![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
We study the boundary behaviour of a conformal map of the unit disk onto an arbitrary simply connected plane domain. A principal aim of the theory is to obtain a one-to-one correspondence between analytic properties of the function and geometrie properties of the domain. In the classical applications of conformal mapping, the domain is bounded by a piecewise smooth curve. In many recent applications however, the domain has a very bad boundary. It may have nowhere a tangent as is the case for Julia sets. Then the conformal map has many unexpected properties, for instance almost all the boundary is mapped onto almost nothing and vice versa. The book is meant for two groups of users. (1) Graduate students and others who, at various levels, want to learn about conformal mapping. Most sections contain exercises to test the understand ing. They tend to be fairly simple and only a few contain new material. Pre requisites are general real and complex analyis including the basic facts about conformal mapping (e.g. AhI66a). (2) Non-experts who want to get an idea of a particular aspect of confor mal mapping in order to find something useful for their work. Most chapters therefore begin with an overview that states some key results avoiding tech nicalities. The book is not meant as an exhaustive survey of conformal mapping. Several important aspects had to be omitted, e.g. numerical methods (see e.g."
This monograph surveys the theory of quantitative homogenization for second-order linear elliptic systems in divergence form with rapidly oscillating periodic coefficients in a bounded domain. It begins with a review of the classical qualitative homogenization theory, and addresses the problem of convergence rates of solutions. The main body of the monograph investigates various interior and boundary regularity estimates that are uniform in the small parameter e>0. Additional topics include convergence rates for Dirichlet eigenvalues and asymptotic expansions of fundamental solutions, Green functions, and Neumann functions. The monograph is intended for advanced graduate students and researchers in the general areas of analysis and partial differential equations. It provides the reader with a clear and concise exposition of an important and currently active area of quantitative homogenization.
The analysis of orthogonal polynomials associated with general weights has been a major theme in classical analysis this century. The use of potential theory since the early 1980¿s had a dramatic influence on the development of orthogonal polynomials associated with weights on the real line. For many applications of orthogonal polynomials, for example in approximation theory and numerical analysis, it is not asymptotics but certain bounds that are most important. In this monograph, the authors define and discuss their classes of weights, state several of their results on Christoffel functions, Bernstein inequalities, restricted range inequalities, and record their bounds on the orthogonal polynomials as well as their asymptotic results. This book will be of interest to researchers in approximation theory and potential theory, as well as in some branches of engineering.
This book includes a self-contained theory of inequality problems and their applications to unilateral mechanics. Fundamental theoretical results and related methods of analysis are discussed on various examples and applications in mechanics. The work can be seen as a book of applied nonlinear analysis entirely devoted to the study of inequality problems, i.e. variational inequalities and hemivariational inequalities in mathematical models and their corresponding applications to unilateral mechanics. It contains a systematic investigation of the interplay between theoretical results and concrete problems in mechanics. It is the first textbook including a comprehensive and systematic study of both elliptic, parabolic and hyperbolic inequality models, dynamical unilateral systems and unilateral eigenvalues problems. The book is self-contained and it offers, for the first time, the possibility to learn about inequality models and to acquire the essence of the theory in a relatively short time. Audience: The book is suitable for researchers, and for doctoral and post-doctoral courses.
In this text, we introduce the basic concepts for the numerical modeling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, and recommendable to those researchers in the academic and extra-academic domain who want to approach this interesting branch of applied mathematics.
One service mathematics has rendered the 'Ht moi, ...* Ii j'avait so comment en revenir, je ny _ais point aile':' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf neJll to the dusty canister labelled 'discarded non- The series is diwrgent; therefore we may be sense' . * ble to do something with it. Eric T. Bell O. H eniside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, alI kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com- puter science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d't!tre of this series.
There has been a flurry of activity in recent years in the loosely defined area of holomorphic spaces. This book discusses the most well-known and widely used spaces of holomorphic functions in the unit ball of Cn. Spaces discussed include the Bergman spaces, the Hardy spaces, the Bloch space, BMOA, the Dirichlet space, the Besov spaces, and the Lipschitz spaces. Most proofs in the book are new and simpler than the existing ones in the literature. The central idea in almost all these proofs is based on integral representations of holomorphic functions and elementary properties of the Bergman kernel, the Bergman metric, and the automorphism group. The unit ball was chosen as the setting since most results can be achieved there using straightforward formulas without much fuss. The book can be read comfortably by anyone familiar with single variable complex analysis; no prerequisite on several complex variables is required. The author has included exercises at the end of each chapter that vary greatly in the level of difficulty.
This volume is dedicated to Tsuyoshi Ando, a- foremost expert in operator theory, matrix theory, complex analysis, and their applications, on the occasion of his 60th birthday. The book opens with his biography and list of publications. It contains a selection of papers covering a broad spectrum of topics ranging from abstract operator theory to various concrete problems and applications. The majority of the papers deal with topics in modern operator theory and its applications. This volume also contains papers on interpolation and completion problems, factorisation problems and problems connected with complex analysis. The book will appeal to a wide audience of pure and applied mathematicians.
This monograph represents a summary of our work in the last two years in applying the method of simulated annealing to the solution of problems that arise in the physical design of VLSI circuits. Our study is experimental in nature, in that we are con cerned with issues such as solution representations, neighborhood structures, cost functions, approximation schemes, and so on, in order to obtain good design results in a reasonable amount of com putation time. We hope that our experiences with the techniques we employed, some of which indeed bear certain similarities for different problems, could be useful as hints and guides for other researchers in applying the method to the solution of other prob lems. Work reported in this monograph was partially supported by the National Science Foundation under grant MIP 87-03273, by the Semiconductor Research Corporation under contract 87-DP- 109, by a grant from the General Electric Company, and by a grant from the Sandia Laboratories."
This volume is dedieated to Professor Dragoslav S. Mitrinovic (1908-1995), one of the most accomplished masters in the domain of inequalities. Inequalities are everywhere and play an important and significant role in almost all subjects of mathematies including other areas of sciences. Professor Mitrinovic often used to say: "There are no equalities, even in the human life, the inequalities are always met". Inequalities present a very active and attractive field of research. As Richard Bellman has so elegantly said at the Second International Conference on General Inequalities (Oberwolfach, July 30 - August 5, 1978): "There are three reasons for the study of inequalities: praetieal, theoretieal, and aesthetie. " On the aesthetie aspects he said: "As has been pointed out, beauty is in the eyes of the beholder. However, it is generally agreed that eertain pieees of musie, art, or mathematies are beautiful. There is an eleganee to inequalities that makes them very attraetive. " A great progress in inequalities was made by seven Oberwolfach conferences on inequalities with the corresponding seven volumes under the title General Inequal- ities 1 - 7, published by Birkhauser (1978, 1980, 1983, 1984, 1987, 1992, and 1997), as weIl as by several other international conferences dedieated to inequali- ties. One of these conferences was held in 1987 at the University of Birmingham, England, under the auspices of the London Mathematical Society, and dedieated to the work of G. H. Hardy, J. E. Littlewood and G.
The first part of a self-contained, elementary textbook, combining linear functional analysis, nonlinear functional analysis, numerical functional analysis, and their substantial applications with each other. As such, the book addresses undergraduate students and beginning graduate students of mathematics, physics, and engineering who want to learn how functional analysis elegantly solves mathematical problems which relate to our real world. Applications concern ordinary and partial differential equations, the method of finite elements, integral equations, special functions, both the Schroedinger approach and the Feynman approach to quantum physics, and quantum statistics. As a prerequisite, readers should be familiar with some basic facts of calculus. The second part has been published under the title, Applied Functional Analysis: Main Principles and Their Applications.
The book is based on my lecture notes "Infinite dimensional Morse theory and its applications," 1985, Montreal, and one semester of graduate lectures delivered at the University of Wisconsin, Madison, 1987. Since the aim of this monograph is to give a unified account of the topics in critical point theory, a considerable amount of new materials has been added. Some of them have never been published previously. The book is of interest both to researchers following the development of new results, and to people seeking an introduction into this theory. The main results are designed to be as self-contained as possible. And for the reader's convenience, some preliminary background information has been organized. The following people deserve special thanks for their direct roles in help ing to prepare this book. Prof. L. Nirenberg, who first introduced me to this field ten years ago, when I visited the Courant Institute of Math Sciences. Prof. A. Granas, who invited me to give a series of lectures at SMS, 1983, Montreal, and then the above notes, as the primary version of a part of the manuscript, which were published in the SMS collection. Prof. P. Rabinowitz, who provided much needed encouragement during the academic semester, and invited me to teach a semester graduate course after which the lecture notes became the second version of parts of this book. Professors A. Bahri and H. Brezis who suggested the publication of the book in the Birkhiiuser series."
The central focus of this book is the control of continuous-time/continuous-space nonlinear systems. Using new techniques that employ the max-plus algebra, the author addresses several classes of nonlinear control problems, including nonlinear optimal control problems and nonlinear robust/H-infinity control and estimation problems. Several numerical techniques are employed, including a max-plus eigenvector approach and an approach that avoids the curse-of-dimensionality. Well-known dynamic programming arguments show there is a direct relationship between the solution of a control problem and the solution of a corresponding Hamiltona "Jacobia "Bellman (HJB) partial differential equation (PDE). The max-plus-based methods examined in this monograph belong to an entirely new class of numerical methods for the solution of nonlinear control problems and their associated HJB PDEs; they are not equivalent to either of the more commonly used finite element or characteristic approaches. The potential advantages of the max-plus-based approaches lie in the fact that solution operators for nonlinear HJB problems are linear over the max-plus algebra, and this linearity is exploited in the construction of algorithms. The book will be of interest to applied mathematicians, engineers, and graduate students interested in the control of nonlinear systems through the implementation of recently developed numerical methods. Researchers and practitioners tangentially interested in this area will also find a readable, concise discussion of the subject through a careful selection of specific chapters and sections. Basic knowledge of control theory for systems with dynamics governed bydifferential equations is required.
The Mathematical Elasticity set contains three self-contained volumes that together provide the only modern treatise on elasticity. They introduce contemporary research on three-dimensional elasticity, the theory of plates, and the theory of shells. Each volume contains proofs, detailed surveys of all mathematical prerequisites, and many problems for teaching and self-study. An extended preface and extensive bibliography have been added to each volume to highlight the progress that has been made since the original publication. The first book, Three-Dimensional Elasticity, covers the modeling and mathematical analysis of nonlinear three-dimensional elasticity. In volume two, Theory of Plates, asymptotic methods provide a rigorous mathematical justification of the classical two-dimensional linear plate and shallow shell theories. The objective of Theory of Shells, the final volume, is to show how asymptotic methods provide a rigorous mathematical justification of the classical two-dimensional linear shell theories: membrane, generalized membrane, and flexural. These classic textbooks are for advanced undergraduates, first-year graduate students, and researchers in pure or applied mathematics or continuum mechanics. They are appropriate for courses in mathematical elasticity, theory of plates and shells, continuum mechanics, computational mechanics, and applied mathematics in general.
A comprehensive, basic level introduction to metric spaces and fixed point theory An Introduction to Metric Spaces and Fixed Point Theory presents a highly self-contained treatment of the subject that is accessible for students and researchers from diverse mathematical backgrounds, including those who may have had little training in mathematics beyond calculus. It provides up-to-date coverage of the properties of metric spaces and Banach spaces, as well as a detailed summary of the primary concepts of set theory. The authors take a unique approach to the subject by including a number of helpful basic level exercises and using a simple and accessible level of presentation. They provide a highly comprehensive development of what is known in a purely metric context–especially in hyperconvex spaces–and a number of up-to-date Banach space results which are too recent to be found in other books on the subject. In addition to introductory coverage of metric spaces and Banach spaces, the authors provide detailed analyses of these important topics in the subject:
One service mathematics has rendered the 'Et moi, "', si j'avait su comment en revenir, je n'y serais point all."' human race. It has put common sense back where it belongs, on the topmost shelf next Jules Verne to the dusty canister labelled 'discarded non sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
Fourier analysis is one of the most useful tools in many applied sciences. The recent developments of wavelet analysis indicate that in spite of its long history and well-established applications, the field is still one of active research. This text bridges the gap between engineering and mathematics, providing a rigorously mathematical introduction of Fourier analysis, wavelet analysis and related mathematical methods, while emphasizing their uses in signal processing and other applications in communications engineering. The interplay between Fourier series and Fourier transforms is at the heart of signal processing, which is couched most naturally in terms of the Dirac delta function and Lebesgue integrals. The exposition is organized into four parts. The first is a discussion of one-dimensional Fourier theory, including the classical results on convergence and the Poisson sum formula. The second part is devoted to the mathematical foundations of signal processing ¿ sampling, filtering, digital signal processing. Fourier analysis in Hilbert spaces is the focus of the third part, and the last part provides an introduction to wavelet analysis, time-frequency issues, and multiresolution analysis. An appendix provides the necessary background on Lebesgue integrals.
This volume contains the proceedings of the IUTAM Symposium on Model Order Reduction of Coupled System, held in Stuttgart, Germany, May 22-25, 2018. For the understanding and development of complex technical systems, such as the human body or mechatronic systems, an integrated, multiphysics and multidisciplinary view is essential. Many problems can be solved within one physical domain. For the simulation and optimization of the combined system, the different domains are connected with each other. Very often, the combination is only possible by using reduced order models such that the large-scale dynamical system is approximated with a system of much smaller dimension where the most dominant features of the large-scale system are retained as much as possible. The field of model order reduction (MOR) is interdisciplinary. Researchers from Engineering, Mathematics and Computer Science identify, explore and compare the potentials, challenges and limitations of recent and new advances.
A look at solving problems in three areas of classical elementary mathematics: equations and systems of equations of various kinds, algebraic inequalities, and elementary number theory, in particular divisibility and diophantine equations. In each topic, brief theoretical discussions are followed by carefully worked out examples of increasing difficulty, and by exercises which range from routine to rather more challenging problems. While it emphasizes some methods that are not usually covered in beginning university courses, the book nevertheless teaches techniques and skills which are useful beyond the specific topics covered here. With approximately 330 examples and 760 exercises.
This concise text is based on a series of lectures held only a few years ago and originally intended as an introduction to known results on linear hyperbolic and parabolic equations. Yet the topic of differential equations on graphs, ramified spaces, and more general network-like objects has recently gained significant momentum and, well beyond the confines of mathematics, there is a lively interdisciplinary discourse on all aspects of so-called complex networks. Such network-like structures can be found in virtually all branches of science, engineering and the humanities, and future research thus calls for solid theoretical foundations. This book is specifically devoted to the study of evolution
equations i.e., of time-dependent differential equations such as
the heat equation, the wave equation, or the Schrodinger equation
(quantum graphs) bearing in mind that the majority of the
literature in the last ten years on the subject of differential
equations of graphs has been devoted to elliptic equations and
related spectral problems. Moreover, for tackling the most general
settings - e.g. encoded in the transmission conditions in the
network nodes - one classical and elegant tool is that of operator
semigroups. This book is simultaneously a very concise introduction
to this theory and a handbook on its applications to differential
equations on networks.
Infinitesimal analysis, once a synonym for calculus, is now viewed as a technique for studying the properties of an arbitrary mathematical object by discriminating between its standard and nonstandard constituents. Resurrected by A. Robinson in the early 1960's with the epithet 'nonstandard', infinitesimal analysis not only has revived the methods of infinitely small and infinitely large quantities, which go back to the very beginning of calculus, but also has suggested many powerful tools for research in every branch of modern mathematics. The book sets forth the basics of the theory, as well as the most recent applications in, for example, functional analysis, optimization, and harmonic analysis. The concentric style of exposition enables this work to serve as an elementary introduction to one of the most promising mathematical technologies, while revealing up-to-date methods of monadology and hyperapproximation. This is a companion volume to the earlier works on nonstandard methods of analysis by A.G. Kusraev and S.S. Kutateladze (1999), ISBN 0-7923-5921-6 and Nonstandard Analysis and Vector Lattices edited by S.S. Kutateladze (2000), ISBN 0-7923-6619-0
Like FEM, the Boundary Element Method (BEM) provides a general numerical tool for the solution of complex engineering problems. In the last decades, the range of its applications has remarkably been enlarged. Therefore dynamic and nonlinear problems can be tackled. However they still demand an explicit expression of a fundamental solution, which is only known in simple cases. In this respect, the present book proposes an alternative BEM-formulation based on the Fourier transform, which can be applied to almost all cases relevant in engineering mechanics. The basic principle is presented for the heat equation. Applications are taken from solid mechanics (e.g. poroelasticity, thermoelasticity). Transient and stationary examples are given as well as linear and nonlinear. Completed with a mathematical and mechanical glossary, the book will serve as a comprehensive text book linking applied mathematics to real world engineering problems.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics."
An intensive development of the theory of generalized analytic functions started when methods of Complex Analysis were combined with methods of Functional Analysis, especially with the concept of distributional solutions to partial differential equations. The power of these interactions is far from being exhausted. In order to promote the further development of the theory of generalized analytic functions and applications of partial differential equations to Mechanics, the Technical University of Graz organized a conference whose Proceedings are contained in the present volume. The contributions on generalized analytic functions (Part One) deal not only with problems in the complex plane (boundary value and initial value problems), but also related problems in higher dimensions are investigated where both several complex variables and the technique of Clifford Analysis are used. Part Two of the Proceedings is devoted to applications to Mechanics. It contains contributions to a variety of general methods such as L p-methods, boundary elements and asymptotic methods, and hemivariational inequalities. A substantial number of the papers of Part Two, however, deals with problems in Ocean Acoustics. The papers of both parts of the Proceedings can be recommended to mathematicians, physicists, and engineers working in the fields mentioned above, as well as for further reading within graduate studies.
In recent years the development of new classification and regression algorithms based on deep learning has led to a revolution in the fields of artificial intelligence, machine learning, and data analysis. The development of a theoretical foundation to guarantee the success of these algorithms constitutes one of the most active and exciting research topics in applied mathematics. This book presents the current mathematical understanding of deep learning methods from the point of view of the leading experts in the field. It serves both as a starting point for researchers and graduate students in computer science, mathematics, and statistics trying to get into the field and as an invaluable reference for future research. |
You may like...
Contemporary Container Security
Girish Gujar, Adolf K Y Ng, …
Hardcover
R2,667
Discovery Miles 26 670
Shipping Derivatives and Risk Management
A Alizadeh, N. Nomikos
Hardcover
R4,656
Discovery Miles 46 560
Exceptionalism and Industrialisation…
Leandro Prados de la Escosura
Hardcover
|