![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
Over the last fifty years advanced mathematical tools have become an integral part in the development of modern economic theory. Economists continue to invoke sophisticated mathematical techniques and ideas in order to understand complex economic and social problems. In the last ten years the theory of Riesz spaces (vector lattices) has been successfully applied to economic theory. By now it is understood relatively well that the lattice structure of Riesz spaces can be employed to capture and interpret several economic notions. On April 16-20, 1990, a small conference on Riesz Spaces, Positive Opera tors, and their Applications to Economics took place at the California Institute of Technology. The purpose of the conference was to bring mathematicians special ized in Riesz Spaces and economists specialized in General Equilibrium together to exchange ideas and advance the interdisciplinary cooperation between math ematicians and economists. This volume is a collection of papers that represent the talks and discussions of the participants at the week-long conference. We take this opportunity to thank all the participants of the conference, especially those whose articles are contained in this volume. We also greatly ap preciate the financial support provided by the California Institute of Technology. In particular, we express our sincerest thanks to David Grether, John Ledyard, and David Wales for their support. Finally, we would like to thank Susan Davis, Victoria Mason, and Marge D'Elia who handled the delicate logistics for the smooth running of the confer ence."
This book gives a unified treatment of a variety of mathematical systems generating densities, ranging from one-dimensional discrete time transformations through continuous time systems described by integro-partial-differential equations. Examples have been drawn from a variety of the sciences to illustrate the utility of the techniques presented. This material was organized and written to be accessible to scientists with knowledge of advanced calculus and differential equations. In various concepts from measure theory, ergodic theory, the geometry of manifolds, partial differential equations, probability theory and Markov processes, and chastic integrals and differential equations are introduced. The past few years have witnessed an explosive growth in interest in physical, biological, and economic systems that could be profitably studied using densities. Due to the general inaccessibility of the mathematical literature to the non-mathematician, there has been little diffusion of the concepts and techniques from ergodic theory into the study of these "chaotic" systems. This book intends to bridge that gap.
This engaging text describes the development of singular perturbations, including its history, accumulating literature, and its current status. While the approach of the text is sophisticated, the literature is accessible to a broad audience. A particularly valuable bonus are the historical remarks. These remarks are found throughout the manuscript. They demonstrate the growth of mathematical thinking on this topic by engineers and mathematicians. The book focuses on detailing how the various methods are to be applied. These are illustrated by a number and variety of examples. Readers are expected to have a working knowledge of elementary ordinary differential equations, including some familiarity with power series techniques, and of some advanced calculus. Dr. O'Malley has written a number of books on singular perturbations. This book has developed from many of his works in the field of perturbation theory.
From the reviews: "The account is quite detailed and is written in a manner that will appeal to analysts and numerical practitioners alike...they contain everything from rigorous proofs to tables of numerical calculations.... one of the strong features of these books...that they are designed not for the expert, but for those who whish to learn the subject matter starting from little or no background...there are numerous examples, and counter-examples, to back up the theory...To my knowledge, no other authors have given such a clear geometric account of convex analysis." "This innovative text is well written, copiously illustrated, and accessible to a wide audience"
The study of surfaces with constant mean curvature (CMC) is one of the main topics in classical differential geometry. Moreover, CMC surfaces are important mathematical models for the physics of interfaces in the absence of gravity, where they separate two different media or for capillary phenomena. Further, as most techniques used in the theory of CMC surfaces not only involve geometric methods but also PDE and complex analysis, the theory is also of great interest for many other mathematical fields. While minimal surfaces and CMC surfaces in general have already been treated in the literature, the present work is the first to present a comprehensive study of compact surfaces with boundaries, narrowing its focus to a geometric view. Basic issues include the discussion whether the symmetries of the curve inherit to the surface; the possible values of the mean curvature, area and volume; stability; the circular boundary case and the existence of the Plateau problem in the non-parametric case. The exposition provides an outlook on recent research but also a set of techniques that allows the results to be expanded to other ambient spaces. Throughout the text, numerous illustrations clarify the results and their proofs. The book is intended for graduate students and researchers in the field of differential geometry and especially theory of surfaces, including geometric analysis and geometric PDEs. It guides readers up to the state-of-the-art of the theory and introduces them to interesting open problems."
This book presents most of the techniques used in the microlocal treatment of semiclassical problems coming from quantum physics. Both the standard C8 pseudodifferential calculus and the analytic microlocal analysis is developed, in a context which remains intentionally global so that only the relevant difficulties of the theory are encountered. The originality lies in the fact that the main features of analytic microlocal analysis are derived from a single and elementary a priori estimate. Various exercises illustrate the chief results of each chapter while introducing the reader to further developments of the theory. This book is aimed at non-specialists of the subject and the only required prerequisite is a basic knowledge of the theory of distributions.
In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrodinger equations. It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations. "
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics (TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathe matical Sciences ( AMS) series, which will focus on advanced textbooks and research level monographs. Foreword This book is based on a one-semester course for graduate students in the physical sciences and applied mathematics. No great mathematical back ground is needed, but the student should be familiar with the theory of analytic functions of a complex variable. Since the course is on problem solving rather than theorem-proving, the main requirement is that the stu dent should be willing to work out a large number of specific examples."
Stochastic Differential Equations have become increasingly important in modelling complex systems in physics, chemistry, biology, climatology and other fields. This book examines and provides systems for practitioners to use, and provides a number of case studies to show how they can work in practice.
In its traditional form, Clifford analysis provides the function theory for solutions of the Dirac equation. From the beginning, however, the theory was used and applied to problems in other fields of mathematics, numerical analysis, and mathematical physics. recently, the theory has enlarged its scope considerably by incorporating geometrical methods from global analysis on manifolds and methods from representation theory. New, interesting branches of the theory are based on conformally invariant, first-order systems other than the Dirac equation, or systems that are invariant with respect to a group other than the conformal group. This book represents an up-to-date review of Clifford analysis in its present form, its applications, and directions for future research. Readership: Mathematicians and theoretical physicists interested in Clifford analysis itself, or in its applications to other fields.
This book is different from other books on measure theory in that it accepts probability theory as an essential part of measure theory. This means that many examples are taken from probability; that probabilistic concepts such as independence, Markov processes, and conditional expectations are integrated into the text rather than being relegate to an appendix; that more attention is paid to the role of algebras than is customary; and that the metric defining the distance between sets as the measure of their symmetric difference is exploited more than is customary.
The theory of mean periodic functions is a subject which goes back to works of Littlewood, Delsarte, John and that has undergone a vigorous development in recent years. There has been much progress in a number of problems concerning local - pects of spectral analysis and spectral synthesis on homogeneous spaces. The study oftheseproblemsturnsouttobecloselyrelatedtoavarietyofquestionsinharmonic analysis, complex analysis, partial differential equations, integral geometry, appr- imation theory, and other branches of contemporary mathematics. The present book describes recent advances in this direction of research. Symmetric spaces and the Heisenberg group are an active ?eld of investigation at 2 the moment. The simplest examples of symmetric spaces, the classical 2-sphere S 2 and the hyperbolic plane H , play familiar roles in many areas in mathematics. The n Heisenberg groupH is a principal model for nilpotent groups, and results obtained n forH may suggest results that hold more generally for this important class of Lie groups. The purpose of this book is to develop harmonic analysis of mean periodic functions on the above spaces.
Periodic differential operators have a rich mathematical theory as well as important physical applications. They have been the subject of intensive development for over a century and remain a fertile research area. This book lays out the theoretical foundations and then moves on to give a coherent account of more recent results, relating in particular to the eigenvalue and spectral theory of the Hill and Dirac equations. The book will be valuable to advanced students and academics both for general reference and as an introduction to active research topics.
Approach your problem from the right end It isn't that they can't see the solution. and begin with the answers. It is that they can't see the problem. Then one day, perhaps you will find the final question. G. K. Chesterton. The Scandal of Father Brown The point of a Pin. The Hermit Clad in Crane Feathers in R. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of mono graphs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addi tion to this there are such new emerging subdisciplines as "experimental mathematical," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes."
Descriptive topology and functional analysis, with extensive material demonstrating new connections between them, are the subject of the first section of this work. Applications to spaces of continuous functions, topological Abelian groups, linear topological equivalence and to the separable quotient problem are included and are presented as open problems. The second section is devoted to Banach spaces, Banach algebras and operator theory. Each chapter presents a lot of worthwhile and important recent theorems with an abstract discussing the material in the chapter. Each chapter can almost be seen as a survey covering a particular area.
This two-volume work introduces the theory and applications of Schur-convex functions. The first volume introduces concepts and properties of Schur-convex functions, including Schur-geometrically convex functions, Schur-harmonically convex functions, Schur-power convex functions, etc. and also discusses applications of Schur-convex functions in symmetric function inequalities.
This book exposes a number of mathematical models for fracture of growing difficulty. All models are treated in a unified way, based on incremental energy minimization. They differ from each other by the assumptions made on the inelastic part of the total energy, here called the "cohesive energy". Each model describes a specific aspect of material response, and particular care is devoted to underline the correspondence of each model to the experiments. The content of the book is a re-elaboration of the lectures delivered at the First Sperlonga Summer School on Mechanics and Engineering Sciences in September 2011. In the year and a half elapsed after the course, the material has been revised and enriched with new and partially unpublished results. Significant additions have been introduced in the occasion of the course "The variational approach to fracture and other inelastic phenomena", delivered at SISSA, Trieste, in March 2013. The Notes reflect a research line carried on by the writer over the years, addressed to a comprehensive description of the many aspects of the phenomenon of fracture, and to its relations with other phenomena, such as the formation of microstructure and the changes in the material's strength induced by plasticity and damage. Reprinted from the Journal of Elasticity, volume 112, issue 1, 2013.
Thismonographdealswiththeexistenceofperiodicmotionsof Lagrangiansystemswith ndegreesoffreedom ij ] V'(q) =0, where Visasingularpotential.Aprototypeofsuchaproblem, evenifitisnottheonlyphysicallyinterestingone, istheKepler problem .. q 0 q+yqr= . This, jointlywiththemoregeneralN-bodyproblem, hasalways beentheobjectofagreatdealofresearch.Mostofthoseresults arebasedonperturbationmethods, andmakeuseofthespecific featuresoftheKeplerpotential. OurapproachismoreonthelinesofNonlinearFunctional Analysis: ourmainpurposeistogiveafunctionalframefor systemswithsingularpotentials, includingtheKeplerandthe N-bodyproblemasparticularcases.PreciselyweuseCritical PointTheorytoobtainexistenceresults, qualitativeinnature, whichholdtrueforbroadclassesofpotentials.Thishighlights thatthevariationalmethods, whichhavebeenemployedtoob tainimportantadvancesinthestudyofregularHamiltonian systems, canbesuccessfallyusedtohandlesingularpotentials aswell. Theresearchonthistopicisstillinevolution, andtherefore theresultswewillpresentarenottobeintendedasthefinal ones. Indeedamajorpurposeofourdiscussionistopresent methodsandtoolswhichhavebeenusedinstudyingsuchprob lems. Vlll PREFACE Partofthematerialofthisvolumehasbeenpresentedina seriesoflecturesgivenbytheauthorsatSISSA, Trieste, whom wewouldliketothankfortheirhospitalityandsupport. We wishalsotothankUgoBessi, PaoloCaldiroli, FabioGiannoni, LouisJeanjean, LorenzoPisani, EnricoSerra, KazunakaTanaka, EnzoVitillaroforhelpfulsuggestions. May26,1993 Notation n 1.For x, yE IR, x. ydenotestheEuclideanScalarproduct, and IxltheEuclideannorm. 2. meas(A)denotestheLebesguemeasureofthesubset Aof n IR 3.Wedenoteby ST = 0, T]/{a, T}theunitarycirclepara metrizedby t E 0, T].Wewillalsowrite SI= ST=I. n 1 n 4.Wewillwrite sn = {xE IR +: Ixl =I}andn = IR \{O}. n 5.Wedenoteby LP( O, T], IR ),1 p +00, theLebesgue spaces, equippedwiththestandardnorm lIulip. l n l n 6. H (ST, IR )denotestheSobolevspaceof u E H,2(0, T; IR ) suchthat u(O) = u(T).Thenormin HIwillbedenoted by lIull2 = lIull + lIull . 7.Wedenoteby(.1.)and11.11respectivelythescalarproduct andthenormoftheHilbertspace E. 8.For uE E, EHilbertorBanachspace, wedenotetheball ofcenter uandradiusrby B(u, r) = {vE E: lIu- vii r}.Wewillalsowrite B = B(O, r). r 1 1 9.WesetA (n) = {uE H (St, n)}. k 10.For VE C (1Rxil, IR)wedenoteby V'(t, x)thegradient of Vwithrespectto x. l 11.Given f E C (M, IR), MHilbertmanifold, welet r = {uEM: f(u) a}, f-l(a, b) = {uE E: a f(u) b}. x NOTATION 12.Given f E C1(M, JR), MHilbertmanifold, wewilldenote by Zthesetofcriticalpointsof fon Mandby Zctheset Z U f-l(c, c). 13.Givenasequence UnE E, EHilbertspace, by Un ---"" Uwe willmeanthatthesequence Unconvergesweaklyto u. 14.With (E)wewilldenotethesetoflinearandcontinuous operatorson E. 15.With Ck''''(A, JR)wewilldenotethesetoffunctions ffrom AtoJR, ktimesdifferentiablewhosek-derivativeisHolder continuousofexponent0: . Main Assumptions Wecollecthere, forthereader'sconvenience, themainassump tionsonthepotential Vusedthroughoutthebook. (VO) VEC1(lRXO, lR), V(t+T, x)=V(t, X) V(t, x)ElRXO, (VI) V(t, x)"
This volume consists of the plenary lectures and invited talks in the special session on pseudo-differential operators given at the Fourth Congress of the International Society for Analysis, Applications and Computation (ISAAC) held at York University in Toronto, August 11-16, 2003. The theme is to look at pseudo-differential operators in a very general sense and to report recent advances in a broad spectrum of topics, such as pde, quantization, filters and localization operators, modulation spaces, and numerical experiments in wavelet transforms and orthonormal wavelet bases.
This self-contained book offers a new and direct approach to the theories of special functions with emphasis on spherical symmetry in Euclidean spaces of arbitrary dimensions. Based on many years of lecturing to mathematicians, physicists and engineers in scientific research institutions in Europe and the USA, the author uses elementary concepts to present the spherical harmonics in a theory of invariants of the orthogonal group. One of the highlights is the extension of the classical results of the spherical harmonics into the complex - particularly important for the complexification of the Funk-Hecke formula which successfully leads to new integrals for Bessel- and Hankel functions with many applications of Fourier integrals and Radon transforms. Numerous exercises stimulate mathematical ingenuity and bridge the gap between well-known elementary results and their appearance in the new formations.
This book has a dual purpose. One of these is to present material which selec tively will be appropriate for a quarter or semester course in time series analysis and which will cover both the finite parameter and spectral approach. The second object is the presentation of topics of current research interest and some open questions. I mention these now. In particular, there is a discussion in Chapter III of the types of limit theorems that will imply asymptotic nor mality for covariance estimates and smoothings of the periodogram. This dis cussion allows one to get results on the asymptotic distribution of finite para meter estimates that are broader than those usually given in the literature in Chapter IV. A derivation of the asymptotic distribution for spectral (second order) estimates is given under an assumption of strong mixing in Chapter V. A discussion of higher order cumulant spectra and their large sample properties under appropriate moment conditions follows in Chapter VI. Probability density, conditional probability density and regression estimates are considered in Chapter VII under conditions of short range dependence. Chapter VIII deals with a number of topics. At first estimates for the structure function of a large class of non-Gaussian linear processes are constructed. One can determine much more about this structure or transfer function in the non-Gaussian case than one can for Gaussian processes. In particular, one can determine almost all the phase information."
This book contains the edited version of lectures and contributed papers presented at the NA TO ADV ANCED RESEARCH WORKSHOP ON TOPOLOGY OPTIMIZATION OF STRUCTURES, held at Hotel do Mar, Sesimbra, Portugal, 20 June to 26 June, 1992, and organised by the Mathematical Institutc, The Technical University of Denmark and bv CEMUL-Center of Mechanics and Materials of the Techmcal University of Lisbon, Fifty participants from' fourteen countries attended the workshop, This book is organiLed in ten parts, each one addressing a sub field of topology optimiIalion, its relations to materials modelling and its implementation: Part 1- Topology design of discrete structures. Part II - Discrete design and sclection problems. Part III - The homogenization method for topology design. Part IV - AlternatiYC methods for topology design of continuum structures. Part V - Boundary shape design meth(xis. Part VI- Rela\.ation and optimal shape design. Part VII - EtTectiw media theory and optimal design. Part VIII - Extending the scope of topology design. Part IX- Topology design in a computer-aided design environment .. Parl X- Aspects of topology design.
This volume contains six peer-refereed articles written on the occasion of the workshop Operator theory, system theory and scattering theory: multidimensional generalizations and related topics, held at the Department of Mathematics of the Ben-Gurion University of the Negev in June, 2005. The book will interest a wide audience of pure and applied mathematicians, electrical engineers and theoretical physicists.
The propagation of acoustic and electromagnetic waves in stratified media is a subject that has profound implications in many areas of applied physics and in engineering, just to mention a few, in ocean acoustics, integrated optics, and wave guides. See for example Tolstoy and Clay 1966, Marcuse 1974, and Brekhovskikh 1980. As is well known, stratified media, that is to say media whose physical properties depend on a single coordinate, can produce guided waves that propagate in directions orthogonal to that of stratification, in addition to the free waves that propagate as in homogeneous media. When the stratified media are perturbed, that is to say when locally the physical properties of the media depend upon all of the coordinates, the free and guided waves are no longer solutions to the appropriate wave equations, and this leads to a rich pattern of wave propagation that involves the scattering of the free and guided waves among each other, and with the perturbation. These phenomena have many implications in applied physics and engineering, such as in the transmission and reflexion of guided waves by the perturbation, interference between guided waves, and energy losses in open wave guides due to radiation. The subject matter of this monograph is the study of these phenomena.
'Et moi. ... Ii j'avait su CClIIIIIIaIt CD 1'CVCDir, ODe scmcc matbcmatK: s bas I'CIIdcRd be je D', semis paiDt . humaD mcc. It bas put common sease bact Jules Vcmc 'WIIcR it bdoDp, 011 be topmost sbdl JlCXt 10 be dully c: uista' t.bdlcd 'cIiIc: arded DOlI- The series is diverpt; therefore we may be sense'. Eric T. BcII able 10 do sometbiD& with it O. Heavilide Mathematics is a tool for thought. A highly ncceuary tool in a world where both feedback and non- 1inearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the l'Iison d'etre of this series." |
You may like...
Calculus, Metric Edition
James Stewart, Saleem Watson, …
Hardcover
Nonlinear Differential Problems with…
Dumitru Motreanu
Paperback
Student Solutions Manual for Calculus…
Robert Adams, Christopher Essex
Paperback
R717
Discovery Miles 7 170
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
(1)
|