![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
In this paper we shall discuss the construction of formal short-wave asymp totic solutions of problems of mathematical physics. The topic is very broad. It can somewhat conveniently be divided into three parts: 1. Finding the short-wave asymptotics of a rather narrow class of problems, which admit a solution in an explicit form, via formulas that represent this solution. 2. Finding formal asymptotic solutions of equations that describe wave processes by basing them on some ansatz or other. We explain what 2 means. Giving an ansatz is knowing how to give a formula for the desired asymptotic solution in the form of a series or some expression containing a series, where the analytic nature of the terms of these series is indicated up to functions and coefficients that are undetermined at the first stage of consideration. The second stage is to determine these functions and coefficients using a direct substitution of the ansatz in the equation, the boundary conditions and the initial conditions. Sometimes it is necessary to use different ansiitze in different domains, and in the overlapping parts of these domains the formal asymptotic solutions must be asymptotically equivalent (the method of matched asymptotic expansions). The basis for success in the search for formal asymptotic solutions is a suitable choice of ansiitze. The study of the asymptotics of explicit solutions of special model problems allows us to "surmise" what the correct ansiitze are for the general solution."
This book is an introduction to the theory of linear one-dimensional singular integral equations. It is essentually a graduate textbook. Singular integral equations have attracted more and more attention, because, on one hand, this class of equations appears in many applications and, on the other, it is one of a few classes of equations which can be solved in explicit form. In this book material of the monograph [2] of the authors on one-dimensional singular integral operators is widely used. This monograph appeared in 1973 in Russian and later in German translation [3]. In the final text version the authors included many addenda and changes which have in essence changed character, structure and contents of the book and have, in our opinion, made it more suitable for a wider range of readers. Only the case of singular integral operators with continuous coefficients on a closed contour is considered herein. The case of discontinuous coefficients and more general contours will be considered in the second volume. We are grateful to the editor Professor G. Heinig of the volume and to the translators Dr. B. Luderer and Dr. S. Roch, and to G. Lillack, who did the typing of the manuscript, for the work they have done on this volume.
Using examples from finance and modern warfare to the flocking of birds and the swarming of bacteria, the collected research in this volume demonstrates the common methodological approaches and tools for modeling and simulating collective behavior. Thetopics presented point toward new and challenging frontiers of applied mathematics, making the volume a useful referencetext forapplied mathematicians, physicists, biologists, and economists involved in the modeling of socio-economic systems."
This book has grown out of a course of lectures on elliptic functions, given in German, at the Swiss Federal Institute of Technology, Zurich, during the summer semester of 1982. Its aim is to give some idea of the theory of elliptic functions, and of its close connexion with theta-functions and modular functions, and to show how it provides an analytic approach to the solution of some classical problems in the theory of numbers. It comprises eleven chapters. The first seven are function-theoretic, and the next four concern arithmetical applications. There are Notes at the end of every chapter, which contain references to the literature, comments on the text, and on the ramifications, old and new, of the problems dealt with, some of them extending into cognate fields. The treatment is self-contained, and makes no special demand on the reader's knowledge beyond the elements of complex analysis in one variable, and of group theory.
This book presents an introduction to the geometric theory of infinite dimensional dynamical systems. Many of the fundamental results are presented for asymptotically smooth dynamical systems that have applications to functional differential equations as well as classes of dissipative partial differential equations. However, as in the earlier edition, the major emphasis is on retarded functional differential equations. This updated version also contains much material on neutral functional differential equations. The results in the earlier edition on Morse-Smale systems for maps are extended to a class of semiflows, which include retarded functional differential equations and parabolic partial differential equations.
This book contains almost 450 exercises, all with complete solutions; it provides supplementary examples, counter-examples, and applications for the basic notions usually presented in an introductory course in Functional Analysis. Three comprehensive sections cover the broad topic of functional analysis. A large number of exercises on the weak topologies is included.
The aim of this book is to furnish the reader with a rigorous and detailed exposition of the concept of control parametrization and time scaling transformation. It presents computational solution techniques for a special class of constrained optimal control problems as well as applications to some practical examples. The book may be considered an extension of the 1991 monograph A Unified Computational Approach Optimal Control Problems, by K.L. Teo, C.J. Goh, and K.H. Wong. This publication discusses the development of new theory and computational methods for solving various optimal control problems numerically and in a unified fashion. To keep the book accessible and uniform, it includes those results developed by the authors, their students, and their past and present collaborators. A brief review of methods that are not covered in this exposition, is also included. Knowledge gained from this book may inspire advancement of new techniques to solve complex problems that arise in the future. This book is intended as reference for researchers in mathematics, engineering, and other sciences, graduate students and practitioners who apply optimal control methods in their work. It may be appropriate reading material for a graduate level seminar or as a text for a course in optimal control.
This book develops a clear and systematic treatment of time series of data, regular and chaotic, that one finds in observations of nonlinear systems. The reader is led from measurements of one or more variables through the steps of building models of the source as a dynamical system, classifying the source by its dynamical characteristics, and finally predicting and controlling the dynamical system. The text examines methods for separating the signal of physical interest from contamination by unwanted noise, and for investigating the phase space of the chaotic signal and its properties. The emphasis throughout is on the use of the modern mathematical tools for investigating chaotic behavior to uncover properties of physical systems. The methods require knowledge of dynamical systems at the advanced undergraduate level and some knowledge of Fourier transforms and other signal processing methods. The toolkit developed in the book will provide the reader with efficient and effective methods for analyzing signals from nonlinear sources; these methods are applicable to problems of control, communication, and prediction in a wide variety of systems encountered in physics, chemistry, biology, and geophysics.
This volume collects contributions from the speakers at an INdAM Intensive period held at the University of Bari in 2017. The contributions cover several aspects of partial differential equations whose development in recent years has experienced major breakthroughs in terms of both theory and applications. The topics covered include nonlocal equations, elliptic equations and systems, fully nonlinear equations, nonlinear parabolic equations, overdetermined boundary value problems, maximum principles, geometric analysis, control theory, mean field games, and bio-mathematics. The authors are trailblazers in these topics and present their work in a way that is exhaustive and clearly accessible to PhD students and early career researcher. As such, the book offers an excellent introduction to a variety of fundamental topics of contemporary investigation and inspires novel and high-quality research.
Important results on the Hilbert modular group and Hilbert modular forms are introduced and described in this book. In recent times, this branch of number theory has been given more and more attention and thus the need for a comprehensive presentation of these results, previously scattered in research journal papers, has become obvious. The main aim of this book is to give a description of the singular cohomology and its Hodge decomposition including explicit formulae. The author has succeeded in giving proofs which are both elementary and complete. The book contains an introduction to Hilbert modular forms, reduction theory, the trace formula and Shimizu's formulae, the work of Matsushima and Shimura, analytic continuation of Eisenstein series, the cohomology and its Hodge decomposition. Basic facts about algebraic numbers, integration, alternating differential forms and Hodge theory are included in convenient appendices so that the book can be used by students with a knowledge of complex analysis (one variable) and algebra.
This is a continuation of the subject matter discussed in the first
book, with an emphasis on systems of ordinary differential
equations and will be most appropriate for upper level
undergraduate and graduate students in the fields of mathematics,
engineering, and applied mathematics, as well as in the life
sciences, physics, and economics.
This volume collects the edited and reviewed contributions presented in the 6th iTi Conference in Bertinoro, covering fundamental and applied aspects in turbulence. In the spirit of the iTi conference, the volume has been produced after the conference so that the authors had the possibility to incorporate comments and discussions raised during the meeting. In the present book the contributions have been structured according to the topics : I Theory II Wall bounded flows III Particles in flows IV Free flows V Complex flows The volume is dedicated to the memory of Prof. Konrad Bajer who prematurely passed away in Warsaw on August 29, 2014.
This volume is based on the proceedings of the Toeplitz Lectures 1999 and of the Workshop in Operator Theory held in March 1999 at Tel-Aviv University and at the Weizmann Institute of Science. The workshop was held on the occasion of the 60th birthday of Harry Dym, and the Toeplitz lecturers were Harry Dym and Jim Rovnyak. The papers in the volume reflect Harry's influence on the field of operator theory and its applications through his insights, his writings, and his personality. The volume begins with an autobiographical sketch, followed by the list ofpublications ofHarry Dym and the paper ofIsrael Gohberg: On Joint Work with Harry Dym. The following paper by Jim Rovnyak: Methods of Krdn Space Operator The- ory, is based on his Toeplitz lectures. It gives a survey ofold and recents methods of KreIn space operator theory along with examples from function theory, espe- cially substitution operators on indefinite Dirichlet spaces and their relation to coefficient problems for univalent functions, an idea pioneered by 1. de Branges and underlying his proof of the Bieberbach conjecture (see [9]). The remaining papers (arranged in the alphabetical order) can be divided into the following categories. Schur analysis and interpolation In Notes on Interpolation in the Generalized Schur Class. I, D. Alpay, T. Con- stantinescu, A. Dijksma, and J. Rovnyak use realization theory for operator colli- gations in Pontryagin spaces to study interpolation and factorization problems in generalized Schur classes.
0. 1. The Scope of the Paper. This article is mainly devoted to the oper ators indicated in the title. More specifically, we consider elliptic differential and pseudodifferential operators with infinitely smooth symbols on infinitely smooth closed manifolds, i. e. compact manifolds without boundary. We also touch upon some variants of the theory of elliptic operators in Rn. A separate article (Agranovich 1993) will be devoted to elliptic boundary problems for elliptic partial differential equations and systems. We now list the main topics discussed in the article. First of all, we ex pound theorems on Fredholm property of elliptic operators, on smoothness of solutions of elliptic equations, and, in the case of ellipticity with a parame ter, on their unique solvability. A parametrix for an elliptic operator A (and A-). . J) is constructed by means of the calculus of pseudodifferential also for operators in Rn, which is first outlined in a simple case with uniform in x estimates of the symbols. As functional spaces we mainly use Sobolev - 2 spaces. We consider functions of elliptic operators and in more detail some simple functions and the properties of their kernels. This forms a foundation to discuss spectral properties of elliptic operators which we try to do in maxi mal generality, i. e., in general, without assuming selfadjointness. This requires presenting some notions and theorems of the theory of nonselfadjoint linear operators in abstract Hilbert space."
This volume contains several surveys focused on the ideas of approximate solutions, well-posedness and stability of problems in scalar and vector optimization, game theory and calculus of variations. These concepts are of particular interest in many fields of mathematics. The idea of stability goes back at least to J. Hadamard who introduced it in the setting of differential equations; the concept of well-posedness for minimum problems is more recent (the mid-sixties) and originates with A.N. Tykhonov. It turns out that there are connections between the two properties in the sense that a well-posed problem which, at least in principle, is "easy to solve," has a solution set that does not vary too much under perturbation of the data of the problem, i.e. it is "stable." These themes have been studied in depth for minimum problems and now we have a general picture of the related phenomena in this case. But, of course, the same concepts can be studied in other more complicated situations as, e.g. vector optimization, game theory and variational inequalities. Let us mention that in several of these new areas there is not even a unique idea of what should be called approximate solution, and the latter is at the basis of the definition of well posed problem."
Introduction to Large Truncated Toeplitz Matrices is a text on the application of functional analysis and operator theory to some concrete asymptotic problems of linear algebra. The book contains results on the stability of projection methods, deals with asymptotic inverses and Moore-Penrose inversion of large Toeplitz matrices, and embarks on the asymptotic behavoir of the norms of inverses, the pseudospectra, the singular values, and the eigenvalues of large Toeplitz matrices. The approach is heavily based on Banach algebra techniques and nicely demonstrates the usefulness of C*-algebras and local principles in numerical analysis. The book includes classical topics as well as results obtained and methods developed only in the last few years. Though employing modern tools, the exposition is elementary and aims at pointing out the mathematical background behind some interesting phenomena one encounters when working with large Toeplitz matrices. The text is accessible to readers with basic knowledge in functional analysis. It is addressed to graduate students, teachers, and researchers with some inclination to concrete operator theory and should be of interest to everyone who has to deal with infinite matrices (Toeplitz or not) and their large truncations.
It was noted in the preface of the book "Inequalities Involving Functions and Their Integrals and Derivatives," Kluwer Academic Publishers, 1991, by D.S. Mitrinovic, J.E. Pecaric and A.M. Fink; since the writing of the classical book by Hardy, Littlewood and Polya (1934), the subject of differential and integral inequalities has grown by about 800%. Ten years on, we can confidently assert that this growth will increase even more significantly. Twenty pages of Chapter XV in the above mentioned book are devoted to integral inequalities involving functions with bounded derivatives, or, Ostrowski type inequalities. This is now itself a special domain of the Theory of Inequalities with many powerful results and a large number of applications in Numerical Integration, Probability Theory and Statistics, Information Theory and Integral Operator Theory. The main aim of the present book, jointly written by the members of the Vic toria University node of RGMIA (Research Group in Mathematical Inequali ties and Applications, http: I /rgmia. vu. edu. au) and Th. M. Rassias, is to present a selected number of results on Ostrowski type inequalities. Results for univariate and multivariate real functions and their natural applications in the error analysis of numerical quadrature for both simple and multiple integrals as well as for the Riemann-Stieltjes integral are given."
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
Wavelets and wavelet packets provide a theory analogous to Fourier analysis and tools analogous to coherent state methods. Among their numerous applications, wavelets have been used to data compression in both image and sound processing. They are intimately related to splines, and wavelet applications in spline theory are significant. Wavelets have become a tool in analyzing fractals and iterative schemes associated with dynamical systems. Signal processing methods such as quadrature mirror filters go hand in hand with wavelet techniques in studying a host of communcations problems. The profound issues of classical turbulence are being studied using wavelet packets. Both wavelet packet software and wavelet transform microchips are now available. There are also applications of wavelet theory in theoretical physics, oil exploration, irregular sampling, and singular integral operators. Many of the world's experts in the field of wavelets were principal speakers at the ASI, and their papers appear in this volume. Furthermore, these renowned scientists addressed their talks to an audience which consisted of a broad spectrum of pure and applied mathematicians, as well as a diverse group of engineers and scientists. Thus, the reader has the opportunity to both learn or reinforce the fundamental concepts from the individuals who have created and developed the blossoming field of wavelets, and to see them discuss in accessible terms their profound contributions and ideas for future research.
This text provides an introduction to the numerical solution of initial and boundary value problems in ordinary differential equations on a firm theoretical basis. The book strictly presents numerical analysis as part of the more general field of scientific computing. Important algorithmic concepts are explained down to questions of software implementation. For initial value problems a dynamical systems approach is used to develop Runge-Kutta, extrapolation, and multistep methods. For boundary value problems including optimal control problems both multiple shooting and collocation methods are worked out in detail. Graduate students and researchers in mathematics, computer science, and engineering will find this book useful. Chapter summaries, detailed illustrations, and exercises are contained throughout the book with many interesting applications taken from a rich variety of areas.Peter Deuflhard is founder and president of the Zuse Institute Berlin (ZIB) and full professor of scientific computing at the Free University of Berlin, department of mathematics and computer science.Folkmar Bornemann is full professor of scientific computing at the Center of Mathematical Sciences, Technical University of Munich.
The book consists of solicited articles from a select group of mathematicians and physicists working at the interface between positivity and the geometry, combinatorics or analysis of polynomials of one or several variables. It is dedicated to the memory of Julius Borcea (1968-2009), a distinguished mathematician, Professor at the University of Stockholm. With his extremely original contributions and broad vision, his impact on the topics of the planned volume cannot be underestimated. All contributors knew or have exchanged ideas with Dr. Borcea, and their articles reflect, at least partially, his heritage.
This book (along with volume 2 covers most of the traditional methods for polynomial root-finding such as Newton s, as well as numerous variations on them invented in the last few decades. Perhaps more importantly it covers recent developments such as Vincent s method, simultaneous iterations, and matrix methods. There is an extensive chapter on evaluation of polynomials, including parallel methods and errors. There are pointers to robust and efficient programs. In short, it could be entitled A Handbook of Methods for Polynomial Root-finding . This book will be invaluable to anyone doing research in polynomial roots, or teaching a graduate course on that topic.
"
This EMS volume contains a survey of the principles and advanced techniques of the spectral theory of linear differential and pseudodifferential operators in finite-dimensional spaces. Also including a special section of Sunada's recent solution of Kac's celebrated problem of whether or not "one can hear the shape of a drum."
This Sixth Edition of Calculus continues the effort to promote courses in which understanding and computation reinforce each other. Calculus: Multivariable 6th Edition reflects the many voices of users at research universities, four-year colleges, community colleges, and secondary schools. This new edition has been streamlined to create a flexible approach to both theory and modeling. For instructors wishing to emphasize the connection between calculus and other fields, the text includes a variety of problems and examples from the physical, health, and biological sciences, engineering and economics. In addition, new problems on the mathematics of sustainability and new case studies on calculus in medicine by David E. Sloane, MD have been added. |
![]() ![]() You may like...
Nonlinear Systems, Vol. 1 - Mathematical…
Victoriano Carmona, Jesus Cuevas-Maraver, …
Hardcover
R4,421
Discovery Miles 44 210
Modelling in Natural Sciences - Design…
Tibor Muller, Harmund Muller
Hardcover
R2,973
Discovery Miles 29 730
Process Modelling and Model Analysis…
Ian T. Cameron, Katalin M. Hangos
Hardcover
R3,747
Discovery Miles 37 470
Mathematical Immunology of Virus…
Gennady Bocharov, Vitaly Volpert, …
Hardcover
R3,387
Discovery Miles 33 870
|