![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
With contributions by leading experts in geometric analysis, this volume is documenting the material presented in the John H. Barrett Memorial Lectures held at the University of Tennessee, Knoxville, on May 29 - June 1, 2018. The central topic of the 2018 lectures was mean curvature flow, and the material in this volume covers all recent developments in this vibrant area that combines partial differential equations with differential geometry.
Boolean algebras underlie many central constructions of analysis, logic, probability theory, and cybernetics. This book concentrates on the analytical aspects of their theory and application, which distinguishes it among other sources. Boolean Algebras in Analysis consists of two parts. The first concerns the general theory at the beginner's level. Presenting classical theorems, the book describes the topologies and uniform structures of Boolean algebras, the basics of complete Boolean algebras and their continuous homomorphisms, as well as lifting theory. The first part also includes an introductory chapter describing the elementary to the theory. The second part deals at a graduate level with the metric theory of Boolean algebras at a graduate level. The covered topics include measure algebras, their sub algebras, and groups of automorphisms. Ample room is allotted to the new classification theorems abstracting the celebrated counterparts by D.Maharam, A.H. Kolmogorov, and V.A.Rokhlin. Boolean Algebras in Analysis is an exceptional definitive source on Boolean algebra as applied to functional analysis and probability. It is intended for all who are interested in new and powerful tools for hard and soft mathematical analysis.
There has been considerable progress in the field of microlocal analysis. In a broad sense the subject is the modern version of the classical Fourier technique for solving partial differential equations, with the localization process taking account of dual variables. The tools of pseudo-differential operators, wave-front sets and Fourier integral operators have now conferred a mature form on the theory of linear partial differential operators in the frame of Schwartz distributions or other generalized functions. At the same time, microlocal analysis has assumed an important role as an independent part of analysis, with other applications throughout mathematics and physics, one major theme being spectral theory for the Schrodinger equation in quantum mechanics. The papers collected here emphasize the topics of microlocal methods in the study of linear PDEs (analytic-Gevrey regularity of the solutions, elliptic boundary value problems, higher microlocalization), and applications to spectral theory (Schrodinger equation, asymptotic behavior of the eigenvalues, semi-classical analysis in large dimensions and statistical mechanics).
This book presents an operator theoretic approach to robust control analysis for linear time-varying systems. It emphasizes the conceptual similarity with the H control theory for time-invariant systems and at the same time clarifies the major difficulties confronted in the time varying case. The necessary operator theory is developed from first principles and the book is as self-contained as possible. After presenting the necessary results from the theories of Toeplitz operators and nest algebras, linear systems are defined as input- output operators and the relationship between stabilization and the existance of co-prime factorizations is described. Uniform optimal control problems are formulated as model-matching problems and are reduced to four block problems. Robustness is considered both from the point of view of fractional representations and the "time varying gap" metric, and the relationship between these types of uncertainties is clarified. The book closes with the solution of the orthogonal embedding problem for time varying contractive systems. This book will be useful to both mathematicians interested in the potential applications of operator theory in control and control engineers who wish to deal with some of the more mathematically sophisticated extension of their work.
Infotext]((Kurztext))These are the proceedings of the 7th International Conference on Hyperbolic Problems, held in Zurich in February 1998. The speakers and contributors have been rigorously selected and present the state of the art in this field. The articles, both theoretical and numerical, encompass a wide range of applications, such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phenomena and geometrical optics. ((Volltext))These proceedings contain, in two volumes, approximately one hundred papers presented at the conference on hyperbolic problems, which has focused to a large extent on the laws of nonlinear hyperbolic conservation. Two-fifths of the papers are devoted to mathematical aspects such as global existence, uniqueness, asymptotic behavior such as large time stability, stability and instabilities of waves and structures, various limits of the solution, the Riemann problem and so on. Roughly the same number of articles are devoted to numerical analysis, for example stability and convergence of numerical schemes, as well as schemes with special desired properties such as shock capturing, interface fitting and high-order approximations to multidimensional systems. The results in these contributions, both theoretical and numerical, encompass a wide range of applications such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phenomena and geometrical optics."
This is a collection of original and review articles on recent advances and new directions in a multifaceted and interconnected area of mathematics and its applications. It encompasses many topics in theoretical developments in operator theory and its diverse applications in applied mathematics, physics, engineering, and other disciplines. The purpose is to bring in one volume many important original results of cutting edge research as well as authoritative review of recent achievements, challenges, and future directions in the area of operator theory and its applications. The intended audience are mathematicians, physicists, electrical engineers in academia and industry, researchers and graduate students, that use methods of operator theory and related fields of mathematics, such as matrix theory, functional analysis, differential and difference equations, in their work.
This collection of original articles and surveys, emerging from a 2011 conference in Bertinoro, Italy, addresses recent advances in linear and nonlinear aspects of the theory of partial differential equations (PDEs). Phase space analysis methods, also known as microlocal analysis, have continued to yield striking results over the past years and are now one of the main tools of investigation of PDEs. Their role in many applications to physics, including quantum and spectral theory, is equally important. Key topics addressed in this volume include: *general theory of pseudodifferential operators *Hardy-type inequalities *linear and non-linear hyperbolic equations and systems *Schroedinger equations *water-wave equations *Euler-Poisson systems *Navier-Stokes equations *heat and parabolic equations Various levels of graduate students, along with researchers in PDEs and related fields, will find this book to be an excellent resource. Contributors T. Alazard P.I. Naumkin J.-M. Bony F. Nicola N. Burq T. Nishitani C. Cazacu T. Okaji J.-Y. Chemin M. Paicu E. Cordero A. Parmeggiani R. Danchin V. Petkov I. Gallagher M. Reissig T. Gramchev L. Robbiano N. Hayashi L. Rodino J. Huang M. Ruzhanky D. Lannes J.-C. Saut F. Linares N. Visciglia P.B. Mucha P. Zhang C. Mullaert E. Zuazua T. Narazaki C. Zuily
The linear theory of oscillations traditionally operates with frequency representa- tions based on the concepts of a transfer function and a frequency response. The universality of the critria of Nyquist and Mikhailov and the simplicity and obvi- ousness of the application of frequency and amplitude - frequency characteristics in analysing forced linear oscillations greatly encouraged the development of practi- cally important nonlinear theories based on various forms of the harmonic balance hypothesis [303]. Therefore mathematically rigorous frequency methods of investi- gating nonlinear systems, which appeared in the 60s, also began to influence many areas of nonlinear theory of oscillations. First in this sphere of influence was a wide range of problems connected with multidimensional analogues of the famous van der Pol equation describing auto- oscillations of generators of various radiotechnical devices. Such analogues have as a rule a unique unstable stationary point in the phase space and are Levinson dis- sipative. One of the pioneering works in this field, which started the investigation of a three-dimensional analogue of the van der Pol equation, was K. O. Friedrichs's paper [123]. The author suggested a scheme for constructing a positively invariant set homeomorphic to a torus, by means of which the existence of non-trivial periodic solutions was established. That scheme was then developed and improved for dif- ferent classes of multidimensional dynamical systems [131, 132, 297, 317, 334, 357, 358]. The method of Poincare mapping [12, 13, 17] in piecewise linear systems was another intensively developed direction.
This book publishes a collection of original scientific research articles that address the state-of-art in using partial differential equations for image and signal processing. Coverage includes: level set methods for image segmentation and construction, denoising techniques, digital image inpainting, image dejittering, image registration, and fast numerical algorithms for solving these problems.
This book presents developments and new results on complex differential-difference equations, an area with important and interesting applications, which also gathers increasing attention. Key problems, methods, and results related to complex differential-difference equations are collected to offer an up-to-date overview of the field.
It is hard to imagine that another elementary analysis book would contain ma terial that in some vision could qualify as being new and needed for a discipline already abundantly endowed with literature. However, to understand analysis, be ginning with the undergraduate calculus student through the sophisticated math ematically maturing graduate student, the need for examples and exercises seems to be a constant ingredient to foster deeper mathematical understanding. To a talented mathematical student, many elementary concepts seem clear on their first encounter. However, it is the belief of the authors, this understanding can be deepened with a guided set of exercises leading from the so called "elementary" to the somewhat more "advanced" form. Insight is instilled into the material which can be drawn upon and implemented in later development. The first year graduate student attempting to enter into a research environment begins to search for some original unsolved area within the mathematical literature. It is hard for the student to imagine that in many circumstances the advanced mathematical formulations of sophisticated problems require attacks that draw upon, what might be termed elementary techniques. However, if a student has been guided through a serious repertoire of examples and exercises, he/she should certainly see connections whenever they are encountered."
The subject of the book is Diophantine approximation and Nevanlinna theory. Not only does the text provide new results and directions, it also challenges open problems and collects latest research activities on these subjects made by the authors over the past eight years. Some of the significant findings are the proof of the Green-Griffiths conjecture by using meromorphic connections and Jacobian sections, and a generalized abc-conjecture. The book also presents the state of the art in the studies of the analogues between Diophantine approximation (in number theory) and value distribution theory (in complex analysis), with a method based on Vojta's dictionary for the terms of these two fields. The approaches are relatively natural and more effective than existing methods. The book is self-contained and appended with a comprehensive and up-to-date list of references. It is of interest to a broad audience of graduate students and researchers specialized in pure mathematics.
This textbook features applications including a proof of the Fundamental Theorem of Algebra, space filling curves, and the theory of irrational numbers. In addition to the standard results of advanced calculus, the book contains several interesting applications of these results. The text is intended to form a bridge between calculus and analysis. It is based on the authors lecture notes used and revised nearly every year over the last decade. The book contains numerous illustrations and cross references throughout, as well as exercises with solutions at the end of each section.
This book was undertaken to provide a text and reference on the theory and practice of the FFT and its common usage. This book is organized in only four chapters, and is intended as a tutorial on the use of the FFf and its trade space. The trade space of the FFT is the parameters in its usage and the relationships between them - the sampie rate, the total number of points or the interval over which processing occurs in a single FFf, the selectivity of tuning to a given frequency over signals out-of-band, and the bandwidth over which a signal appears. The examples given in this text are in FORTRAN 9512003. FORTRAN 2003 was frozen as a standard while this work was in progress. The listings given here are intended as an aid in understanding the FFT and associated algorithms such as spectral window weightings, with the goal of making the best of them more accessible to the reader. The code I use here provides a simple bridge between the material in the text and implementation in FORTRAN 2003, C++, Java, MATLAB (c), and other modem languages. The examples are sufficiently simple to be translated into older languages such as C and FORTRAN 77 if desired.
This and the next volume of the OT series contain the proceedings of the Work shop on Operator Theory and its Applications, IWOTA 95, which was held at the University of Regensburg, Germany, July 31 to August 4, 1995. It was the eigth workshop of this kind. Following is a list of the seven previous workshops with reference to their proceedings: 1981 Operator Theory (Santa Monica, California, USA) 1983 Applications of Linear Operator Theory to Systems and Networks (Rehovot, Israel), OT 12 1985 Operator Theory and its Applications (Amsterdam, The Netherlands), OT 19 1987 Operator Theory and Functional Analysis (Mesa, Arizona, USA), OT 35 1989 Matrix and Operator Theory (Rotterdam, The Netherlands), OT 50 1991 Operator Theory and Complex Analysis (Sapporo, Japan), OT 59 1993 Operator Theory and Boundary Eigenvalue Problems (Vienna, Austria), OT 80 IWOTA 95 offered a rich programme on a wide range of latest developments in operator theory and its applications. The programme consisted of 6 invited plenary lectures, 54 invited special topic lectures and more than 100 invited session talks. About 180 participants from 25 countries attended the workshop, more than a third came from Eastern Europe. The conference covered different aspects of linear and nonlinear spectral prob lems, starting with problems for abstract operators up to spectral theory of ordi nary and partial differential operators, pseudodifferential operators, and integral operators. The workshop was also focussed on operator theory in spaces with indefinite metric, operator functions, interpolation and extension problems.
Recent years have witnessed an increasingly close relationship growing between potential theory, probability and degenerate partial differential operators. The theory of Dirichlet (Markovian) forms on an abstract finite or infinite-dimensional space is common to all three disciplines. This is a fascinating and important subject, central to many of the contributions to the conference on Potential Theory and Degenerate Partial Differential Operators', held in Parma, Italy, February 1994.
Calculus and linear algebra are two dominant themes in contemporary mathematics and its applications. The aim of this book is to introduce linear algebra in an intuitive geometric setting as the study of linear maps and to use these simpler linear functions to study more complicated nonlinear functions. In this way, many of the ideas, techniques, and formulas in the calculus of several variables are clarified and understood in a more conceptual way. After using this text a student should be well prepared for subsequent advanced courses in both algebra and linear differential equations as well as the many applications where linearity and its interplay with nonlinearity are significant. This second edition has been revised to clarify the concepts. Many exercises and illustrations have been included to make the text more usable for students.
2 Radiant sets 236 3 Co-radiant sets 239 4 Radiative and co-radiative sets 241 5 Radiant sets with Lipschitz continuous Minkowski gauges 245 6 Star-shaped sets and their kernels 249 7 Separation 251 8 Abstract convex star-shaped sets 255 References 260 11 DIFFERENCES OF CONVEX COMPACTA AND METRIC SPACES OF CON- 263 VEX COMPACTA WITH APPLICATIONS: A SURVEY A. M. Rubinov, A. A. Vladimirov 1 Introduction 264 2 Preliminaries 264 3 Differences of convex compact sets: general approach 266 4 Metric projections and corresponding differences (one-dimensional case) 267 5 The *-difference 269 6 The Demyanov difference 271 7 Geometric and inductive definitions of the D-difference 273 8 Applications to DC and quasidifferentiable functions 276 9 Differences of pairs of set-valued mappings with applications to quasidiff- entiability 278 10 Applications to approximate subdifferentials 280 11 Applications to the approximation of linear set-valued mappings 281 12 The Demyanov metric 282 13 The Bartels-Pallaschke metric 284 14 Hierarchy of the three norms on Qn 285 15 Derivatives 287 16 Distances from convex polyhedra and convergence of convex polyhedra 289 17 Normality of convex sets 290 18 D-regular sets 291 19 Variable D-regular sets 292 20 Optimization 293 References 294 12 CONVEX APPROXIMATORS.
This book paints a fresco of the field of extrapolation and rational approximation over the last several centuries to the present through the works of their primary contributors. It can serve as an introduction to the topics covered, including extrapolation methods, Pade approximation, orthogonal polynomials, continued fractions, Lanczos-type methods etc.; it also provides in depth discussion of the many links between these subjects. A highlight of this book is the presentation of the human side of the fields discussed via personal testimonies from contemporary researchers, their anecdotes, and their exclusive remembrances of some of the "actors." This book shows how research in this domain started and evolved. Biographies of other scholars encountered have also been included. An important branch of mathematics is described in its historical context, opening the way to new developments. After a mathematical introduction, the book contains a precise description of the mathematical landscape of these fields spanning from the 19th century to the first part of the 20th. After an analysis of the works produced after that period (in particular those of Richardson, Aitken, Shanks, Wynn, and others), the most recent developments and applications are reviewed.
Spectral theoryis an important part of functional analysis.It has numerousapp- cations in many parts of mathematics and physics including matrix theory, fu- tion theory, complex analysis, di?erential and integral equations, control theory and quantum physics. In recent years, spectral theory has witnessed an explosive development. There are many types of spectra, both for one or several commuting operators, with important applications, for example the approximate point spectrum, Taylor spectrum, local spectrum, essential spectrum, etc. The present monograph is an attempt to organize the available material most of which exists only in the form of research papers scattered throughout the literature. The aim is to present a survey of results concerning various types of spectra in a uni?ed, axiomatic way. The central unifying notion is that of a regularity, which in a Banach algebra isasubsetofelementsthatareconsideredtobe nice .AregularityRinaBanach algebraA de?nes the corresponding spectrum ? (a)={ C: a / ? R} in R the same wayas the ordinaryspectrum is de?ned by means of invertible elements, ?(a)={ C: a / ? Inv(A)}. Axioms of a regularity are chosen in such a way that there are many natural interesting classes satisfying them. At the same time they are strong enough for non-trivial consequences, for example the spectral mapping theorem. Spectra ofn-tuples ofcommuting elements ofa Banachalgebraaredescribed similarly by means of a notion of joint regularity. This notion is closely related to ? the axiomatic spectral theory of Zelazko and S lodkowski."
This book provides a comprehensive introduction to the mathematical
theory of nonlinear problems described by singular elliptic
equations. There are carefully analyzed logistic type equations
with boundary blow-up solutions and generalized Lane-Emden-Fowler
equations or Gierer-Meinhardt systems with singular nonlinearity in
anisotropic media. These nonlinear problems appear as mathematical
models in various branches of Physics, Mechanics, Genetics,
Economics, Engineering, and they are also relevant in Quantum
Physics and Differential Geometry.
This two-volume work mainly addresses undergraduate and graduate students in the engineering sciences and applied mathematics. Hence it focuses on partial differential equations with a strong emphasis on illustrating important applications in mechanics. The presentation considers the general derivation of partial differential equations and the formulation of consistent boundary and initial conditions required to develop well-posed mathematical statements of problems in mechanics. The worked examples within the text and problem sets at the end of each chapter highlight engineering applications. The mathematical developments include a complete discussion of uniqueness theorems and, where relevant, a discussion of maximum and miniumum principles. The primary aim of these volumes is to guide the student to pose and model engineering problems, in a mathematically correct manner, within the context of the theory of partial differential equations in mechanics.
In this text, integral geometry deals with Radon's problem of representing a function on a manifold in terms of its integrals over certain submanifolds-hence the term the Radon transform. Examples and far-reaching generalizations lead to fundamental problems such as: (i) injectivity, (ii) inversion formulas, (iii) support questions, (iv) applications (e.g., to tomography, partial di erential equations and group representations). For the case of the plane, the inversion theorem and the support theorem have had major applications in medicine through tomography and CAT scanning. While containing some recent research, the book is aimed at beginning graduate students for classroom use or self-study. A number of exercises point to further results with documentation. From the reviews: "Integral Geometry is a fascinating area, where numerous branches of mathematics meet together. the contents of the book is concentrated around the duality and double vibration, which is realized through the masterful treatment of a variety of examples. the book is written by an expert, who has made fundamental contributions to the area." -Boris Rubin, Louisiana State University
Covering some of the key areas of optimal control theory (OCT), a rapidly expanding field, the authors use new methods to set out a version of OCT's more refined'maximum principle.' The results obtainedhave applicationsin production planning, reinsurance-dividend management, multi-model sliding mode control, and multi-model differential games. This book" "explores material that will be of great interest to post-graduate students, researchers, and practitioners in applied mathematics and engineering, particularly in the area of systems and control." |
![]() ![]() You may like...
Data Analysis and Data Mining - An…
Adelchi Azzalini, Bruno Scarpa
Hardcover
R3,348
Discovery Miles 33 480
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
![]()
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
|