![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
On the 8th of August 1900 outstanding German mathematician David Hilbert delivered a talk "Mathematical problems" at the Second Interna tional Congress of Mathematicians in Paris. The talk covered practically all directions of mathematical thought of that time and contained a list of 23 problems which determined the further development of mathema tics in many respects (1, 119]. Hilbert's Sixteenth Problem (the second part) was stated as follows: Problem. To find the maximum number and to determine the relative position of limit cycles of the equation dy Qn(X, y) -= dx Pn(x, y)' where Pn and Qn are polynomials of real variables x, y with real coeffi cients and not greater than n degree. The study of limit cycles is an interesting and very difficult problem of the qualitative theory of differential equations. This theory was origi nated at the end of the nineteenth century in the works of two geniuses of the world science: of the Russian mathematician A. M. Lyapunov and of the French mathematician Henri Poincare. A. M. Lyapunov set forth and solved completely in the very wide class of cases a special problem of the qualitative theory: the problem of motion stability (154]. In turn, H. Poincare stated a general problem of the qualitative analysis which was formulated as follows: not integrating the differential equation and using only the properties of its right-hand sides, to give as more as possi ble complete information on the qualitative behaviour of integral curves defined by this equation (176]."
Aimed primarily at undergraduate level university students, An Illustrative Introduction to Modern Analysis provides an accessible and lucid contemporary account of the fundamental principles of Mathematical Analysis. The themes treated include Metric Spaces, General Topology, Continuity, Completeness, Compactness, Measure Theory, Integration, Lebesgue Spaces, Hilbert Spaces, Banach Spaces, Linear Operators, Weak and Weak* Topologies. Suitable both for classroom use and independent reading, this book is ideal preparation for further study in research areas where a broad mathematical toolbox is required.
The main theme of this book is the homotopy principle for holomorphic mappings from Stein manifolds to the newly introduced class of Oka manifolds. The book contains the first complete account of Oka-Grauert theory and its modern extensions, initiated by Mikhail Gromov and developed in the last decade by the author and his collaborators. Included is the first systematic presentation of the theory of holomorphic automorphisms of complex Euclidean spaces, a survey on Stein neighborhoods, connections between the geometry of Stein surfaces and Seiberg-Witten theory, and a wide variety of applications ranging from classical to contemporary."
This edited volume offers a state of the art overview of fast and robust solvers for the Helmholtz equation. The book consists of three parts: new developments and analysis in Helmholtz solvers, practical methods and implementations of Helmholtz solvers, and industrial applications. The Helmholtz equation appears in a wide range of science and engineering disciplines in which wave propagation is modeled. Examples are: seismic inversion, ultrasone medical imaging, sonar detection of submarines, waves in harbours and many more. The partial differential equation looks simple but is hard to solve. In order to approximate the solution of the problem numerical methods are needed. First a discretization is done. Various methods can be used: (high order) Finite Difference Method, Finite Element Method, Discontinuous Galerkin Method and Boundary Element Method. The resulting linear system is large, where the size of the problem increases with increasing frequency. Due to higher frequencies the seismic images need to be more detailed and, therefore, lead to numerical problems of a larger scale. To solve these three dimensional problems fast and robust, iterative solvers are required. However for standard iterative methods the number of iterations to solve the system becomes too large. For these reason a number of new methods are developed to overcome this hurdle. The book is meant for researchers both from academia and industry and graduate students. A prerequisite is knowledge on partial differential equations and numerical linear algebra.
Beginning graduate students in mathematical sciences and related areas in physical and computer sciences and engineering are expected to be familiar with a daunting breadth of mathematics, but few have such a background. This bestselling book helps students fill in the gaps in their knowledge. Thomas A. Garrity explains the basic points and a few key results of all the most important undergraduate topics in mathematics, emphasizing the intuitions behind the subject. The explanations are accompanied by numerous examples, exercises and suggestions for further reading that allow the reader to test and develop their understanding of these core topics. Featuring four new chapters and many other improvements, this second edition of All the Math You Missed is an essential resource for advanced undergraduates and beginning graduate students who need to learn some serious mathematics quickly.
In some domains of mechanics, physics and control theory boundary value problems arise for nonlinear first order PDEs. A well-known classical result states a sufficiency condition for local existence and uniqueness of twice differentiable solution. This result is based on the method of characteristics (MC). Very often, and as a rule in control theory, the continuous nonsmooth (non-differentiable) functions have to be treated as a solutions to the PDE. At the points of smoothness such solutions satisfy the equation in classical sense. But if a function satisfies this condition only, with no requirements at the points of nonsmoothness, the PDE may have nonunique solutions. The uniqueness takes place if an appropriate matching principle for smooth solution branches defined in neighboring domains is applied or, in other words, the notion of generalized solution is considered. In each field an appropriate matching principle are used. In Optimal Control and Differential Games this principle is the optimality of the cost function. In physics and mechanics certain laws must be fulfilled for correct matching. A purely mathematical approach also can be used, when the generalized solution is introduced to obtain the existence and uniqueness of the solution, without being aimed to describe (to model) some particular physical phenomenon. Some formulations of the generalized solution may meet the modelling of a given phenomenon, the others may not.
This dictionary offers clear and reliable explanations of over 100 keywords covering the entire field of non-classical continuum mechanics and generalized mechanics, including the theory of elasticity, heat conduction, thermodynamic and electromagnetic continua, as well as applied mathematics. Every entry includes the historical background and the underlying theory, basic equations and typical applications. The reference list for each entry provides a link to the original articles and the most important in-depth theoretical works. Last but not least, ever y entry is followed by a cross-reference to other related subject entries in the dictionary.
This book introduces the reader to important concepts in modern applied analysis, such as homogenization, gradient flows on metric spaces, geometric evolution, Gamma-convergence tools, applications of geometric measure theory, properties of interfacial energies, etc. This is done by tackling a prototypical problem of interfacial evolution in heterogeneous media, where these concepts are introduced and elaborated in a natural and constructive way. At the same time, the analysis introduces open issues of a general and fundamental nature, at the core of important applications. The focus on two-dimensional lattices as a prototype of heterogeneous media allows visual descriptions of concepts and methods through a large amount of illustrations.
This volume of the Proceedings of the congress ISAAC '97 collects the con tributions of the four sections 1. Function theoretic and functional analytic methods for pde, 2. Applications of function theory of several complex variables to pde, 3. Integral equations and boundary value problems, 4. Partial differential equations. Most but not all of the authors have participated in the congress. Unfortunately some from Eastern Europe and Asia have not managed to come because of lack of financial support. Nevertheless their manuscripts of the proposed talks are included in this volume. The majority of the papers deal with complex methods. Among them boundary value problems in particular the Riemann-Hilbert, the Riemann (Hilbert) and related problems are treated. Boundary behaviour of vector-valued functions are studied too. The Riemann-Hilbert problem is solved for elliptic complex equations, for mixed complex equations, and for several complex variables. It is considered in a general topological setting for mappings into q;n and related to Toeplitz operators. Convolution operators are investigated for nilpotent Lie groups leading to some consequences for the null space of the tangential Cauchy Riemann operator. Some boundary value problems for overdetermined systems in balls of q;n are solved explicitly. A survey is given for the Gauss-Manin connection associated with deformations of curve singularities. Several papers deal with generalizations of analytic functions with various applications to mathematical physics. Singular integrals in quaternionic anal ysis are studied which are applied to the time-harmonic Maxwell equations."
An approach to complexity theory which offers a means of analysing algorithms in terms of their tractability. The authors consider the problem in terms of parameterized languages and taking "k-slices" of the language, thus introducing readers to new classes of algorithms which may be analysed more precisely than was the case until now. The book is as self-contained as possible and includes a great deal of background material. As a result, computer scientists, mathematicians, and graduate students interested in the design and analysis of algorithms will find much of interest.
Boundary problems constitute an essential field of common mathematical interest. The intention of this volume is to highlight several analytic and geometric aspects of boundary problems with special emphasis on their interplay. It includes surveys on classical topics presented from a modern perspective as well as reports on current research. The collection splits into two related groups: - analysis and geometry of geometric operators and their index theory - elliptic theory of boundary value problems and the Shapiro-Lopatinsky condition
Research in the theory of trigonometric series has been carried out for over two centuries. The results obtained have greatly influenced various fields of mathematics, mechanics, and physics. Nowadays, the theory of simple trigonometric series has been developed fully enough (we will only mention the monographs by Zygmund [15, 16] and Bari [2]). The achievements in the theory of multiple trigonometric series look rather modest as compared to those in the one-dimensional case though multiple trigonometric series seem to be a natural, interesting and promising object of investigation. We should say, however, that the past few decades have seen a more intensive development of the theory in this field. To form an idea about the theory of multiple trigonometric series, the reader can refer to the surveys by Shapiro [1], Zhizhiashvili [16], [46], Golubov [1], D'yachenko [3]. As to monographs on this topic, only that ofYanushauskas [1] is known to me. This book covers several aspects of the theory of multiple trigonometric Fourier series: the existence and properties of the conjugates and Hilbert transforms of integrable functions; convergence (pointwise and in the LP-norm, p > 0) of Fourier series and their conjugates, as well as their summability by the Cesaro (C,a), a> -1, and Abel-Poisson methods; approximating properties of Cesaro means of Fourier series and their conjugates.
Contains well-chosen examples and exercises A student-friendly introduction that follows a workbook type approach
Since the building of all the Universe is perfect and is cre- ated by the wisdom Creator, nothing arises in the Universe in which one cannot see the sense of some maXImum or mInImUm Euler God moves the Universe along geometrical lines Plato Mathematical models of most closed physical systems are based on vari- ational principles, i.e., it is postulated that equations describing the evolu- tion of a system are the Euler~Lagrange equations of a certain functional. In this connection, variational methods are one of the basic tools for studying many problems of natural sciences. The first problems related to the search for extrema appeared as far back as in ancient mathematics. They go back to Archimedes, Appolonius, and Euclid. In many respects, the problems of seeking maxima and minima have stimulated the creation of differential calculus; the variational prin- ciples of optics and mechanics, which were discovered in the seventeenth and eighteenth centuries, gave impetus to an intensive development of the calculus of variations. In one way or another, variational problems were of interest to such giants of natural sciences as Fermat, Newton, Descartes, Euler, Huygens, 1. Bernoulli, J. Bernoulli, Legendre, Jacobi, Kepler, La- grange, and Weierstrass.
Operational methods have been used for over a century to solve problems such as ordinary and partial differential equations. When solving such problems, in many cases it is fairly easy to obtain the Laplace transform, while it is very demanding to determine the inverse Laplace transform which is the solution of a given problem. Sometimes, after some difficult contour integration we may find that a series solution results, but this may be quite difficult to evaluate in order to get an answer at a particular time value. The advent of computers has given an impetus to developing numerical methods for the determination of the inverse Laplace transform. This book gives background material on the theory of Laplace transforms, together with a fairly comprehensive list of methods which are available at the current time. Computer programs are included for those methods which perform consistently well on a wide range of Laplace transforms.
1 More than thirty years after its discovery by Abraham Robinson, the ideas and techniques of Nonstandard Analysis (NSA) are being applied across the whole mathematical spectrum, as well as constituting an im portant field of research in their own right. The current methods of NSA now greatly extend Robinson's original work with infinitesimals. However, while the range of applications is broad, certain fundamental themes re cur. The nonstandard framework allows many informal ideas (that could loosely be described as idealisation) to be made precise and tractable. For example, the real line can (in this framework) be treated simultaneously as both a continuum and a discrete set of points; and a similar dual ap proach can be used to link the notions infinite and finite, rough and smooth. This has provided some powerful tools for the research mathematician - for example Loeb measure spaces in stochastic analysis and its applications, and nonstandard hulls in Banach spaces. The achievements of NSA can be summarised under the headings (i) explanation - giving fresh insight or new approaches to established theories; (ii) discovery - leading to new results in many fields; (iii) invention - providing new, rich structures that are useful in modelling and representation, as well as being of interest in their own right. The aim of the present volume is to make the power and range of appli cability of NSA more widely known and available to research mathemati cians."
Congestion Control in Data Transmission Networks details the
modeling and control of data traffic in communication networks. It
shows how various networking phenomena can be represented in a
consistent mathematical framework suitable for rigorous formal
analysis. The monograph differentiates between fluid-flow
continuous-time traffic models, discrete-time processes with
constant sampling rates, and sampled-data systems with variable
discretization periods.
In 1961 Robinson introduced an entirely new version of the theory of infinitesimals, which he called Nonstandard analysis'. Nonstandard' here refers to the nature of new fields of numbers as defined by nonstandard models of the first-order theory of the reals. This system of numbers was closely related to the ring of Schmieden and Laugwitz, developed independently a few years earlier. During the last thirty years the use of nonstandard models in mathematics has taken its rightful place among the various methods employed by mathematicians. The contributions in this volume have been selected to present a panoramic view of the various directions in which nonstandard analysis is advancing, thus serving as a source of inspiration for future research. Papers have been grouped in sections dealing with analysis, topology and topological groups; probability theory; and mathematical physics. This volume can be used as a complementary text to courses in nonstandard analysis, and will be of interest to graduate students and researchers in both pure and applied mathematics and physics.
For several decades developments in porous media have taken place in almost independent areas. In civilengineering, many papers were publisheddealing with the foundations offlow and transport through porous media. The method used in most cases is called averaging, and the notion ofa representative elementary vol- ume(REV)playsanimportantrole. Inchemicalengineering,papersonconceptual models were written on the theory ofmixtures. Intheoretical physics and stochas- tic analysis, percolation theory has emerged, providing probabilistic models for systems where theconnectedness propertiesofsomecomponentdominatethebe- havior. In mathematics, atheoryhasbeendevelopedcalled homogenizationwhich deals with partial differential equations having rapidly oscillating coefficients. Early work in these and related areas was - among others - done by the fol- lowing scientists: Maxwell [Max81] and Rayleigh [Ray92] studied the effective conductivity of media with small concentrations of randomly and periodically, respectively, arranged inclusions. Einstein [Ein06] investigated the effective vis- cosityofsuspensions with hard spherical particles in compressible viscous fluids. Marchenko and Khrouslov [MK64] looked at the asymptotic nature of homog- enization; they introduced a general approach of averaging based on asymptotic tools which can handle a variety ofdifferent physical problems. Unfortunately, up to now, little efforthas been made to bridge the gap between these different fields of research. Consequently, many results were and are dis- covered independently, and scientists are almost unable to understand each other because the respective languages have been developing in different directions.
In this book the theory of hyperbolic sets is developed, both for diffeomorphisms and flows, with an emphasis on shadowing. We show that hyperbolic sets are expansive and have the shadowing property. Then we use shadowing to prove that hyperbolic sets are robust under perturbation, that they have an asymptotic phase property and also that the dynamics near a transversal homoclinic orbit is chaotic. It turns out that chaotic dynamical systems arising in practice are not quite hyperbolic. However, they possess enough hyperbolicity to enable us to use shadowing ideas to give computer-assisted proofs that computed orbits of such systems can be shadowed by true orbits for long periods of time, that they possess periodic orbits of long periods and that it is really true that they are chaotic. Audience: This book is intended primarily for research workers in dynamical systems but could also be used in an advanced graduate course taken by students familiar with calculus in Banach spaces and with the basic existence theory for ordinary differential equations.
This book, intended for researchers and graduate students in physics, applied mathematics and engineering, presents a detailed comparison of the important methods of solution for linear differential and difference equations - variation of constants, reduction of order, Laplace transforms and generating functions - bringing out the similarities as well as the significant differences in the respective analyses. Equations of arbitrary order are studied, followed by a detailed analysis for equations of first and second order. Equations with polynomial coefficients are considered and explicit solutions for equations with linear coefficients are given, showing significant differences in the functional form of solutions of differential equations from those of difference equations. An alternative method of solution involving transformation of both the dependent and independent variables is given for both differential and difference equations. A comprehensive, detailed treatment of Green's functions and the associated initial and boundary conditions is presented for differential and difference equations of both arbitrary and second order. A dictionary of difference equations with polynomial coefficients provides a unique compilation of second order difference equations obeyed by the special functions of mathematical physics. Appendices augmenting the text include, in particular, a proof of Cramer's rule, a detailed consideration of the role of the superposition principal in the Green's function, and a derivation of the inverse of Laplace transforms and generating functions of particular use in the solution of second order linear differential and difference equations with linear coefficients.
The first part of this volume gathers the lecture notes of the courses of the "XVII Escuela Hispano-Francesa", held in Gijon, Spain, in June 2016. Each chapter is devoted to an advanced topic and presents state-of-the-art research in a didactic and self-contained way. Young researchers will find a complete guide to beginning advanced work in fields such as High Performance Computing, Numerical Linear Algebra, Optimal Control of Partial Differential Equations and Quantum Mechanics Simulation, while experts in these areas will find a comprehensive reference guide, including some previously unpublished results, and teachers may find these chapters useful as textbooks in graduate courses. The second part features the extended abstracts of selected research work presented by the students during the School. It highlights new results and applications in Computational Algebra, Fluid Mechanics, Chemical Kinetics and Biomedicine, among others, offering interested researchers a convenient reference guide to these latest advances.
An up-to-date and unified treatment of bifurcation theory for variational inequalities in reflexive spaces and the use of the theory in a variety of applications, such as: obstacle problems from elasticity theory, unilateral problems; torsion problems; equations from fluid mechanics and quasilinear elliptic partial differential equations. The tools employed are those of modern nonlinear analysis. Accessible to graduate students and researchers who work in nonlinear analysis, nonlinear partial differential equations, and additional research disciplines that use nonlinear mathematics.
Nonstandard Methods of Analysis is concerned with the main trends in this field; infinitesimal analysis and Boolean-valued analysis. The methods that have been developed in the last twenty-five years are explained in detail, and are collected in book form for the first time. Special attention is paid to general principles and fundamentals of formalisms for infinitesimals as well as to the technique of descents and ascents in a Boolean-valued universe. The book also includes various novel applications of nonstandard methods to ordered algebraic systems, vector lattices, subdifferentials, convex programming etc. that have been developed in recent years. For graduate students, postgraduates and all researchers interested in applying nonstandard methods in their work.
This monograph presents an introduction to some geometric and analytic aspects of the maximum principle. In doing so, it analyses with great detail the mathematical tools and geometric foundations needed to develop the various new forms that are presented in the first chapters of the book. In particular, a generalization of the Omori-Yau maximum principle to a wide class of differential operators is given, as well as a corresponding weak maximum principle and its equivalent open form and parabolicity as a special stronger formulation of the latter. In the second part, the attention focuses on a wide range of applications, mainly to geometric problems, but also on some analytic (especially PDEs) questions including: the geometry of submanifolds, hypersurfaces in Riemannian and Lorentzian targets, Ricci solitons, Liouville theorems, uniqueness of solutions of Lichnerowicz-type PDEs and so on. Maximum Principles and Geometric Applications is written in an easy style making it accessible to beginners. The reader is guided with a detailed presentation of some topics of Riemannian geometry that are usually not covered in textbooks. Furthermore, many of the results and even proofs of known results are new and lead to the frontiers of a contemporary and active field of research. |
![]() ![]() You may like...
From Brains to Systems - Brain-Inspired…
Carlos Hernandez, Ricardo Sanz, …
Hardcover
R5,628
Discovery Miles 56 280
Handbook of Data Science with Semantic…
Archana Patel, Narayan C Debnath
Hardcover
R8,549
Discovery Miles 85 490
Indentured - Behind The Scenes At Gupta…
Rajesh Sundaram
Paperback
![]()
Urban Squares as Places, Links and…
Jon Lang, Nancy Marshall
Paperback
R1,857
Discovery Miles 18 570
An Introduction to XML and Web…
Anders Moller, Michael Schwartzbach
Paperback
R2,721
Discovery Miles 27 210
|