![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
This monograph contains a description of original methods and results concern ing global properties of linear differential equations of the nth order, n ~ 2, in the real domain. This area of research concerning second order linear differential equations was started 35 years ago by O. Boruvka. He summarized his results in the monograph "Lineare Differentialtransforrnationen 2. Ordnung", VEB, Berlin 1967 (extended version: "Linear Differential Transformations of the Second Order", The English U niv. Press, London 1971). This book deals with linear differential equations of the nth order, n ~ 2, and summarizes results in this field in a unified fashion. However, this mono graph is by no means intended to be a survey of all results in this area. I t contains only a selection of results, which serves to illustrate the unified approach presented here. By using recent methods and results of algebra, topology, differential geometry, functional analysis, theory of functional equations and linear differential equations of the second order, and by introducing several original methods, global solutions of problems which were previously studied only locally by Kummer, Brioschi, Laguerre, Forsyth, Halphen, Lie, Stiickel and others are provided. The structure of global transformations is described by algebraic means (theory of categories: Brandt and Ehresmann groupoids), a new geometrical approach is introduced that leads to global canonical forms (in contrast to the local Laguerre-Forsyth or Halphen forms) and is suitable for the application of Cartan's moving-frame-of-reference method.
PREFACE The theory of differential-operator equations has been described in various monographs, but the initial physical problem which leads to these equations is often hidden. When the physical problem is studied, the mathematical proofs are either not given or are quickly explained. In this book, we give a systematic treatment of the partial differential equations which arise in elastostatic problems. In particular, we study problems which are obtained from asymptotic expansion with two scales. Here the methods of operator pencils and differential-operator equations are used. This book is intended for scientists and graduate students in Functional Analy sis, Differential Equations, Equations of Mathematical Physics, and related topics. It would undoubtedly be very useful for mechanics and theoretical physicists. We would like to thank Professors S. Yakubov and S. Kamin for helpfull dis cussions of some parts of the book. The work on the book was also partially supported by the European Community Program RTN-HPRN-CT-2002-00274. xiii INTRODUCTION In first two sections of the introduction, a classical mathematical problem will be exposed: the Laplace problem. The domain of definition will be, on the first time, an infinite strip and on the second time, a sector. To solve this problem, a well known separation of variables method will be used. In this way, the structure of the solution can be explicitly found. For more details about the separation of variables method exposed in this part, the reader can refer to, for example, the book by D. Leguillon and E. Sanchez-Palencia LS]."
These proceedings report on the conference "Math Everywhere," celebrating the 60th birthday of the mathematician Vincenzo Capasso. The conference promoted ideas Capasso has pursued and shared the open atmosphere he is known for. Topic sections include: Deterministic and Stochastic Systems. Mathematical Problems in Biology, Medicine and Ecology. Mathematical Problems in Industry and Economics. The broad spectrum of contributions to this volume demonstrates the truth of its title: Math is Everywhere, indeed.
No books dealing with a comprehensive illustration of the fast developing field of nonlinear analysis had been published for the mathematicians interested in this field for more than a half century until D. H. Hyers, G. Isac and Th. M. Rassias published their book, "Stability of Functional Equations in Several Variables." This book will complement the books of Hyers, Isac and Rassias and of Czerwik (Functional Equations and Inequalities in Several Variables) by presenting mainly the results applying to the Hyers-Ulam-Rassias stability. Many mathematicians have extensively investigated the subjects on the Hyers-Ulam-Rassias stability. This book covers and offers almost all classical results on the Hyers-Ulam-Rassias stability in an integrated and self-contained fashion.
to Classical Complex Analysis Vol. 1 by Robert B. Burckel Kansas State University 1979 BIRKHAUSER VERLAG BASEL UND STUTTGART CIP-Kurztitelaufnahme der Deutschen Bibliothek Burckel, Robert B.: An introduction to classical complex analysis I by Robert B. Burckel. - Basel. Stuttgart: Birkhiiuser. Vol. I. - 1979. (Lehrbilcher und Monographien aus dem Gebiete der exakten Wissenschaften: Math. Reihe; Bd. 64) All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the Copyright owner. (c) Birkhiiuser Verlag Basel, 1979 North and South America Edition published by ACADEMIC PRESS. INC. III Fifth Avenue, New York, New York 10003 (Pure and Applied Mathematics, A Series of Monographs and Textbooks, Volume 82) ISBN-13: 978-3-0348-9376-3 e-ISBN-13: 978-3-0348-9374-9 DOl: 10.1007/978-3-0348-9374-9 Library of Congress Catalog Card Number 78-67403 5 Contents Volume I PREFACE 9 Chapter 0 PREREQUISITES AND PRELIMINARIES 13 1 Set Theory 13 2 Algebra 14 3 The Battlefield 14 4 Metric Spaces 15 5 Limsup and All That 18 6 Continuous Functions 20 7 Calculus 21 Chapter I CURVES, CONNECTEDNESS AND CONVEXITY 22 1 Elementary Results on Connectedness 22 2 Connectedness of Intervals, Curves and Convex Sets 23 3 The Basic Connectedness Lemma 28 4 Components and Compact Exhaustions 29 5 Connectivity of a Set 33 6 Extension Theorems 37 Notes to Chapter I 39"
With a focus on the interplay between mathematics and applications of imaging, the first part covers topics from optimization, inverse problems and shape spaces to computer vision and computational anatomy. The second part is geared towards geometric control and related topics, including Riemannian geometry, celestial mechanics and quantum control. Contents: Part I Second-order decomposition model for image processing: numerical experimentation Optimizing spatial and tonal data for PDE-based inpainting Image registration using phase amplitude separation Rotation invariance in exemplar-based image inpainting Convective regularization for optical flow A variational method for quantitative photoacoustic tomography with piecewise constant coefficients On optical flow models for variational motion estimation Bilevel approaches for learning of variational imaging models Part II Non-degenerate forms of the generalized Euler Lagrange condition for state-constrained optimal control problems The Purcell three-link swimmer: some geometric and numerical aspects related to periodic optimal controls Controllability of Keplerian motion with low-thrust control systems Higher variational equation techniques for the integrability of homogeneous potentials Introduction to KAM theory with a view to celestial mechanics Invariants of contact sub-pseudo-Riemannian structures and Einstein Weyl geometry Time-optimal control for a perturbed Brockett integrator Twist maps and Arnold diffusion for diffeomorphisms A Hamiltonian approach to sufficiency in optimal control with minimal regularity conditions: Part I Index
The main concern of this book is the distribution of zeros of polynomials that are orthogonal on the unit circle with respect to an indefinite weighted scalar or inner product. The first theorem of this type, proved by M. G. Krein, was a far-reaching generalization of G. Szeg 's result for the positive definite case. A continuous analogue of that theorem was proved by Krein and H. Langer. These results, as well as many generalizations and extensions, are thoroughly treated in this book. A unifying theme is the general problem of orthogonalization with invertible squares in modules over C*-algebras. Particular modules that are considered in detail include modules of matrices, matrix polynomials, matrix-valued functions, linear operators, and others. One of the central features of this book is the interplay between orthogonal polynomials and their generalizations on the one hand, and operator theory, especially the theory of Toeplitz marices and operators, and Fredholm and Wiener-Hopf operators, on the other hand. The book is of interest to both engineers and specialists in analysis.
The purpose of this book is to present some new methods in the treatment of partial differential equations. Some of these methods lead to effective numerical algorithms when combined with the digital computer. Also presented is a useful chapter on Green's functions which generalizes, after an introduction, to new methods of obtaining Green's functions for partial differential operators. Finally some very new material is presented on solving partial differential equations by Adomian's decomposition methodology. This method can yield realistic computable solutions for linear or non linear cases even for strong nonlinearities, and also for deterministic or stochastic cases - again even if strong stochasticity is involved. Some interesting examples are discussed here and are to be followed by a book dealing with frontier applications in physics and engineering. In Chapter I, it is shown that a use of positive operators can lead to monotone convergence for various classes of nonlinear partial differential equations. In Chapter II, the utility of conservation technique is shown. These techniques are suggested by physical principles. In Chapter III, it is shown that dyn mic programming applied to variational problems leads to interesting classes of nonlinear partial differential equations. In Chapter IV, this is investigated in greater detail. In Chapter V, we show. that the use of a transformation suggested by dynamic programming leads to a new method of successive approximations."
Maximum principles are bedrock results in the theory of second order elliptic equations. This principle, simple enough in essence, lends itself to a quite remarkable number of subtle uses when combined appropriately with other notions. Intended for a wide audience, the book provides a clear and comprehensive explanation of the various maximum principles available in elliptic theory, from their beginning for linear equations to recent work on nonlinear and singular equations.
We present here the lectures and a selection of the seminars given at the Ninth International Workshop on Instabilities and Nonequilibrium Structures which took place in Vifiadel Mar, Chile, in December 2001. The Workshop was organized by Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Instituto de Fisica of Universidad Cat6lica de Valparaiso, Centro de Fisica No Lineal y Sistemas Complejos de Santiago and Facultad de Ingenieria, Universidad de los Andes, which starting from this year joins the other institutions in the coorganization ofthe Workshop. The organizers would like to express their gratitude to the following sponsors: Facultad de Ciencias Fisicas y Matematicas de la Universidad de Chile, Instituto de Fisica de la Universidad Cat6lica de Valparaiso, Facultad de Ingenieria de la Universidad de los Andes, Centro de Fisica No Lineal y Sistemas Complejos de Santiago, Academia Chilena de Ciencias, Ministere Francais des Affaires Etrangeres, CONICYT (Comisi6n Nacional de Investigaci6n Cientifica y Tecno16gicade Chile) and Departamento Tecnico de Investigaci6n y de Relaciones Internacionales de la Universidad de Chile. Enrique Tirapegui PREFACE This book consists of two parts, the first one has three lectures written by Professors H. R. Brand, M. Moreau and L. S. Tuckerman. H. R. Brand gives an overview about reorientation and undulation instabilities in liquid crystals, M. Moreau presents recent results on biased tracer diffusion in lattice gases, finally, L. S. Tuckerman summarizes some numerical methods used in bifurcation problems.
In 1960 the Polish mathematician Zdzidlaw Opial (1930--1974) published an inequality involving integrals of a function and its derivative. This volume offers a systematic and up-to-date account of developments in Opial-type inequalities. The book presents a complete survey of results in the field, starting with Opial's landmark paper, traversing through its generalizations, extensions and discretizations. Some of the important applications of these inequalities in the theory of differential and difference equations, such as uniqueness of solutions of boundary value problems, and upper bounds of solutions are also presented. This book is suitable for graduate students and researchers in mathematical analysis and applications.
Since the 'Introduction' to the main text gives an account of the way in which the problems treated in the following pages originated, this 'Preface' may be limited to an acknowledgement of the support the work has received. It started during the pe riod when I was professor of aero- and hydrodynamics at the Technical University in Delft, Netherlands, and many discussions with colleagues ha ve in: fluenced its devel opment. Oftheir names I mention here only that ofH. A. Kramers. Papers No. 1-13 ofthe list given at the end ofthe text were written during that period. Severa ofthese were attempts to explore ideas which later had to be abandoned, but gradually a line of thought emerged which promised more definite results. This line began to come to the foreground in pa per No. 3 (1939}, while a preliminary formulation ofthe results was given in paper No. 12 (1954}. At that time, however, there still was missing a practica method for manipulating a certain distribution function of central interest. A six months stay at the Hydrodynamics Laboratories ofthe California Institute of Technology, Pasadena, California (1950-1951}, was supported by a Contract with the Department of the Air F orce, N o. AF 33(038}-17207. A course of lectures was given during this period, which were published in typescript under the title 'On Turbulent Fluid Motion', as Report No. E-34. 1, July 1951, of the Hydrodynamics Laboratory."
Following the advance in computer technology, the numerical technique has made signi?cant progress in the past decades. Among the major techniques available for numerically analyzing continuum mechanics problems, ?nite d- ference method is most early developed. It is di?cult to deal with cont- uum mechanics problems showing complex curvilinear geometries by using this method. The other method that can consistently discretize continuum mechanics problems showing arbitrarily complex geometries is ?nite element method. In addition, boundary element method is also a useful numerical method. In the past decade, the di?erential quadrature and generic di?erential quadraturesbaseddiscreteelementanalysismethodshavebeendevelopedand usedto solve various continuum mechanics problems. These methods have the same advantage as ?nite element method of consistently discretizing cont- uum mechanics problems having arbitrarily complex geometries. This book includes my research results obtained in developing the related novel discrete element analysis methods using both of the extended di?erential quadrature based spacial and temporal elements. It is attempted to introduce the dev- oped numerical techniques as applied to the solution of various continuum mechanics problems, systematically.
Ordinary differential control thPory (the classical theory) studies input/output re lations defined by systems of ordinary differential equations (ODE). The various con cepts that can be introduced (controllability, observability, invertibility, etc. ) must be tested on formal objects (matrices, vector fields, etc. ) by means of formal operations (multiplication, bracket, rank, etc. ), but without appealing to the explicit integration (search for trajectories, etc. ) of the given ODE. Many partial results have been re cently unified by means of new formal methods coming from differential geometry and differential algebra. However, certain problems (invariance, equivalence, linearization, etc. ) naturally lead to systems of partial differential equations (PDE). More generally, partial differential control theory studies input/output relations defined by systems of PDE (mechanics, thermodynamics, hydrodynamics, plasma physics, robotics, etc. ). One of the aims of this book is to extend the preceding con cepts to this new situation, where, of course, functional analysis and/or a dynamical system approach cannot be used. A link will be exhibited between this domain of applied mathematics and the famous 'Backlund problem', existing in the study of solitary waves or solitons. In particular, we shall show how the methods of differ ential elimination presented here will allow us to determine compatibility conditions on input and/or output as a better understanding of the foundations of control the ory. At the same time we shall unify differential geometry and differential algebra in a new framework, called differential algebraic geometry."
Based on a translation of the 6th edition of Gewöhnliche Differentialgleichungen by Wolfgang Walter, this edition includes additional treatments of important subjects not found in the German text as well as material that is seldom found in textbooks, such as new proofs for basic theorems. This unique feature of the book calls for a closer look at contents and methods with an emphasis on subjects outside the mainstream. Exercises, which range from routine to demanding, are dispersed throughout the text and some include an outline of the solution. Applications from mechanics to mathematical biology are included and solutions of selected exercises are found at the end of the book. It is suitable for mathematics, physics, and computer science graduate students to be used as collateral reading and as a reference source for mathematicians. Readers should have a sound knowledge of infinitesimal calculus and be familiar with basic notions from linear algebra; functional analysis is developed in the text when needed.
This book extends classical Hermite-Hadamard type inequalities to the fractional case via establishing fractional integral identities, and discusses Riemann-Liouville and Hadamard integrals, respectively, by various convex functions. Illustrating theoretical results via applications in special means of real numbers, it is an essential reference for applied mathematicians and engineers working with fractional calculus. Contents Introduction Preliminaries Fractional integral identities Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals Hermite-Hadamard inequalities involving Hadamard fractional integrals
This well-organized and coherent collection of papers leads the reader to the frontiers of present research in the theory of nonlinear partial differential equations and the calculus of variations and offers insight into some exciting developments. In addition, most articles also provide an excellent introduction to their background, describing extensively as they do the history of those problems presented, as well as the state of the art and offer a well-chosen guide to the literature. Part I contains the contributions of geometric nature: From spectral theory on regular and singular spaces to regularity theory of solutions of variational problems. Part II consists of articles on partial differential equations which originate from problems in physics, biology and stochastics. They cover elliptic, hyperbolic and parabolic cases.
This graduate-level text provides a language for understanding, unifying, and implementing a wide variety of algorithms for digital signal processing - in particular, to provide rules and procedures that can simplify or even automate the task of writing code for the newest parallel and vector machines. It thus bridges the gap between digital signal processing algorithms and their implementation on a variety of computing platforms. The mathematical concept of tensor product is a recurring theme throughout the book, since these formulations highlight the data flow, which is especially important on supercomputers. Because of their importance in many applications, much of the discussion centres on algorithms related to the finite Fourier transform and to multiplicative FFT algorithms.
Honoring Andrei Agrachev's 60th birthday, this volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as sub-Riemannian, Finslerian geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume, etc.
Useful both as a text for students and as a source of reference for the more advanced mathematician, this book presents a unified treatment of that part of measure theory which is most useful for its application in modern analysis. Topics studied include sets and classes, measures and outer measures, measurable functions, integration, general set functions, product spaces, transformations, probability, locally compact spaces, Haar measure and measure and topology in groups. The text is suitable for the beginning graduate student as well as the advanced undergraduate.
In 1903 Fredholm published his famous paper on integral equations. Since then linear integral operators have become an important tool in many areas, including the theory of Fourier series and Fourier integrals, approximation theory and summability theory, and the theory of integral and differential equations. As regards the latter, applications were soon extended beyond linear operators. In approximation theory, however, applications were limited to linear operators mainly by the fact that the notion of singularity of an integral operator was closely connected with its linearity. This book represents the first attempt at a comprehensive treatment of approximation theory by means of nonlinear integral operators in function spaces. In particular, the fundamental notions of approximate identity for kernels of nonlinear operators and a general concept of modulus of continuity are developed in order to obtain consistent approximation results. Applications to nonlinear summability, nonlinear integral equations and nonlinear sampling theory are given. In particular, the study of nonlinear sampling operators is important since the results permit the reconstruction of several classes of signals. In a wider context, the material of this book represents a starting point for new areas of research in nonlinear analysis. For this reason the text is written in a style accessible not only to researchers but to advanced students as well.
In 2008, November 23-28, the workshop of "Classical Problems on Planar Polynomial Vector Fields " was held in the Banff International Research Station, Canada. Called "classical problems", it was concerned with the following: (1) Problems on integrability of planar polynomial vector fields. (2) The problem of the center stated by Poincare for real polynomial differential systems, which asks us to recognize when a planar vector field defined by polynomials of degree at most n possesses a singularity which is a center. (3) Global geometry of specific classes of planar polynomial vector fields. (4) Hilbert's 16th problem. These problems had been posed more than 110 years ago. Therefore, they are called "classical problems" in the studies of the theory of dynamical systems. The qualitative theory and stability theory of differential equations, created by Poincare and Lyapunov at the end of the 19th century, had major developments as two branches of the theory of dynamical systems during the 20th century. As a part of the basic theory of nonlinear science, it is one of the very active areas in the new millennium. This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert's 16th problem. The book is intended for graduate students, post-doctors and researchers in dynamical systems. For all engineers who are interested in the theory of dynamical systems, it is also a reasonable reference. It requires a minimum background of a one-year course on nonlinear differential equations.
The present volume is comprised of contributions solicited from invitees to conferences held at the University of Houston, University of Jyv] askyl] a, and Xi'an Jiaotong University honoring the 70th birthday of Professor Roland Glowinski. Although scientists convened on three di?erent continents, the - itors prefer to view the meetings as single event. The three locales signify the fact Roland has friends, collaborators and admirers across the globe. The contents span a wide range of topics in contemporary applied mathematics rangingfrompopulationdynamics, to electromagnetics, to ?uidmechanics, to the mathematics of ?nance among others. However, they do not fully re?ect the breath and diversity of Roland's scienti?c interest. His work has always been at the intersection mathematics and scienti?c computing and their - plication to mechanics, physics, aeronautics, engineering sciences and more recently biology. He has made seminal contribution in the areas of methods for science computation, ?uid mechanics, numerical controls for distributed parameter systems, and solid and structural mechanics as well as shape - timization, stellar motion, electron transport, and semiconductor modeling. Two central themes arise from the corpus of Roland's work. The ?rst is that numerical methods should take advantage of the mathematical properties of themodel. Theyshouldbeportableandcomputablewithcomputingresources of the foreseeable future as well as with contemporary resources. The second theme is that whenever possible one should validate numerical with expe- mental data. The volume is written at an advanced scienti?c level and no e?ort has been made to make it self contained."
The classical theory of partial differential equations is rooted in physics, where equations (are assumed to) describe the laws of nature. Law abiding functions, which satisfy such an equation, are very rare in the space of all admissible functions (regardless of a particular topology in a function space). Moreover, some additional (like initial or boundary) conditions often insure the uniqueness of solutions. The existence of these is usually established with some apriori estimates which locate a possible solution in a given function space. We deal in this book with a completely different class of partial differential equations (and more general relations) which arise in differential geometry rather than in physics. Our equations are, for the most part, undetermined (or, at least, behave like those) and their solutions are rather dense in spaces of functions. We solve and classify solutions of these equations by means of direct (and not so direct) geometric constructions. Our exposition is elementary and the proofs of the basic results are selfcontained. However, there is a number of examples and exercises (of variable difficulty), where the treatment of a particular equation requires a certain knowledge of pertinent facts in the surrounding field. The techniques we employ, though quite general, do not cover all geometrically interesting equations. The border of the unexplored territory is marked by a number of open questions throughout the book. |
You may like...
The Finite Element Method for Fluid…
Olek C. Zienkiewicz, R.L. Taylor, …
Hardcover
Aircraft Design Projects - For…
Lloyd R. Jenkinson, Jim Marchman
Paperback
R1,465
Discovery Miles 14 650
Model-Free Prediction and Regression - A…
Dimitris N. Politis
Hardcover
R3,041
Discovery Miles 30 410
Advances in Computer Algebra - In Honour…
Carsten Schneider, Eugene Zima
Hardcover
R2,680
Discovery Miles 26 800
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
|