![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
This book provides a comprehensive introduction to the theory of ordinary differential equations with a focus on mechanics and dynamical systems as important applications of the theory. The text is written to be used in the traditional way or in a more applied way. In addition to its use in a traditional one or two semester graduate course in mathematics, the book is organized to be used for interdisciplinary courses in applied mathematics, physics, and engineering.
The Mathematical Elasticity set contains three self-contained volumes that together provide the only modern treatise on elasticity. They introduce contemporary research on three-dimensional elasticity, the theory of plates, and the theory of shells. Each volume contains proofs, detailed surveys of all mathematical prerequisites, and many problems for teaching and self-study. An extended preface and extensive bibliography have been added to each volume to highlight the progress that has been made since the original publication. The first book, Three-Dimensional Elasticity, covers the modeling and mathematical analysis of nonlinear three-dimensional elasticity. In volume two, Theory of Plates, asymptotic methods provide a rigorous mathematical justification of the classical two-dimensional linear plate and shallow shell theories. The objective of Theory of Shells, the final volume, is to show how asymptotic methods provide a rigorous mathematical justification of the classical two-dimensional linear shell theories: membrane, generalized membrane, and flexural. These classic textbooks are for advanced undergraduates, first-year graduate students, and researchers in pure or applied mathematics or continuum mechanics. They are appropriate for courses in mathematical elasticity, theory of plates and shells, continuum mechanics, computational mechanics, and applied mathematics in general.
Almost Automorphic and Almost Periodic Functions in Abstract Spaces introduces and develops the theory of almost automorphic vector-valued functions in Bochner's sense and the study of almost periodic functions in a locally convex space in a homogenous and unified manner. It also applies the results obtained to study almost automorphic solutions of abstract differential equations, expanding the core topics with a plethora of groundbreaking new results and applications. For the sake of clarity, and to spare the reader unnecessary technical hurdles, the concepts are studied using classical methods of functional analysis.
In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated "Ramanujan's lost notebook." The "lost notebook" contains considerable material on mock theta functions and so undoubtedly emanates from the last year of Ramanujan's life. It should be emphasized that the material on mock theta functions is perhaps Ramanujan's deepest work.
Many results, both from semi group theory itself and from the applied sciences, are phrased in discipline-specific languages and hence are hardly known to a broader community. This volume contains a selection of lectures presented at a conference that was organised as a forum for all mathematicians using semi group theory to learn what is happening outside their own field of research. The collection will help to establish a number of new links between various sub-disciplines of semigroup theory, stochastic processes, differential equations and the applied fields. The theory of semigroups of operators is a well-developed branch of functional analysis. Its foundations were laid at the beginning of the 20th century, while the fundamental generation theorem of Hille and Yosida dates back to the forties. The theory was, from the very beginning, designed as a universal language for partial differential equations and stochastic processes, but at the same time it started to live as an independent branch of operator theory. Nowadays, it still has the same distinctive flavour: it develops rapidly by posing new 'internal' questions and in answering them, discovering new methods that can be used in applications. On the other hand, it is influenced by questions from PDEs and stochastic processes as well as from applied sciences such as mathematical biology and optimal control, and thus it continually gathers a new momentum. Researchers and postgraduate students working in operator theory, partial differential equations, probability and stochastic processes, analytical methods in biology and other natural sciences, optimization and optimal control will find this volume useful.
Intended for beginners in ergodic theory, this introductory textbook addresses students as well as researchers in mathematical physics. The main novelty is the systematic treatment of characteristic problems in ergodic theory by a unified method in terms of convergent power series and renormalization group methods, in particular. Basic concepts of ergodicity, like Gibbs states, are developed and applied to, e.g., Asonov systems or KAM Theroy. Many examples illustrate the ideas and, in addition, a substantial number of interesting topics are treated in the form of guided problems.
The fourth of a five-volume exposition of the main principles of nonlinear functional analysis and its applications to the natural sciences, economics, and numerical analysis. The presentation is self-contained and accessible to the non-specialist, and topics covered include applications to mechanics, elasticity, plasticity, hydrodynamics, thermodynamics, statistical physics, and special and general relativity including cosmology. The book contains a detailed physical motivation of the relevant basic equations and a discussion of particular problems which have played a significant role in the development of physics and through which important mathematical and physical insight may be gained. It combines classical and modern ideas to build a bridge between the language and thoughts of physicists and mathematicians. Many exercises and a comprehensive bibliography complement the text.
This two volume set presents over 50 of the most groundbreaking contributions of Menahem M Schiffer. All of the reprints of Schiffer's works herein have extensive annotation and invited commentaries, giving new clarity and insight into the impact and legacy of Schiffer's work. A complete bibliography and brief biography make this a rounded and invaluable reference.
Ne as' book "Direct Methods in the Theory of Elliptic Equations," published 1967 in French, has become a standard reference for the mathematical theory of linear elliptic equations and systems. This English edition, translated by G. Tronel and A. Kufner, presents Ne as' work essentially in the form it was published in 1967. It gives a timeless and in some sense definitive treatment of a number issues in variational methods for elliptic systems and higher order equations. The text is recommended to graduate students of partial differential equations, postdoctoral associates in Analysis, and scientists working with linear elliptic systems. In fact, any researcher using the theory of elliptic systems will benefit from having the book in his library. The volume gives a self-contained presentation of the elliptic theory based on the "direct method," also known as the variational method. Due to its universality and close connections to numerical approximations, the variational method has become one of the most important approaches to the elliptic theory. The method does not rely on the maximum principle or other special properties of the scalar second order elliptic equations, and it is ideally suited for handling systems of equations of arbitrary order. The prototypical examples of equations covered by the theory are, in addition to the standard Laplace equation, Lame's system of linear elasticity and the biharmonic equation (both with variable coefficients, of course). General ellipticity conditions are discussed and most of the natural boundary condition is covered. The necessary foundations of the function space theory are explained along the way, in an arguably optimal manner. The standard boundary regularity requirement on the domains is the Lipschitz continuity of the boundary, which "when going beyond the scalar equations of second order" turns out to be a very natural class. These choices reflect the author's opinion that the Lame system and the biharmonic equations are just as important as the Laplace equation, and that the class of the domains with the Lipschitz continuous boundary (as opposed to smooth domains) is the most natural class of domains to consider in connection with these equations and their applications."
The theory of functional equations has been developed in a rapid and productive way in the second half of the Twentieth Century. First of all, this is due to the fact that the mathematical applications raised the investigations of newer and newer types of functional equations. At the same time, the self development of this theory was also very fruitful. This can be followed in many monographs that treat and discuss the various methods and approaches. These developments were also essentially influenced by a number jour nals, for instance, by the Publicationes Mathematicae Debrecen (founded in 1953) and by the Aequationes Mathematicae (founded in 1968), be cause these journals published papers from the field of functional equa tions readily and frequently. The latter journal also publishes the yearly report of the International Symposia on Functional Equations and a comprehensive bibliography of the most recent papers. At the same time, there are periodically and traditionally organized conferences in Poland and in Hungary devoted to functional equations and inequali ties. In 2000, the 38th International Symposium on Functional Equations was organized by the Institute of Mathematics and Informatics of the University of Debrecen in Noszvaj, Hungary. The report about this meeting can be found in Aequationes Math. 61 (2001), 281-320."
This monograph is devoted to a rapidly developing area of research of the qualitative theory of difference and functional differential equations. In fact, in the last 25 years Oscillation Theory of difference and functional differential equations has attracted many researchers. This has resulted in hundreds of research papers in every major mathematical journal, and several books. In the first chapter of this monograph, we address oscillation of solutions to difference equations of various types. Here we also offer several new fundamental concepts such as oscillation around a point, oscillation around a sequence, regular oscillation, periodic oscillation, point-wise oscillation of several orthogonal polynomials, global oscillation of sequences of real valued functions, oscillation in ordered sets, ( , R, )-oscillate, oscillation in linear spaces, oscillation in Archimedean spaces, and oscillation across a family. These concepts are explained through examples and supported by interesting results. In the second chapter we present recent results pertaining to the oscil lation of n-th order functional differential equations with deviating argu ments, and functional differential equations of neutral type. We mainly deal with integral criteria for oscillation. While several results of this chapter were originally formulated for more complicated and/or more general differ ential equations, we discuss here a simplified version to elucidate the main ideas of the oscillation theory of functional differential equations. Further, from a large number of theorems presented in this chapter we have selected the proofs of only those results which we thought would best illustrate the various strategies and ideas involved."
Like norms, translation invariant functions are a natural and powerful tool for the separation of sets and scalarization. This book provides an extensive foundation for their application. It presents in a unified way new results as well as results which are scattered throughout the literature. The functions are defined on linear spaces and can be applied to nonconvex problems. Fundamental theorems for the function class are proved, with implications for arbitrary extended real-valued functions. The scope of applications is illustrated by chapters related to vector optimization, set-valued optimization, and optimization under uncertainty, by fundamental statements in nonlinear functional analysis and by examples from mathematical finance as well as from consumer and production theory. The book is written for students and researchers in mathematics and mathematical economics. Engineers and researchers from other disciplines can benefit from the applications, for example from scalarization methods for multiobjective optimization and optimal control problems.
Our book is devoted to the topological fixed point theory both for single-valued and multivalued mappings in locally convex spaces, including its application to boundary value problems for ordinary differential equations (inclusions) and to (multivalued) dynamical systems. It is the first monograph dealing with the topo- logical fixed point theory in non-metric spaces. Although the theoretical material was tendentially selected with respect to ap- plications, we wished to have a self-consistent text (see the scheme below). There- fore, we supplied three appendices concerning almost-periodic and derivo-periodic single-valued {multivalued) functions and (multivalued) fractals. The last topic which is quite new can be also regarded as a contribution to the fixed point theory in hyperspaces. Nevertheless, the reader is assumed to be at least partly famil- iar in some related sections with the notions like the Bochner integral, the Au- mann multivalued integral, the Arzela-Ascoli lemma, the Gronwall inequality, the Brouwer degree, the Leray-Schauder degree, the topological (covering) dimension, the elemens of homological algebra, ...Otherwise, one can use the recommended literature. Hence, in Chapter I, the topological and analytical background is built. Then, in Chapter II (and partly already in Chapter I), topological principles necessary for applications are developed, namely: the fixed point index theory (resp. the topological degree theory), the Lefschetz and the Nielsen theories both in absolute and relative cases, periodic point theorems, topological essentiality, continuation-type theorems.
The manuscript gives a coherent and detailed account of the theory of series in the eighteenth and early nineteenth centuries. It provides in one place an account of many results that are generally to be found - if at all - scattered throughout the historical and textbook literature. It presents the subject from the viewpoint of the mathematicians of the period, and is careful to distinguish earlier conceptions from ones that prevail today.
This work introduces readers to the topic of maximal regularity for difference equations. The authors systematically present the method of maximal regularity, outlining basic linear difference equations along with relevant results. They address recent advances in the field, as well as basic semi group and cosine operator theories in the discrete setting. The authors also identify some open problems that readers may wish to take up for further research. This book is intended for graduate students and researchers in the area of difference equations, particularly those with advance knowledge of and interest in functional analysis.
Here is a modern introduction to the theory of tensor algebra and tensor analysis. It discusses tensor algebra and introduces differential manifold. Coverage also details tensor analysis, differential forms, connection forms, and curvature tensor. In addition, the book investigates Riemannian and pseudo-Riemannian manifolds in great detail. Throughout, examples and problems are furnished from the theory of relativity and continuum mechanics.
This work, consisting of expository articles as well as research papers, highlights recent developments in nonlinear analysis and differential equations. The material is largely an outgrowth of autumn school courses and seminars held at the University of Lisbon and has been thoroughly refereed. Several topics in ordinary differential equations and partial differential equations are the focus of key articles, including: * periodic solutions of systems with p-Laplacian type operators (J. Mawhin) * bifurcation in variational inequalities (K. Schmitt) * a geometric approach to dynamical systems in the plane via twist theorems (R. Ortega) * asymptotic behavior and periodic solutions for Navier--Stokes equations (E. Feireisl) * mechanics on Riemannian manifolds (W. Oliva) * techniques of lower and upper solutions for ODEs (C. De Coster and P. Habets) A number of related subjects dealing with properties of solutions, e.g., bifurcations, symmetries, nonlinear oscillations, are treated in other articles. This volume reflects rich and varied fields of research and will be a useful resource for mathematicians and graduate students in the ODE and PDE community.
This book gives an account of an ellipsoidal calculus and ellipsoidal techniques developed by the authors. The text ranges from a specially developed theory of exact set-valued solutions to the description of ellipsoidal calculus, related ellipsoidal-based methods and examples worked out with computer graphics.
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics.
Developed in this book are several deep connections between time-frequency (Fourier/Gabor) analysis and time-scale (wavelet) analysis, emphasizing the powerful adaptive methods that emerge when separate techniques from each area are properly assembled in a larger context. While researchers at the forefront of these areas are well aware of the benefits of such a unified approach, there remains a knowledge gap in the larger community of practitioners about the precise strengths and limitations of Fourier/Gabor analysis versus wavelets. This book fills that gap by presenting the interface of time-frequency and time-scale methods as a rich area of work. "Foundations of Time-Frequency and Time-Scale Methods" will be suitable for applied mathematicians and engineers in signal/image processing and communication theory, as well as researchers and students in mathematical analysis, signal analysis, and mathematical physics.
This book provides an overview of some of the most active topics in the theory of transformation groups over the past decades and stresses advances obtained in the last dozen years. The emphasis is on actions of Lie groups on manifolds and CW complexes. Manifolds and actions of Lie groups on them are studied in the linear, semialgebraic, definable, analytic, smooth, and topological categories. Equivalent vector bundles play an important role. The work is divided into fifteen articles and will be of interest to anyone researching or studying transformations groups. The references make it easy to find details and original accounts of the topics surveyed, including tools and theories used in these accounts.
Award-winning monograph of the Ferran Sunyer i Balaguer Prize 1997. This book is a self-contained exposition of the spectral theory
of Toeplitz operators with piecewise continuous symbols and
singular integral operators with piecewise continuous coefficients.
It includes an introduction to Carleson curves, Muckenhoupt
weights, weighted norm inequalities, local principles, Wiener-Hopf
factorization, and Banach algebras generated by idempotents. Some
basic phenomena in the field and the techniques for treating them
came to be understood only in recent years and are comprehensively
presented here for the first time.
The book is a graduate text on unbounded self-adjoint operators on Hilbert space and their spectral theory with the emphasis on applications in mathematical physics (especially, Schroedinger operators) and analysis (Dirichlet and Neumann Laplacians, Sturm-Liouville operators, Hamburger moment problem) . Among others, a number of advanced special topics are treated on a text book level accompanied by numerous illustrating examples and exercises. The main themes of the book are the following: - Spectral integrals and spectral decompositions of self-adjoint and normal operators - Perturbations of self-adjointness and of spectra of self-adjoint operators - Forms and operators - Self-adjoint extension theory :boundary triplets, Krein-Birman-Vishik theory of positive self-adjoint extension
Weak convergence is a basic tool of modern nonlinear analysis because it enjoys the same compactness properties that finite dimensional spaces do: basically, bounded sequences are weak relatively compact sets. Nonetheless, weak conver gence does not behave as one would desire with respect to nonlinear functionals and operations. This difficulty is what makes nonlinear analysis much harder than would normally be expected. Parametrized measures is a device to under stand weak convergence and its behavior with respect to nonlinear functionals. Under suitable hypotheses, it yields a way of representing through integrals weak limits of compositions with nonlinear functions. It is particularly helpful in comprehending oscillatory phenomena and in keeping track of how oscilla tions change when a nonlinear functional is applied. Weak convergence also plays a fundamental role in the modern treatment of the calculus of variations, again because uniform bounds in norm for se quences allow to have weak convergent subsequences. In order to achieve the existence of minimizers for a particular functional, the property of weak lower semicontinuity should be established first. This is the crucial and most delicate step in the so-called direct method of the calculus of variations. A fairly large amount of work has been devoted to determine under what assumptions we can have this lower semicontinuity with respect to weak topologies for nonlin ear functionals in the form of integrals. The conclusion of all this work is that some type of convexity, understood in a broader sense, is usually involved." |
![]() ![]() You may like...
Places, Towns and Townships 2021
Deirdre A. Gaquin, Mary Meghan Ryan
Hardcover
R3,493
Discovery Miles 34 930
Innate DNA and RNA Recognition - Methods…
Hans-Joachim Anders, Adriana Migliorini
Hardcover
The Pottery Gardener - Flowers and Hens…
Arthur Parkinson
Paperback
![]()
|