusion of new mathematical tools into applied harmonic analysis, but also to fuel the development of applied mathematics by providing opportunities for young engineers, mathematicians and other scientists to learn more about problem areas in today's technology that might benefit from new mathematical insights.
This book provides a selection of reports and survey articles on the latest research in the area of single and multivariable operator theory and related fields. The latter include singular integral equations, ordinary and partial differential equations, complex analysis, numerical linear algebra, and real algebraic geometry - all of which were among the topics presented at the 26th International Workshop in Operator Theory and its Applications, held in Tbilisi, Georgia, in the summer of 2015. Moreover, the volume includes three special commemorative articles. One of them is dedicated to the memory of Leiba Rodman, another to Murray Marshall, and a third to Boris Khvedelidze, an outstanding Georgian mathematician and one of the founding fathers of the theory of singular integral equations. The book will be of interest to a broad range of mathematicians, from graduate students to researchers, whose primary interests lie in operator theory, complex analysis and applications, as well as specialists in mathematical physics.
This book aims to provide a comprehensive study of the mathematical theory of the vortex method, from its origins in the 1930s, through the developments of the '70s when the use of computers made advanced research possible, to current work on this subject in China and elsewhere. The five chapters treat vortex methods for the Euler and Navier-Stokes equations; mathematical theory for incompressible flows; convergence of vortex methods for the Euler equations; convergence of viscosity splitting; and convergence of the random vortex method. Audience: This volume will be of interest to researchers and graduate students of applied mathematics, scientists in fluid dynamics, and aviation engineers.
This book is a monograph on chaos in dissipative systems written for those working in the physical sciences. Emphasis is on symbolic description of the dynamics and various characteristics of the attractors, and written from the view-point of practical applications without going into formal mathematical rigour. The author used elementary mathematics and calculus, and relied on physical intuition whenever possible. Substantial attention is paid to numerical techniques in the study of chaos. Part of the book is based on the publications of Chinese researchers, including those of the author's collaborators.
This book is a monograph on chaos in dissipative systems written for those working in the physical sciences. Emphasis is on symbolic description of the dynamics and various characteristics of the attractors, and written from the view-point of practical applications without going into formal mathematical rigour. The author used elementary mathematics and calculus, and relied on physical intuition whenever possible. Substantial attention is paid to numerical techniques in the study of chaos. Part of the book is based on the publications of Chinese researchers, including those of the author's collaborators.
Nonlinear difference equations of order greater than one are of paramount impor tance in applications where the (n ] 1)st generation (or state) of the system depends on the previous k generations (or states). Such equations also appear naturally as discrete analogues and as numerical solutions of differential and delay differential equations which model various diverse phenomena in biology, ecology, physiology, physics, engineering and economics. Our aim in this monograph is to initiate a systematic study of the global behavior of solutions of nonlinear scalar difference equations of order greater than one. Our primary concern is to study the global asymptotic stability of the equilibrium solution. We are also interested in whether the solutions are bounded away from zero and infinity, in the description of the semi cycles of the solutions, and in the existence of periodic solutions. This monograph contains some recent important developments in this area together with some applications to mathematical biology. Our intention is to expose the reader to the frontiers of the subject and to formulate some important open problems that require our immediate attention."
This book started its life as a series of lectures given by the second author from the 1970's onwards to students in their third and fourth years in the Department of Mechanics and Mathematics at Rostov State University. For these lectures there was also an audience of engineers and applied mechanicists who wished to understand the functional analysis used in contemporary research in their fields. These people were not so much interested in functional analysis itself as in its applications; they did not want to be told about functional analysis in its most abstract form, but wanted a guided tour through those parts of the analysis needed for their applications. The lecture notes evolved over the years as the first author started to make more formal typewritten versions incorporating new material. About 1990 the first author prepared an English version and submitted it to Kluwer Academic Publishers for inclusion in the series Solid Mechanics and its Applications. At that state the notes were divided into three long chapters covering linear and nonlinear analysis. As Series Editor, the third author started to edit them. The requirements of lecture notes and books are vastly different. A book has to be complete (in some sense), self contained, and able to be read without the help of an instructor.
This edition develops the basic theory of Fourier transform. Stroock's approach is the one taken originally by Norbert Wiener and the Parseval's formula, as well as the Fourier inversion formula via Hermite functions. New exercises and solutions have been added for this edition.
Cardiovascular diseases have a major impact in Western countries. Mathematical models and numerical simulations can aid the understanding of physiological and pathological processes, complementing the information provided to medical doctors by medical imaging and other non-invasive means, and opening the possibility of a better diagnosis and more in-depth surgical planning.This book offers a mathematically sound and up-to-date foundation to the training of researchers, and serves as a useful reference for the development of mathematical models and numerical simulation codes. It is structured into different chapters, written by recognized experts in the field, but it features a common thread with consistency of notation and expressions and systematic cross-referencing. Many fundamental issues are faced, such as: the mathematical representation of vascular geometries extracted from medical images, modelling blood rheology and the complex multilayer structure of the vascular tissue, and its possible pathologies, the mechanical and chemical interaction between blood and vascular walls; the different scales coupling local and systemic dynamics. All these topics introduce challenging mathematical and numerical problems, demanding for advanced analysis and simulation techniques. This book is addressed to graduate students and researchers in the field of bioengineering, applied mathematics and medicine, wishing to engage themselves in the fascinating task of modeling how the cardiovascular system works.
For more than a century, the study of various types of inequalities has been the focus of great attention by many researchers, interested both in the theory and its applications. In particular, there exists a very rich literature related to the well known Cebysev, Gruss, Trapezoid, Ostrowski, Hadamard and Jensen type inequalities. The present monograph is an attempt to organize recent progress related to the above inequalities, which we hope will widen the scope of their applications. The field to be covered is extremely wide and it is impossible to treat all of these here. The material included in the monograph is recent and hard to find in other books. It is accessible to any reader with a reasonable background in real analysis and an acquaintance with its related areas. All results are presented in an elementary way and the book could also serve as a textbook for an advanced graduate course. The book deserves a warm welcome to those who wish to learn the subject and it will also be most valuable as a source of reference in the field. It will be invaluable reading for mathematicians and engineers and also for graduate students, scientists and scholars wishing to keep abreast of this important area of research.
This book provides a comprehensive presentation of the conceptual basis of wavelet analysis, including the construction and analysis of wavelet bases. It motivates the central ideas of wavelet theory by offering a detailed exposition of the Haar series, then shows how a more abstract approach allows readers to generalize and improve upon the Haar series. It then presents a number of variations and extensions of Haar construction.
Most topics dealt with here deal with complex analysis of both one and several complex variables. Several contributions come from elasticity theory. Areas covered include the theory of p-adic analysis, mappings of bounded mean oscillations, quasiconformal mappings of Klein surfaces, complex dynamics of inverse functions of rational or transcendental entire functions, the nonlinear Riemann-Hilbert problem for analytic functions with nonsmooth target manifolds, the Carleman-Bers-Vekua system, the logarithmic derivative of meromorphic functions, G-lines, computing the number of points in an arbitrary finite semi-algebraic subset, linear differential operators, explicit solution of first and second order systems in bounded domains degenerating at the boundary, the Cauchy-Pompeiu representation in L2 space, strongly singular operators of Calderon-Zygmund type, quadrature solutions to initial and boundary-value problems, the Dirichlet problem, operator theory, tomography, elastic displacements and stresses, quantum chaos, and periodic wavelets.
Previous publications on the generalization of the Thomae formulae to "Zn" curves have emphasized the theory's implications in mathematical physics and depended heavily on applied mathematical techniques. This book redevelops these previous results demonstrating how they can be derived directly from the basic properties of theta functions as functions on compact Riemann surfaces. "Generalizations of Thomae's Formulafor "Zn" Curves" includes several refocused proofs developed in a generalized context that is more accessible to researchers in related mathematical fields such as algebraic geometry, complex analysis, and number theory. This book is intended for mathematicians with an interest in complex analysis, algebraic geometry or number theory as well as physicists studying conformal field theory."
The aim of this book is to construct categories of spaces which contain all the C?-manifolds, but in addition infinitesimal spaces and arbitrary function spaces. To this end, the techniques of Grothendieck toposes (and the logic inherent to them) are explained at a leisurely pace and applied. By discussing topics such as integration, cohomology and vector bundles in the new context, the adequacy of these new spaces for analysis and geometry will be illustrated and the connection to the classical approach to C?-manifolds will be explained.
As is known, the book named "Multivariate spline functions and their applications" has been published by the Science Press in 1994. This book is an English edition based on the original book mentioned 1 above with many changes, including that of the structure of a cubic - interpolation in n-dimensional spline spaces, and more detail on triangu- lations have been added in this book. Special cases of multivariate spline functions (such as step functions, polygonal functions, and piecewise polynomials) have been examined math- ematically for a long time. I. J. Schoenberg (Contribution to the problem of application of equidistant data by analytic functions, Quart. Appl. Math., 4(1946), 45 - 99; 112 - 141) and W. Quade & L. Collatz (Zur Interpo- lations theories der reellen periodischen function, Press. Akad. Wiss. (PhysMath. KL), 30(1938), 383- 429) systematically established the the- ory of the spline functions. W. Quade & L. Collatz mainly discussed the periodic functions, while I. J. Schoenberg's work was systematic and com- plete. I. J. Schoenberg outlined three viewpoints for studing univariate splines: Fourier transformations, truncated polynomials and Taylor ex- pansions. Based on the first two viewpoints, I. J. Schoenberg deduced the B-spline function and its basic properties, especially the basis func- tions. Based on the latter viewpoint, he represented the spline functions in terms of truncated polynomials. These viewpoints and methods had significantly effected on the development of the spline functions.
'Et moi ..... si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs. on the topmost shelf next to the dusty canister labelled 'discarded non. The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
This book presents applications of Newton-like and other similar methods to solve abstract functional equations involving fractional derivatives. It focuses on Banach space-valued functions of a real domain - studied for the first time in the literature. Various issues related to the modeling and analysis of fractional order systems continue to grow in popularity, and the book provides a deeper and more formal analysis of selected issues that are relevant to many areas - including decision-making, complex processes, systems modeling and control - and deeply embedded in the fields of engineering, computer science, physics, economics, and the social and life sciences. The book offers a valuable resource for researchers and graduate students, and can also be used as a textbook for seminars on the above-mentioned subjects. All chapters are self-contained and can be read independently. Further, each chapter includes an extensive list of references. |
You may like...
Constructive Approximation on the Sphere…
W Freeden, T. Gervens, …
Hardcover
R3,855
Discovery Miles 38 550
Fourier BEM - Generalization of Boundary…
Fabian M.E. Duddeck
Hardcover
R2,748
Discovery Miles 27 480
Sustained Simulation Performance 2017…
Michael M Resch, Wolfgang Bez, …
Hardcover
Advances in Mechanism Design II…
Jaroslav Beran, Martin Bilek, …
Hardcover
R7,724
Discovery Miles 77 240
|