![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion,nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes.
This is a monograph covering topological fixed point theory for several classes of single and multivalued maps. The authors begin by presenting basic notions in locally convex topological vector spaces. Special attention is then devoted to weak compactness, in particular to the theorems of Eberlein-Smulian, Grothendick and Dunford-Pettis. Leray-Schauder alternatives and eigenvalue problems for decomposable single-valued nonlinear weakly compact operators in Dunford-Pettis spaces are considered, in addition to some variants of Schauder, Krasnoselskii, Sadovskii, and Leray-Schauder type fixed point theorems for different classes of weakly sequentially continuous operators on general Banach spaces. The authors then proceed with an examination of Sadovskii, Furi-Pera, and Krasnoselskii fixed point theorems and nonlinear Leray-Schauder alternatives in the framework of weak topologies and involving multivalued mappings with weakly sequentially closed graph. These results are formulated in terms of axiomatic measures of weak noncompactness. The authors continue to present some fixed point theorems in a nonempty closed convex of any Banach algebras or Banach algebras satisfying a sequential condition (P) for the sum and the product of nonlinear weakly sequentially continuous operators, and illustrate the theory by considering functional integral and partial differential equations. The existence of fixed points, nonlinear Leray-Schauder alternatives for different classes of nonlinear (ws)-compact operators (weakly condensing, 1-set weakly contractive, strictly quasi-bounded) defined on an unbounded closed convex subset of a Banach space are also discussed. The authors also examine the existence of nonlinear eigenvalues and eigenvectors, as well as the surjectivity of quasibounded operators. Finally, some approximate fixed point theorems for multivalued mappings defined on Banach spaces. Weak and strong topologies play a role here and both bounded and unbounded regions are considered. The authors explicate a method developed to indicate how to use approximate fixed point theorems to prove the existence of approximate Nash equilibria for non-cooperative games. Fixed point theory is a powerful and fruitful tool in modern mathematics and may be considered as a core subject in nonlinear analysis. In the last 50 years, fixed point theory has been a flourishing area of research. As such, the monograph begins with an overview of these developments before gravitating towards topics selected to reflect the particular interests of the authors.
This is a masterly exposition and an encyclopedic presentation of the theory of hyperbolic conservation laws. It illustrates the essential role of continuum thermodynamics in providing motivation and direction for the development of the mathematical theory while also serving as the principal source of applications. The reader is expected to have a certain mathematical sophistication and to be familiar with (at least) the rudiments of analysis and the qualitative theory of partial differential equations, whereas prior exposure to continuum physics is not required. The target group of readers would consist of (a) experts in the mathematical theory of hyperbolic systems of conservation laws who wish to learn about the connection with classical physics; (b) specialists in continuum mechanics who may need analytical tools; (c) experts in numerical analysis who wish to learn the underlying mathematical theory; and (d) analysts and graduate students who seek introduction to the theory of hyperbolic systems of conservation laws. This new edition places increased emphasis on hyperbolic systems of balance laws with dissipative source, modeling relaxation phenomena. It also presents an account of recent developments on the Euler equations of compressible gas dynamics. Furthermore, the presentation of a number of topics in the previous edition has been revised, expanded and brought up to date, and has been enriched with new applications to elasticity and differential geometry. The bibliography, also expanded and updated, now comprises close to two thousand titles. From the reviews of the 3rd edition: "This is the third edition of the famous book by C.M. Dafermos. His masterly written book is, surely, the most complete exposition in the subject." Evgeniy Panov, Zentralblatt MATH "A monumental book encompassing all aspects of the mathematical theory of hyperbolic conservation laws, widely recognized as the "Bible" on the subject." Philippe G. LeFloch, Math. Reviews
This volume contains the contributions of participants of the conference "Optimal Control of Partial Differential Equations" held at the Wasserschloss Klaffenbach near Chemnitz (Saxony, Germany) from April 20 to 25, 1998. The conference was organized by the editors of this volume. Along with the dramatic increase in computer power, the application of PDE-based control theory and the corresponding numerical algorithms to industrial problems has become more and more important in recent years. This development is reflected by the fact that researchers focus their interest on challenging problems such as the study of controlled fluid-structure interactions, flexible structures, noise reduction, smart materials, the optimal design of shapes and material properties and specific industrial processes. All of these applications involve the analytical and numerical treatment of nonlinear partial differential equations with nonhomogeneous boundary or transmission conditions along with some cost criteria to be minimized. The mathematical framework contains modelling and analysis of such systems as well as the numerical analysis and implemention of algorithms in order to solve concrete problems. This volume offers a wide spectrum of aspects of the discipline and is of interest to mathematicians as well as to scientists working in the fields of applications.
The book presents the modern state of the art in the mathematical theory of compressible Navier-Stokes equations, with particular emphasis on the applications to aerodynamics. The topics covered include: modeling of compressible viscous flows; modern mathematical theory of nonhomogeneous boundary value problems for viscous gas dynamics equations; applications to optimal shape design in aerodynamics; kinetic theory for equations with oscillating data; new approach to the boundary value problems for transport equations. The monograph offers a comprehensive and self-contained introduction to recent mathematical tools designed to handle the problems arising in the theory.
Covers uniformly recurrent solutions and c-almost periodic solutions of abstract Volterra integro-differential equations as well as various generalizations of almost periodic functions in Lebesgue spaces with variable coefficients. Treats multi-dimensional almost periodic type functions and their generalizations in adequate detail.
This book gives senior undergraduate and beginning graduate students and researchers in computer vision, applied mathematics, computer graphics, and robotics a self-contained introduction to the geometry of 3D vision; that is the reconstruction of 3D models of objects from a collection of 2D images. Following a brief introduction, Part I provides background materials for the rest of the book. The two fundamental transformations, namely rigid body motion and perspective projection are introduced and image formation and feature extraction discussed. Part II covers the classic theory of two view geometry based on the so-called epipolar constraint. Part III shows that a more proper tool for studying the geometry of multiple views is the so- called rank considtion on the multiple view matrix. Part IV develops practical reconstruction algorithms step by step as well as discusses possible extensions of the theory. Exercises are provided at the end of each chapter. Software for examples and algorithms are available on the author's website.
"Recent Advances in Harmonic Analysis and Applications" features selected contributions from the AMS conference which took place at Georgia Southern University, Statesboro in 2011 in honor of Professor Konstantin Oskolkov's 65th birthday. The contributions are based on two special sessions, namely "Harmonic Analysis and Applications" and "Sparse Data Representations and Applications." Topics covered range from Banach space geometry to classical harmonic analysis and partial differential equations.Survey and expository articles by leading experts in their corresponding fields are included, and the volume also features selected high quality papers exploring new results and trends in Muckenhoupt-Sawyer theory, orthogonal polynomials, trigonometric series, approximation theory, Bellman functions and applications in differential equations. Graduate students and researchers in analysis will be particularly interested in the articles which emphasize remarkable connections between analysis and analytic number theory. The readers will learn about recent mathematical developments and directions for future work in the unexpected and surprising interaction between abstract problems in additive number theory and experimentally discovered optical phenomena in physics. This book will be useful for number theorists, harmonic analysts, algorithmists in multi-dimensional signal processing and experts in physics and partial differential equations. "
This book, in honor of Hari M. Srivastava, discusses essential developments in mathematical research in a variety of problems. It contains thirty-five articles, written by eminent scientists from the international mathematical community, including both research and survey works. Subjects covered include analytic number theory, combinatorics, special sequences of numbers and polynomials, analytic inequalities and applications, approximation of functions and quadratures, orthogonality and special and complex functions. The mathematical results and open problems discussed in this book are presented in a simple and self-contained manner. The book contains an overview of old and new results, methods, and theories toward the solution of longstanding problems in a wide scientific field, as well as new results in rapidly progressing areas of research. The book will be useful for researchers and graduate students in the fields of mathematics, physics and other computational and applied sciences.
This volume is the result of two international workshops; "Infinite Analysis 11 Frontier of Integrability" held at University of Tokyo, Japan in July 25th to 29th, 2011, and "Symmetries, Integrable Systems and Representations" held at Universite Claude Bernard Lyon 1, France in December 13th to 16th, 2011. Included are research articles based on the talks presented at the workshops, latest results obtained thereafter, and some review articles. The subjects discussed range across diverse areas such as algebraic geometry, combinatorics, differential equations, integrable systems, representation theory, solvable lattice models and special functions. Through these topics, the readerwill find some recent
developments in the field of mathematical physics and their
interactions with several other domains.
This book is comprehensive in its classical mathematical physics presentation, providing the reader with detailed instructions for obtaining Green's functions from scratch. Green's functions is an instrument easily accessible to practitioners who are engaged in design and exploitation of machines and structures in modern engineering practice. To date, there are no books available on the market that are devoted to the Green's function formalism for equations covered in this volume. The reader, with an undergraduate background in applied mathematics, can become an active user of the Green's function approach. For the first time, Green's functions are discussed for a specific class of problems dealing with potential fields induced in thin-wall structures and therefore, the reader will have first-hand access to a novel issue. This Work is accessible to researchers in applied mathematics, mechanics, and relevant disciplines such as engineering, as well as to upper level undergraduates and graduate students.
This text is a concise, application-oriented introduction to the theory of distributions. It presents distributions as a natural method of analysis from both a mathematical and physical point of view. Methods are developed to justify many formal calculations that do not make sense in the classical framework. The discussion emphasizes applications to the general study of linear partial differential equations. The topics include an introduction to distributions, differentiation, convergence, and convolution of distributions, as well as Fourier transformations and spaces of distributions having special properties.The applications relate the theory to solutions of partial differential equations occurring in physics, for instance, in mechanics, optics, quantum mechanics, quantum field theory and signal analysis, which students may encounter throughout their studies.
This volume contains research articles from the field of Nonlinear Differential Equa tions which result from the "Workshop on Nonlinear Analysis and Applications" held in Bergamo on July 9 to 13, 200l. This workshop was the third edition of a meeting which first took place in Campinas in 1996 and was founded in part upon scientific cooperation, already well initiated, between some participants, on specific problems in Nonlinear Analysis, and in part upon the whish to extend such cooperation to other researchers and to other topics. The scientific collaboration between Italy and Brazil is not new; it dates back at least to the thirties, and includes, among others, the name of Luigi Fantappie, just to mention only one of the earliest Italians that developed part of their scien tific activity in Brazil. If the first workshop had mainly an informal character, the second, which took place in 1998 again in Campinas, already had the structure and the breath of a true international congress. At this point it was the Italians turn to organize the third meeting. The main purpose of the conference was to provide a forum for the discussion of recent work and modern trends in various fields of Nonlinear Analysis. About 130 researchers coming from 17 countries attended the conference."
This volume consists of invited lecture notes, survey papers and original research papers from the AAGADE school and conference held in Bedlewo, Poland in September 2015. The contributions provide an overview of the current level of interaction between algebra, geometry and analysis and demonstrate the manifold aspects of the theory of ordinary and partial differential equations, while also pointing out the highly fruitful interrelations between those aspects. These interactions continue to yield new developments, not only in the theory of differential equations but also in several related areas of mathematics and physics such as differential geometry, representation theory, number theory and mathematical physics. The main goal of the volume is to introduce basic concepts, techniques, detailed and illustrative examples and theorems (in a manner suitable for non-specialists), and to present recent developments in the field, together with open problems for more advanced and experienced readers. It will be of interest to graduate students, early-career researchers and specialists in analysis, geometry, algebra and related areas, as well as anyone interested in learning new methods and techniques.
This book provides a systematic development of the Rubio de Francia theory of extrapolation, its many generalizations and its applications to one and two-weight norm inequalities. The book is based upon a new and elementary proof of the classical extrapolation theorem that fully develops the power of the Rubio de Francia iteration algorithm. This technique allows us to give a unified presentation of the theory and to give important generalizations to Banach function spaces and to two-weight inequalities. We provide many applications to the classical operators of harmonic analysis to illustrate our approach, giving new and simpler proofs of known results and proving new theorems. The book is intended for advanced graduate students and researchers in the area of weighted norm inequalities, as well as for mathematicians who want to apply extrapolation to other areas such as partial differential equations.
The papers in this book originate from lectures which were held at the "Vienna Workshop on Nonlinear Models and Analysis" - May 20-24, 2002. They represent a cross-section of the research field Applied Nonlinear Analysis with emphasis on free boundaries, fully nonlinear partial differential equations, variational methods, quasilinear partial differential equations and nonlinear kinetic models.
This book contains a selection of carefully refereed research papers, most of which were presented at the 14th International Workshop on Operator Theory and its Applications (IWOTA) held at Cagliari, Italy (June 24-27, 2003). The papers, many of which have been written by leading experts in the field, concern a wide variety of topics in modern operator theory and applications, with emphasis on differential operators and numerical methods. Included are papers on the structure of operators, spectral theory of differential operators, theory of pseudo-differential operators and Fourier integral operators, numerical methods for solving nonlinear integral equations, singular integral equations, and Toeplitz systems. Other main topics covered are inverse problems for canonical systems, factorization methods, metric constrained interpolation, mathematical system theory, and elements of multivariable operator theory. The book will be of interest to a wide audience of pure and applied mathematicians and engineers.
Shedding light on new opportunities in predictor feedback, this book significantly broadens the set of techniques available to a mathematician or engineer working on delay systems. It is a collection of tools and techniques that make predictor feedback ideas applicable to nonlinear systems, systems modeled by PDEs, systems with highly uncertain or completely unknown input/output delays, and systems whose actuator or sensor dynamics are modeled by more general hyperbolic or parabolic PDEs, rather than by pure delay. Replete with examples, Delay Compensation for Nonlinear, Adaptive, and PDE Systems is an excellent reference guide for graduate students, researchers, and professionals in mathematics, systems control, as well as chemical, mechanical, electrical, computer, aerospace, and civil/structural engineering. Parts of the book may be used in graduate courses on general distributed parameter systems, linear delay systems, PDEs, nonlinear control, state estimator and observers, adaptive control, robust control, or linear time-varying systems.
This volume provides a broad and uniform introduction of PDE-constrained optimization as well as to document a number of interesting and challenging applications. Many science and engineering applications necessitate the solution of optimization problems constrained by physical laws that are described by systems of partial differential equations (PDEs) . As a result, PDE-constrained optimization problems arise in a variety of disciplines including geophysics, earth and climate science, material science, chemical and mechanical engineering, medical imaging and physics. This volume is divided into two parts. The first part provides a comprehensive treatment of PDE-constrained optimization including discussions of problems constrained by PDEs with uncertain inputs and problems constrained by variational inequalities. Special emphasis is placed on algorithm development and numerical computation. In addition, a comprehensive treatment of inverse problems arising in the oil and gas industry is provided. The second part of this volume focuses on the application of PDE-constrained optimization, including problems in optimal control, optimal design, and inverse problems, among other topics.
This volume offers a collection of carefully selected, peer-reviewed papers presented at the BIOMAT 2018 International Symposium, which was held at the University Hassan II, Morocco, from October 29th to November 2nd, 2018. The topics covered include applications of mathematical modeling in hepatitis B, HIV and Chikungunya infections; tumor cell dynamics; inflammatory processes; chemotherapeutic drug effects; and population dynamics. Also discussing the application of techniques like the generalized stochastic Milevsky-Promislov model, numerical simulations and convergence of discrete and continuous models, it is an invaluable resource on interdisciplinary research in mathematical biology for students, researchers, and professionals. Held every year since 2001, the BIOMAT International Symposium gathers together, in a single conference, researchers from Mathematics, Physics, Biology, and affine fields to promote the interdisciplinary exchange of results, ideas and techniques, promoting truly international cooperation for problem discussion. The 2018 edition of BIOMAT International Symposium received contributions by authors from seventeen countries: Algeria, Brazil, Cameroon, Canada, Chad, Colombia, France, Germany, Hungary, Italy, Mali, Morocco, Nigeria, Poland, Portugal, Russia, and Senegal. Selected papers presented at the 2017 edition of this Symposium were also published by Springer, in the volume "Trends in Biomathematics: Modeling, Optimization and Computational Problems" (978-3-319-91091-8).
This volume in the Elsevier Series in Electromagnetism presents a
detailed, in-depth and self-contained treatment of the Fast
Multipole Method and its applications to the solution of the
Helmholtz equation in three dimensions. The Fast Multipole Method
was pioneered by Rokhlin and Greengard in 1987 and has enjoyed a
dramatic development and recognition during the past two decades.
This method has been described as one of the best 10 algorithms of
the 20th century. Thus, it is becoming increasingly important to
give a detailed exposition of the Fast Multipole Method that will
be accessible to a broad audience of researchers. This is exactly
what the authors of this book have accomplished.
- Serves as an excellent introduction to the calculus of
variations |
You may like...
Neural Networks: Computers With…
Benny Elley Lautrup, S. Brunak
Paperback
R909
Discovery Miles 9 090
Fuzzy Logic in Its 50th Year - New…
Cengiz Kahraman, Uzay Uzay Kaymak, …
Hardcover
Neural Networks in Healthcare…
Rezaul Begg, Joarder Kamruzzaman, …
Hardcover
R2,384
Discovery Miles 23 840
Excel in Complex Variables with the…
Bryce Wilkins, Theodore Hromadka II
Hardcover
R3,245
Discovery Miles 32 450
|