![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
This book offers a comprehensive treatment of the theory of measures of noncompactness. It discusses various applications of the theory of measures of noncompactness, in particular, by addressing the results and methods of fixed-point theory. The concept of a measure of noncompactness is very useful for the mathematical community working in nonlinear analysis. Both these theories are especially useful in investigations connected with differential equations, integral equations, functional integral equations and optimization theory. Thus, one of the book's central goals is to collect and present sufficient conditions for the solvability of such equations. The results are established in miscellaneous function spaces, and particular attention is paid to fractional calculus.
This book focuses on problems at the interplay between the theory of partitions and optimal transport with a view toward applications. Topics covered include problems related to stable marriages and stable partitions, multipartitions, optimal transport for measures and optimal partitions, and finally cooperative and noncooperative partitions. All concepts presented are illustrated by examples from game theory, economics, and learning.
The n-dimensionalmetaplectic groupSp(n,R) is the twofoldcoverof the sympl- n n tic group Sp(n,R), which is the group of linear transformations ofX = R xR that preserve the bilinear (alternate) form x y [( ), ( )] =? x, ? + y, ? . (0. 1) ? ? 2 n There is a unitary representation of Sp(n,R)intheHilbertspace L (R ), called the metaplectic representation,the image of which is the groupof transformations generated by the following ones: the linear changes of variables, the operators of multiplication by exponentials with pure imaginary quadratic forms in the ex- nent, and the Fourier transformation; some normalization factor enters the de?- tion of the operators of the ?rst and third species. The metaplectic representation was introduced in a great generality in [28] - special cases had been considered before, mostly in papers of mathematical physics - and it is of such fundamental importancethat the two concepts (the groupand the representation)havebecome virtually indistinguishable. This is not going to be our point of view: indeed, the main point of this work is to show that a certain ?nite covering of the symplectic group (generally of degree n) has another interesting representation, which enjoys analogues of most of the nicer properties of the metaplectic representation. We shall call it the anaplectic representation - other coinages that may come to your mind sound too medical - and shall consider ?rst the one-dimensional case, the main features of which can be described in quite elementary terms.
The Mathematical Elasticity set contains three self-contained volumes that together provide the only modern treatise on elasticity. They introduce contemporary research on three-dimensional elasticity, the theory of plates, and the theory of shells. Each volume contains proofs, detailed surveys of all mathematical prerequisites, and many problems for teaching and self-study. An extended preface and extensive bibliography have been added to each volume to highlight the progress that has been made since the original publication. The first book, Three-Dimensional Elasticity, covers the modeling and mathematical analysis of nonlinear three-dimensional elasticity. In volume two, Theory of Plates, asymptotic methods provide a rigorous mathematical justification of the classical two-dimensional linear plate and shallow shell theories. The objective of Theory of Shells, the final volume, is to show how asymptotic methods provide a rigorous mathematical justification of the classical two-dimensional linear shell theories: membrane, generalized membrane, and flexural. These classic textbooks are for advanced undergraduates, first-year graduate students, and researchers in pure or applied mathematics or continuum mechanics. They are appropriate for courses in mathematical elasticity, theory of plates and shells, continuum mechanics, computational mechanics, and applied mathematics in general.
This book deals with the application of mathematics in modeling and understanding physiological systems, especially those involving rhythms. It is divided roughly into two sections. In the first part of the book, the authors introduce ideas and techniques from nonlinear dynamics that are relevant to the analysis of biological rhythms. The second part consists of five in-depth case studies in which the authors use the theoretical tools developed earlier to investigate a number of physiological processes: the dynamics of excitable nerve and cardiac tissue, resetting and entrainment of biological oscillators, the effects of noise and time delay on the pupil light reflex, pathologies associated with blood cell replication, and Parkinsonian tremor. One novel feature of the book is the inclusion of classroom-tested computer exercises throughout, designed to form a bridge between the mathematical theory and physiological experiments. This book will be of interest to students and researchers in the natural and physical sciences wanting to learn about the complexities and subtleties of physiological systems from a mathematical perspective. The authors are members of the Centre for Nonlinear Dynamics in Physiology and Medicine. The material in this book was developed for use in courses and was presented in three Summer Schools run by the authors in Montreal.
This book presents contributions and review articles on the theory of copulas and their applications. The authoritative and refereed contributions review the latest findings in the area with emphasis on "classical" topics like distributions with fixed marginals, measures of association, construction of copulas with given additional information, etc. The book celebrates the 75th birthday of Professor Roger B. Nelsen and his outstanding contribution to the development of copula theory. Most of the book's contributions were presented at the conference "Copulas and Their Applications" held in his honor in Almeria, Spain, July 3-5, 2017. The chapter 'When Gumbel met Galambos' is published open access under a CC BY 4.0 license.
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob. Titles in planning include Flavia Smarazzo and Alberto Tesei, Measure Theory: Radon Measures, Young Measures, and Applications to Parabolic Problems (2019) Elena Cordero and Luigi Rodino, Time-Frequency Analysis of Operators (2019) Mark M. Meerschaert, Alla Sikorskii, and Mohsen Zayernouri, Stochastic and Computational Models for Fractional Calculus, second edition (2020) Mariusz Lemanczyk, Ergodic Theory: Spectral Theory, Joinings, and Their Applications (2020) Marco Abate, Holomorphic Dynamics on Hyperbolic Complex Manifolds (2021) Miroslava Antic, Joeri Van der Veken, and Luc Vrancken, Differential Geometry of Submanifolds: Submanifolds of Almost Complex Spaces and Almost Product Spaces (2021) Kai Liu, Ilpo Laine, and Lianzhong Yang, Complex Differential-Difference Equations (2021) Rajendra Vasant Gurjar, Kayo Masuda, and Masayoshi Miyanishi, Affine Space Fibrations (2022)
A unique synthesis of the three existing Fourier-analytic
treatments of quadratic reciprocity.
This book builds upon the earlier volume Problems in Analysis, more than doubling it with a new section of problems on complex analysis. The problems on real analysis from the earlier book have all been checked, and stylistic, typographical, and mathematical errors have been corrected. The problems in complex analysis cover most of the principal topics in the theory of functions of a complex variable. The problems in the book cover, in real analysis: set algebra, measure and topology, real- and complex-valued functions, and topological vector spaces; in complex analysis: polynomials and power series, functions holomorphic in a region, entire functions, analytic continuation, singularities, harmonic functions, families of functions, and convexity theorems.
Since the publication of our first book [80], there has been a real resiu-gence of interest in the study of almost automorphic functions and their applications ([16, 17, 28, 29, 30, 31, 32, 40, 41, 42, 46, 51, 58, 74, 75, 77, 78, 79]). New methods (method of invariant s- spaces, uniform spectrum), and new concepts (almost periodicity and almost automorphy in fuzzy settings) have been introduced in the literature. The range of applications include at present linear and nonlinear evolution equations, integro-differential and functional-differential equations, dynamical systems, etc...It has become imperative to take a bearing of the main steps of the the ory. That is the main purpose of this monograph. It is intended to inform the reader and pave the road to more research in the field. It is not a self contained book. In fact, [80] remains the basic reference and fimdamental source of information on these topics. Chapter 1 is an introductory one. However, it contains also some recent contributions to the theory of almost automorphic functions in abstract spaces. VIII Preface Chapter 2 is devoted to the existence of almost automorphic solutions to some Unear and nonUnear evolution equations. It con tains many new results. Chapter 3 introduces to almost periodicity in fuzzy settings with applications to differential equations in fuzzy settings. It is based on a work by B. Bede and S. G. Gal [40].
Boundary value problems which have variational expressions in form of inequal ities can be divided into two main classes. The class of boundary value prob lems (BVPs) leading to variational inequalities and the class of BVPs leading to hemivariational inequalities. The first class is related to convex energy functions and has being studied over the last forty years and the second class is related to nonconvex energy functions and has a shorter research "life" beginning with the works of the second author of the present book in the year 1981. Nevertheless a variety of important results have been produced within the framework of the theory of hemivariational inequalities and their numerical treatment, both in Mathematics and in Applied Sciences, especially in Engineering. It is worth noting that inequality problems, i. e. BVPs leading to variational or to hemivariational inequalities, have within a very short time had a remarkable and precipitate development in both Pure and Applied Mathematics, as well as in Mechanics and the Engineering Sciences, largely because of the possibility of applying and further developing new and efficient mathematical methods in this field, taken generally from convex and/or nonconvex Nonsmooth Analy sis. The evolution of these areas of Mathematics has facilitated the solution of many open questions in Applied Sciences generally, and also allowed the formu lation and the definitive mathematical and numerical study of new classes of interesting problems."
This book discusses a variety of problems which are usually treated in a second course on the theory of functions of one complex variable, the level being gauged for graduate students. It treats several topics in geometric function theory as well as potential theory in the plane, covering in particular: conformal equivalence for simply connected regions, conformal equivalence for finitely connected regions, analytic covering maps, de Branges' proof of the Bieberbach conjecture, harmonic functions, Hardy spaces on the disk, potential theory in the plane. A knowledge of integration theory and functional analysis is assumed.
This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element and finite volume methods, interweaving theory and applications throughout. Extensive exercises are provided throughout the text. Graduate students in mathematics, engineering and physics will find this book useful.
This volume focuses on contributions from both the mathematics and life science community surrounding the concepts of time and dynamicity of nature, two significant elements which are often overlooked in modeling process to avoid exponential computations. The book is divided into three distinct parts: dynamics of genomes and genetic variation, dynamics of motifs, and dynamics of biological networks. Chapters included in dynamics of genomes and genetic variation analyze the molecular mechanisms and evolutionary processes that shape the structure and function of genomes and those that govern genome dynamics. The dynamics of motifs portion of the volume provides an overview of current methods for motif searching in DNA, RNA and proteins, a key process to discover emergent properties of cells, tissues, and organisms. The part devoted to the dynamics of biological networks covers networks aptly discusses networks in complex biological functions and activities that interpret processes in cells. Moreover, chapters in this section examine several mathematical models and algorithms available for integration, analysis, and characterization. Once life scientists began to produce experimental data at an unprecedented pace, it become clear that mathematical models were necessary to interpret data, to structure information with the aim to unveil biological mechanisms, discover results, and make predictions. The second annual "Bringing Maths to Life" workshop held in Naples, Italy October 2015, enabled a bi-directional flow of ideas from and international group of mathematicians and biologists. The venue allowed mathematicians to introduce novel algorithms, methods, and software that may be useful to model aspects of life science, and life scientists posed new challenges for mathematicians.
Elementary Number Theory, 6th Edition, blends classical theory with modern applications and is notable for its outstanding exercise sets. A full range of exercises, from basic to challenging, helps students explore key concepts and push their understanding to new heights. Computational exercises and computer projects are also available. Reflecting many years of professor feedback, this edition offers new examples, exercises, and applications, while incorporating advancements and discoveries in number theory made in the past few years.
Intended for graduates and researchers in physics, chemistry, biology, and applied mathematics, this book provides an up-to-date introduction to current research in fluctuations in spatially extended systems. It covers the theory of stochastic partial differential equations and gives an overview of the effects of external noise on dynamical systems with spatial degrees of freedom. Starting with a general introduction to noise-induced phenomena in dynamical systems, the text moves on to an extensive discussion of analytical and numerical tools needed to gain information from stochastic partial differential equations. It then turns to particular problems described by stochastic PDEs, covering a wide part of the rich phenomenology of spatially extended systems, such as nonequilibrium phase transitions, domain growth, pattern formation, and front propagation. The only prerequisite is a minimal background knowledge of the Langevin and Fokker-Planck equations.
Thisbook introduces the reader the theory of nonlinear inclusions and hemivariational inequalities with emphasison the study of contact mechanics. The work covers both abstract results in thearea of nonlinear inclusions, hemivariational inequalities as well as the study of specific contact problems, including their modelling and their variational analysis. Provided results are based on original research on the existence, uniqueness, regularity and behavior of the solution for various classes of nonlinear stationary and evolutionary inclusions. In carrying out the variational analysis of various contact models, onesystematically uses results of hemivariational inequalities and, in this way, illustrates the applications of nonlinear analysis in contact mechanics. New mathematical methods are introduced and applied in the study of nonlinear problems, which describe the contact between a deformable body and a foundation. Contact problems arise in industry, engineering and geophysics. Their variational analysis presented in this book lies the background for their numerical analysis. This volume will interest mathematicians, applied mathematicians, engineers, and scientists as well as advanced graduate students."
01/07 This title is now available from Walter de Gruyter. Please see www.degruyter.com for more information. This book is devoted to stochastic operators in Hilbert space. A number of models in modern probability theory apply the notion of a stochastic operator in explicit or latent form. In this book, objects from the Gaussian case are considered. Therefore, it is useful to consider all random variables and elements as functionals from the Wiener process or its formal derivative, i.e. white noise. The book consists of five chapters. The first chapter is devoted to stochastic calculus and its main goal is to prepare the tools for solving stochastic equations. In the second chapter the structure of stochastic equations, mainly the structure of Gaussian strong linear operators, is studied. In chapter 3 the definition of the action of the stochastic operator on random elements in considered. Chapter 4 deals with the mathematical models in which the notions of stochastic calculus arise and in the final chapter the equation with random operators is considered.
This book presents a coherent framework for understanding the dynamics of piecewise-smooth and hybrid systems. An informal introduction expounds the ubiquity of such models via numerous. The results are presented in an informal style, and illustrated with many examples. The book is aimed at a wide audience of applied mathematicians, engineers and scientists at the beginning postgraduate level. Almost no mathematical background is assumed other than basic calculus and algebra.
Fundamentals of Differential Equations presents the basic theory of differential equations and offers a variety of modern applications in science and engineering. Available in two versions, these flexible texts offer the instructor many choices in syllabus design, course emphasis (theory, methodology, applications, and numerical methods), and in using commercially available computer software. Fundamentals of Differential Equations, Eighth Edition is suitable for a one-semester sophomore- or junior-level course. Fundamentals of Differential Equations with Boundary Value Problems, 'Sixth Edition, contains enough material for a two-semester course that covers and builds on boundary value problems. The Boundary Value Problems version consists of the main text plus three additional chapters (Eigenvalue Problems and Sturm-Liouville Equations; Stability of Autonomous Systems; and Existence and Uniqueness Theory)
The book presents integral formulations for partial differential equations, with the focus on spherical and plane integral operators. The integral relations are obtained for different elliptic and parabolic equations, and both direct and inverse mean value relations are studied. The derived integral equations are used to construct new numerical methods for solving relevant boundary value problems, both deterministic and stochastic based on probabilistic interpretation of the spherical and plane integral operators.
This book is a systematic presentation of the theory of Hankel operators. It covers the many different areas of Hankel operators and presents a broad range of applications, such as approximation theory, prediction theory, and control theory. The author has gathered the various aspects of Hankel operators and presents their applications to other parts of analysis. This book contains numerous recent results which have never before appeared in book form. The author has created a useful reference tool by pulling this material together and unifying it with a consistent notation, in some cases even simplifying the original proofs of theorems. Hankel Operators and their Applications will be used by graduate students as well as by experts in analysis and operator theory and will become the standard reference on Hankel operators. Vladimir Peller is Professor of Mathematics at Michigan State University. He is a leading researcher in the field of Hankel operators and he has written over 50 papers on operator theory and functional analysis.
Bifurcation theory studies how the structure of solutions to equations changes as parameters are varied. The nature of these changes depends both on the number of parameters and on the symmetries of the equations. Volume I discusses how singularity-theoretic techniques aid the understanding of transitions in multiparameter systems. This volume focuses on bifurcation problems with symmetry and shows how group-theoretic techniques aid the understanding of transitions in symmetric systems. Four broad topics are covered: group theory and steady-state bifurcation, equicariant singularity theory, Hopf bifurcation with symmetry, and mode interactions. The opening chapter provides an introduction to these subjects and motivates the study of systems with symmetry. Detailed case studies illustrate how group-theoretic methods can be used to analyze specific problems arising in applications.
During the last twenty-five years, the development of the theory of Banach lattices has stimulated new directions of research in the theory of positive operators and the theory of semigroups of positive operators. In particular, the recent investigations in the structure of the lattice ordered (Banach) algebra of the order bounded operators of a Banach lattice have led to many important results in the spectral theory of positive operators. The contributions contained in this volume were presented as lectures at a conference organized by the Caribbean Mathematics Foundation, and provide an overview of the present state of development of various areas of the theory of positive operators and their spectral properties. This book will be of interest to analysts whose work involves positive matrices and positive operators.
This monograph contains an in-depth analysis of the dynamics given by a linear Hamiltonian system of general dimension with nonautonomous bounded and uniformly continuous coefficients, without other initial assumptions on time-recurrence. Particular attention is given to the oscillation properties of the solutions as well as to a spectral theory appropriate for such systems. The book contains extensions of results which are well known when the coefficients are autonomous or periodic, as well as in the nonautonomous two-dimensional case. However, a substantial part of the theory presented here is new even in those much simpler situations. The authors make systematic use of basic facts concerning Lagrange planes and symplectic matrices, and apply some fundamental methods of topological dynamics and ergodic theory. Among the tools used in the analysis, which include Lyapunov exponents, Weyl matrices, exponential dichotomy, and weak disconjugacy, a fundamental role is played by the rotation number for linear Hamiltonian systems of general dimension. The properties of all these objects form the basis for the study of several themes concerning linear-quadratic control problems, including the linear regulator property, the Kalman-Bucy filter, the infinite-horizon optimization problem, the nonautonomous version of the Yakubovich Frequency Theorem, and dissipativity in the Willems sense. The book will be useful for graduate students and researchers interested in nonautonomous differential equations; dynamical systems and ergodic theory; spectral theory of differential operators; and control theory. |
You may like...
Stochastic and Global Optimization
G. Dzemyda, V. Saltenis, …
Hardcover
R2,788
Discovery Miles 27 880
Problem Solving and Uncertainty Modeling…
Pratiksha Saxena, Dipti Singh, …
Hardcover
R5,687
Discovery Miles 56 870
Nonlinear Analysis - Stability…
Panos M. Pardalos, Pando G. Georgiev, …
Hardcover
R4,209
Discovery Miles 42 090
Splitting Methods in Communication…
Roland Glowinski, Stanley J. Osher, …
Hardcover
R4,873
Discovery Miles 48 730
Optimization Methods and Applications
Xiao-qi Yang, Kok Lay Teo, …
Hardcover
R5,389
Discovery Miles 53 890
Quasidifferentiability and Nonsmooth…
Vladimir F. Dem'yanov, Georgios E. Stavroulakis, …
Hardcover
R5,340
Discovery Miles 53 400
Optimization in Computational Chemistry…
Christodoulos A. Floudas, Panos M. Pardalos
Hardcover
R4,199
Discovery Miles 41 990
|