![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
Beginning with the works of N.N.Krasovskii [81, 82, 83], which clari fied the functional nature of systems with delays, the functional approach provides a foundation for a complete theory of differential equations with delays. Based on the functional approach, different aspects of time-delay system theory have been developed with almost the same completeness as the corresponding field of ODE (ordinary differential equations) the ory. The term functional differential equations (FDE) is used as a syn onym for systems with delays 1. The systematic presentation of these re sults and further references can be found in a number of excellent books [2, 15, 22, 32, 34, 38, 41, 45, 50, 52, 77, 78, 81, 93, 102, 128]. In this monograph we present basic facts of i-smooth calculus ~ a new differential calculus of nonlinear functionals, based on the notion of the invariant derivative, and some of its applications to the qualitative theory of functional differential equations. Utilization of the new calculus is the main distinction of this book from other books devoted to FDE theory. Two other distinguishing features of the volume are the following: - the central concept that we use is the separation of finite dimensional and infinite dimensional components in the structures of FDE and functionals; - we use the conditional representation of functional differential equa tions, which is convenient for application of methods and constructions of i~smooth calculus to FDE theory.
The notion of a dominated or rnajorized operator rests on a simple idea that goes as far back as the Cauchy method of majorants. Loosely speaking, the idea can be expressed as follows. If an operator (equation) under study is dominated by another operator (equation), called a dominant or majorant, then the properties of the latter have a substantial influence on the properties of the former . Thus, operators or equations that have "nice" dominants must possess "nice" properties. In other words, an operator with a somehow qualified dominant must be qualified itself. Mathematical tools, putting the idea of domination into a natural and complete form, were suggested by L. V. Kantorovich in 1935-36. He introduced the funda mental notion of a vector space normed by elements of a vector lattice and that of a linear operator between such spaces which is dominated by a positive linear or monotone sublinear operator. He also applied these notions to solving functional equations. In the succeedingyears many authors studied various particular cases of lattice normed spaces and different classes of dominated operators. However, research was performed within and in the spirit of the theory of vector and normed lattices. So, it is not an exaggeration to say that dominated operators, as independent objects of investigation, were beyond the reach of specialists for half a century. As a consequence, the most important structural properties and some interesting applications of dominated operators have become available since recently."
This reference work deals with important topics in general topology and their role in functional analysis and axiomatic set theory, for graduate students and researchers working in topology, functional analysis, set theory and probability theory. It provides a guide to recent research findings, with three contributions by Arhangel'skii and Choban.
This and the previous volume of the OT series contain the proceedings of the Workshop on Operator Theory and its Applications, IWOTA 95, which was held at the University of Regensburg, Germany, July 31 to August 4, 1995. It was the eigth workshop of this kind. Following is a list of the seven previous workshops with reference to their proceedings: 1981 Operator Theory (Santa Monica, California, USA) 1983 Applications of Linear Operator Theory to Systems and Networks (Rehovot, Israel), OT 12 1985 Operator Theory and its Applications (Amsterdam, The Netherlands), OT 19 1987 Operator Theory and Functional Analysis (Mesa, Arizona, USA), OT 35 1989 Matrix and Operator Theory (Rotterdam, The Netherlands), OT 50 1991 Operator Theory and Complex Analysis (Sapporo, Japan), OT 59 1993 Operator Theory and Boundary Eigenvalue Problems (Vienna, Austria), OT 80 IWOTA 95 offered a rich programme on a wide range of latest developments in operator theory and its applications. The programme consisted of 6 invited plenary lectures, 54 invited special topic lectures and more than 100 invited session talks. About 180 participants from 25 countries attended the workshop, more than a third came from Eastern Europe. The conference covered different aspects of linear and nonlinear spectral prob lems, starting with problems for abstract operators up to spectral theory of ordi nary and partial differential operators, pseudodifferential operators, and integral operators. The workshop was also focussed on operator theory in spaces with indefinite metric, operator functions, interpolation and extension problems."
Functional Equations, Inequalities and Applications provides an extensive study of several important equations and inequalities, useful in a number of problems in mathematical analysis. Subjects dealt with include the generalized Cauchy functional equation, the Ulam stability theory in the geometry of partial differential equations, stability of a quadratic functional equation in Banach modules, functional equations and mean value theorems, isometric mappings, functional inequalities of iterative type, related to a Cauchy functional equation, the median principle for inequalities and applications, Hadamard and Dragomir-Agarwal inequalities, the Euler formulae and convex functions and approximate algebra homomorphisms. Also included are applications to some problems of pure and applied mathematics. This book will be of particular interest to mathematicians and graduate students whose work involves functional equations, inequalities and applications.
This book presents important recent developments in mathematical and computational methods used in impedance imaging and the theory of composite materials. By augmenting the theory with interesting practical examples and numerical illustrations, the exposition brings simplicity to the advanced material. An introductory chapter covers the necessary basics. An extensive bibliography and open problems at the end of each chapter enhance the text.
By a Hilbert-space operator we mean a bounded linear transformation be tween separable complex Hilbert spaces. Decompositions and models for Hilbert-space operators have been very active research topics in operator theory over the past three decades. The main motivation behind them is the in variant subspace problem: does every Hilbert-space operator have a nontrivial invariant subspace? This is perhaps the most celebrated open question in op erator theory. Its relevance is easy to explain: normal operators have invariant subspaces (witness: the Spectral Theorem), as well as operators on finite dimensional Hilbert spaces (witness: canonical Jordan form). If one agrees that each of these (i. e. the Spectral Theorem and canonical Jordan form) is important enough an achievement to dismiss any further justification, then the search for nontrivial invariant subspaces is a natural one; and a recalcitrant one at that. Subnormal operators have nontrivial invariant subspaces (extending the normal branch), as well as compact operators (extending the finite-dimensional branch), but the question remains unanswered even for equally simple (i. e. simple to define) particular classes of Hilbert-space operators (examples: hyponormal and quasinilpotent operators). Yet the invariant subspace quest has certainly not been a failure at all, even though far from being settled. The search for nontrivial invariant subspaces has undoubtly yielded a lot of nice results in operator theory, among them, those concerning decompositions and models for Hilbert-space operators. This book contains nine chapters."
Presenting the latest findings in topics from across the mathematical spectrum, this volume includes results in pure mathematics along with a range of new advances and novel applications to other fields such as probability, statistics, biology, and computer science. All contributions feature authors who attended the Association for Women in Mathematics Research Symposium in 2015: this conference, the third in a series of biennial conferences organized by the Association, attracted over 330 participants and showcased the research of women mathematicians from academia, industry, and government.
This collection of original articles and surveys addresses the recent advances in linear and nonlinear aspects of the theory of partial differential equations. The key topics include operators as "sums of squares" of real and complex vector fields, nonlinear evolution equations, local solvability, and hyperbolic questions.
This book is aimed to be both a textbook for graduate students and a starting point for applicationsscientists. It is designedto show how to implementspectral methods to approximate the solutions of partial differential equations. It presents a syst- atic development of the fundamental algorithms needed to write spectral methods codes to solve basic problems of mathematical physics, including steady potentials, transport, and wave propagation. As such, it is meant to supplement, not replace, more general monographs on spectral methods like the recently updated "Spectral Methods: Fundamentals in Single Domains" and "Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics" by Canuto, Hussaini, Quarteroni and Zang, which provide detailed surveys of the variety of methods, their performance and theory. I was motivated by comments that I have heard over the years that spectral me- ods are "too hard to implement." I hope to dispel this view-or at least to remove the "too." Although it is true that a spectral code is harder to hack together than a s- ple ?nite difference code (at least a low order ?nite difference method on a square domain), I show that only a few fundamental algorithms for interpolation, differen- ation, FFT and quadrature-the subjects of basic numerical methods courses-form the building blocks of any spectral code, even for problems in complex geometries. Ipresentthealgorithmsnotonlytosolveproblemsin1D, but2Daswell, toshowthe ?exibility of spectral methods and to make as straightforward as possible the tr- sition from simple, exploratory programs that illustrate the behavior of the methods to application programs.
Boolean algebras underlie many central constructions of analysis, logic, probability theory, and cybernetics. This book concentrates on the analytical aspects of their theory and application, which distinguishes it among other sources. Boolean Algebras in Analysis consists of two parts. The first concerns the general theory at the beginner's level. Presenting classical theorems, the book describes the topologies and uniform structures of Boolean algebras, the basics of complete Boolean algebras and their continuous homomorphisms, as well as lifting theory. The first part also includes an introductory chapter describing the elementary to the theory. The second part deals at a graduate level with the metric theory of Boolean algebras at a graduate level. The covered topics include measure algebras, their sub algebras, and groups of automorphisms. Ample room is allotted to the new classification theorems abstracting the celebrated counterparts by D.Maharam, A.H. Kolmogorov, and V.A.Rokhlin. Boolean Algebras in Analysis is an exceptional definitive source on Boolean algebra as applied to functional analysis and probability. It is intended for all who are interested in new and powerful tools for hard and soft mathematical analysis.
This book introduces and analyzes the multigrid approach for the numerical solution of large sparse linear systems arising from the discretization of elliptic partial differential equations. Special attention is given to the powerful matrix-based-multigrid approach, which is particularly useful for problems with variable coefficients and nonsymmetric and indefinite problems. This approach applies not only to model problems on rectangular grids but also to more realistic applications with complicated grids and domains and discontinuous coefficients. Matrix-Based Multigrid can be used as a textbook in courses in numerical analysis, numerical linear algebra, and numerical PDEs at the advanced undergraduate and graduate levels in computer science, math, and applied math departments. The theory is written in simple algebraic terms and therefore requires preliminary knowledge in basic linear algebra and calculus only. Because it is self contained and includes useful exercises, the book is also suitable for self study by research students, researchers, engineers, and others interested in the numerical solution of partial differential equations.
The book Complex Analysis through Examples and Exercises has come out from the lectures and exercises that the author held mostly for mathematician and physists . The book is an attempt to present the rat her involved subject of complex analysis through an active approach by the reader. Thus this book is a complex combination of theory and examples. Complex analysis is involved in all branches of mathematics. It often happens that the complex analysis is the shortest path for solving a problem in real circum stances. We are using the (Cauchy) integral approach and the (Weierstrass) power se ries approach . In the theory of complex analysis, on the hand one has an interplay of several mathematical disciplines, while on the other various methods, tools, and approaches. In view of that, the exposition of new notions and methods in our book is taken step by step. A minimal amount of expository theory is included at the beinning of each section, the Preliminaries, with maximum effort placed on weil selected examples and exercises capturing the essence of the material. Actually, I have divided the problems into two classes called Examples and Exercises (some of them often also contain proofs of the statements from the Preliminaries). The examples contain complete solutions and serve as a model for solving similar problems given in the exercises. The readers are left to find the solution in the exercisesj the answers, and, occasionally, some hints, are still given."
This book presents an operator theoretic approach to robust control analysis for linear time-varying systems. It emphasizes the conceptual similarity with the H control theory for time-invariant systems and at the same time clarifies the major difficulties confronted in the time varying case. The necessary operator theory is developed from first principles and the book is as self-contained as possible. After presenting the necessary results from the theories of Toeplitz operators and nest algebras, linear systems are defined as input- output operators and the relationship between stabilization and the existance of co-prime factorizations is described. Uniform optimal control problems are formulated as model-matching problems and are reduced to four block problems. Robustness is considered both from the point of view of fractional representations and the "time varying gap" metric, and the relationship between these types of uncertainties is clarified. The book closes with the solution of the orthogonal embedding problem for time varying contractive systems. This book will be useful to both mathematicians interested in the potential applications of operator theory in control and control engineers who wish to deal with some of the more mathematically sophisticated extension of their work.
This introduction to applied nonlinear dynamics and chaos places emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains a detailed glossary of terms. From the reviews: "Will serve as one of the most eminent introductions to the geometric theory of dynamical systems." --Monatshefte f r Mathematik
This and the next volume of the OT series contain the proceedings of the Work shop on Operator Theory and its Applications, IWOTA 95, which was held at the University of Regensburg, Germany, July 31 to August 4, 1995. It was the eigth workshop of this kind. Following is a list of the seven previous workshops with reference to their proceedings: 1981 Operator Theory (Santa Monica, California, USA) 1983 Applications of Linear Operator Theory to Systems and Networks (Rehovot, Israel), OT 12 1985 Operator Theory and its Applications (Amsterdam, The Netherlands), OT 19 1987 Operator Theory and Functional Analysis (Mesa, Arizona, USA), OT 35 1989 Matrix and Operator Theory (Rotterdam, The Netherlands), OT 50 1991 Operator Theory and Complex Analysis (Sapporo, Japan), OT 59 1993 Operator Theory and Boundary Eigenvalue Problems (Vienna, Austria), OT 80 IWOTA 95 offered a rich programme on a wide range of latest developments in operator theory and its applications. The programme consisted of 6 invited plenary lectures, 54 invited special topic lectures and more than 100 invited session talks. About 180 participants from 25 countries attended the workshop, more than a third came from Eastern Europe. The conference covered different aspects of linear and nonlinear spectral prob lems, starting with problems for abstract operators up to spectral theory of ordi nary and partial differential operators, pseudodifferential operators, and integral operators. The workshop was also focussed on operator theory in spaces with indefinite metric, operator functions, interpolation and extension problems.
Recent years have witnessed an increasingly close relationship growing between potential theory, probability and degenerate partial differential operators. The theory of Dirichlet (Markovian) forms on an abstract finite or infinite-dimensional space is common to all three disciplines. This is a fascinating and important subject, central to many of the contributions to the conference on Potential Theory and Degenerate Partial Differential Operators', held in Parma, Italy, February 1994.
The aim of this proceeding is addressed to present recent developments of the mathematical research on the Navier-Stokes equations, the Euler equations and other related equations. In particular, we are interested in such problems as: 1) existence, uniqueness and regularity of weak solutions2) stability and its asymptotic behavior of the rest motion and the steady state3) singularity and blow-up of weak and strong solutions4) vorticity and energy conservation5) fluid motions around the rotating axis or outside of the rotating body6) free boundary problems7) maximal regularity theorem and other abstract theorems for mathematical fluid mechanics.
Calculus and linear algebra are two dominant themes in contemporary mathematics and its applications. The aim of this book is to introduce linear algebra in an intuitive geometric setting as the study of linear maps and to use these simpler linear functions to study more complicated nonlinear functions. In this way, many of the ideas, techniques, and formulas in the calculus of several variables are clarified and understood in a more conceptual way. After using this text a student should be well prepared for subsequent advanced courses in both algebra and linear differential equations as well as the many applications where linearity and its interplay with nonlinearity are significant. This second edition has been revised to clarify the concepts. Many exercises and illustrations have been included to make the text more usable for students.
This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing's oscillator, Van der Pol's equation, Lorenz attractor, Roessler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as an undergraduate or graduate textbook or a comprehensive source for scientists, researchers and engineers, providing the statement of the art on energy flow or power flow theory and methods.
This book was undertaken to provide a text and reference on the theory and practice of the FFT and its common usage. This book is organized in only four chapters, and is intended as a tutorial on the use of the FFf and its trade space. The trade space of the FFT is the parameters in its usage and the relationships between them - the sampie rate, the total number of points or the interval over which processing occurs in a single FFf, the selectivity of tuning to a given frequency over signals out-of-band, and the bandwidth over which a signal appears. The examples given in this text are in FORTRAN 9512003. FORTRAN 2003 was frozen as a standard while this work was in progress. The listings given here are intended as an aid in understanding the FFT and associated algorithms such as spectral window weightings, with the goal of making the best of them more accessible to the reader. The code I use here provides a simple bridge between the material in the text and implementation in FORTRAN 2003, C++, Java, MATLAB (c), and other modem languages. The examples are sufficiently simple to be translated into older languages such as C and FORTRAN 77 if desired.
This two-volume work mainly addresses undergraduate and graduate students in the engineering sciences and applied mathematics. Hence it focuses on partial differential equations with a strong emphasis on illustrating important applications in mechanics. The presentation considers the general derivation of partial differential equations and the formulation of consistent boundary and initial conditions required to develop well-posed mathematical statements of problems in mechanics. The worked examples within the text and problem sets at the end of each chapter highlight engineering applications. The mathematical developments include a complete discussion of uniqueness theorems and, where relevant, a discussion of maximum and miniumum principles. The primary aim of these volumes is to guide the student to pose and model engineering problems, in a mathematically correct manner, within the context of the theory of partial differential equations in mechanics.
This monograph is the first to provide a comprehensive, self-contained and rigorous presentation of some of the most powerful preconditioning methods for solving finite element equations in a common block-matrix factorization framework. Topics covered include the classical incomplete block-factorization preconditioners and the most efficient methods such as the multigrid, algebraic multigrid, and domain decomposition. Additionally, the author discusses preconditioning of saddle-point, nonsymmetric and indefinite problems, as well as preconditioning of certain nonlinear and quadratic constrained minimization problems that typically arise in contact mechanics. The book presents analytical as well as algorithmic aspects. This text can serve as an indispensable reference for researchers, graduate students, and practitioners. It can also be used as a supplementary text for a topics course in preconditioning and/or multigrid methods at the graduate level.
This is the first systematic presentation of the capacitory approach and symmetrization in the context of complex analysis. The content of the book is original - the main part has not been covered by existing textbooks and monographs. After an introduction to the theory of condenser capacities in the plane, the monotonicity of the capacity under various special transformations (polarization, Gonchar transformation, averaging transformations and others) is established, followed by various types of symmetrization which are one of the main objects of the book. By using symmetrization principles, some metric properties of compact sets are obtained and some extremal decomposition problems are solved. Moreover, the classical and present facts for univalent and multivalent meromorphic functions are proven. This book will be a valuable source for current and future researchers in various branches of complex analysis and potential theory. |
You may like...
Advances in Mathematical and…
Mukesh Kumar Awasthi, Maitri Verma, …
Hardcover
R4,635
Discovery Miles 46 350
Exploring Quantum Mechanics - A…
Victor Galitski, Boris Karnakov, …
Hardcover
R6,101
Discovery Miles 61 010
Evolutionary Intelligence for Healthcare…
T. Ananth Kumar, R. Rajmohan, …
Hardcover
R1,521
Discovery Miles 15 210
Bounded Queries in Recursion Theory
William Levine, Georgia Martin
Hardcover
R2,851
Discovery Miles 28 510
Agent-Based Modeling and Network…
Akira Namatame, Shu-Heng Chen
Hardcover
R2,970
Discovery Miles 29 700
Mathematical Methods for Signal and…
Luc Florack, Remco Duits, …
Hardcover
R2,691
Discovery Miles 26 910
|