![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
This book, based on a graduate course given by the authors, is a pedagogic and self-contained introduction to the renormalization group with special emphasis on the functional renormalization group. The functional renormalization group is a modern formulation of the Wilsonian renormalization group in terms of formally exact functional differential equations for generating functionals. In Part I the reader is introduced to the basic concepts of the renormalization group idea, requiring only basic knowledge of equilibrium statistical mechanics. More advanced methods, such as diagrammatic perturbation theory, are introduced step by step. Part II then gives a self-contained introduction to the functional renormalization group. After a careful definition of various types of generating functionals, the renormalization group flow equations for these functionals are derived. This procedure is shown to encompass the traditional method of the mode elimination steps of the Wilsonian renormalization group procedure. Then, approximate solutions of these flow equations using expansions in powers of irreducible vertices or in powers of derivatives are given. Finally, in Part III the exact hierarchy of functional renormalization group flow equations for the irreducible vertices is used to study various aspects of non-relativistic fermions, including the so-called BCS-BEC crossover, thereby making the link to contemporary research topics.
This monograph lays down the foundations of the theory of complex Kleinian groups, a newly born area of mathematics whose origin traces back to the work of Riemann, Poincare, Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of the Riemann sphere, and these can be regarded too as being groups of holomorphic automorphisms of the complex projective line CP1. When going into higher dimensions, there is a dichotomy: Should we look at conformal automorphisms of the n-sphere?, or should we look at holomorphic automorphisms of higher dimensional complex projective spaces? These two theories are different in higher dimensions. In the first case we are talking about groups of isometries of real hyperbolic spaces, an area of mathematics with a long-standing tradition. In the second case we are talking about an area of mathematics that still is in its childhood, and this is the focus of study in this monograph. This brings together several important areas of mathematics, as for instance classical Kleinian group actions, complex hyperbolic geometry, chrystallographic groups and the uniformization problem for complex manifolds. "
A billiard is a dynamical system in which a point particle alternates between free motion and specular reflections fromthe boundaryof a domain."Exterior Billiards" presents billiards in the complement of domains and their applications in aerodynamics and geometrical optics. This book distinguishes itself from existing literature by presenting billiard dynamics "outside" bounded domains, including scattering, resistance, invisibility and retro-reflection. It begins with an overview of the mathematical notations used throughout the book and a brief review of the main results. Chapters 2 and 3 are focused on problems of minimal resistance and Newton s problem in media with positive temperature. In chapters 4 and 5, scattering of billiards bynonconvex and rough domains is characterized and some related special problems of optimal mass transportation are studied. Applications in aerodynamics are addressed next and problems of invisibility and retro-reflection within the framework of geometric optics conclude the text. The book will appeal to mathematicians working in dynamical systems and calculus of variations. Specialists working in the areas of applications discussed will also find it useful."
This unique book describes, analyses, and improves various approaches and techniques for the numerical solution of delay differential equations. It includes a list of available codes and also aids the reader in writing his or her own.
This book offers engineering students an introduction to the theory of partial differential equations and then guiding them through the modern problems in this subject. Divided into two parts, in the first part readers already well-acquainted with problems from the theory of differential and integral equations gain insights into the classical notions and problems, including differential operators, characteristic surfaces, Levi functions, Green's function, and Green's formulas. Readers are also instructed in the extended potential theory in its three forms: the volume potential, the surface single-layer potential and the surface double-layer potential. Furthermore, the book presents the main initial boundary value problems associated with elliptic, parabolic and hyperbolic equations. The second part of the book, which is addressed first and foremost to those who are already acquainted with the notions and the results from the first part, introduces readers to modern aspects of the theory of partial differential equations.
This book features papers presented during a special session on algebra, functional analysis, complex analysis, and pluripotential theory. Research articles focus on topics such as slow convergence, spectral expansion, holomorphic extension, m-subharmonic functions, pseudo-Galilean group, involutive algebra, Log-integrable measurable functions, Gibbs measures, harmonic and analytic functions, local automorphisms, Lie algebras, and Leibniz algebras. Many of the papers address the theory of harmonic functions, and the book includes a number of extensive survey papers. Graduate and researchers interested in functional analysis, complex analysis, operator algebras and non-associative algebras will find this book relevant to their studies. The special session was part of the second USA-Uzbekistan Conference on Analysis and Mathematical Physics held on August 8-12, 2017 at Urgench State University (Uzbekistan). The conference encouraged communication and future collaboration among U.S. mathematicians and their counterparts in Uzbekistan and other countries. Main themes included algebra and functional analysis, dynamical systems, mathematical physics and partial differential equations, probability theory and mathematical statistics, and pluripotential theory. A number of significant, recently established results were disseminated at the conference's scheduled plenary talks, while invited talks presented a broad spectrum of findings in several sessions. Based on a different session from the conference, Differential Equations and Dynamical Systems is also published in the Springer Proceedings in Mathematics & Statistics Series.
Designed for a one-semester advanced calculus course, "Advanced Calculus" explores the theory of calculus and highlights the connections between calculus and real analysis -- providing a mathematically sophisticated introduction to functional analytical concepts. The text is interesting to read and includes many illustrative worked-out examples and instructive exercises, and precise historical notes to aid in further exploration of calculus. Ancillary list: * Companion website, Ebook- http:
//www.elsevierdirect.com/product.jsp?isbn=9780123749550 * Student
Solutions Manual- To come * Instructors Solutions Manual- To
come
This book gathers papers from the International Conference on Differential & Difference Equations and Applications 2017 (ICDDEA 2017), held in Lisbon, Portugal on June 5-9, 2017. The editors have compiled the strongest research presented at the conference, providing readers with valuable insights into new trends in the field, as well as applications and high-level survey results. The goal of the ICDDEA was to promote fruitful collaborations between researchers in the fields of differential and difference equations. All areas of differential and difference equations are represented, with a special emphasis on applications.
This book presents the use of efficient Evolutionary Computation (EC) algorithms for solving diverse real-world image processing and pattern recognition problems. It provides an overview of the different aspects of evolutionary methods in order to enable the reader in reaching a global understanding of the field and, in conducting studies on specific evolutionary techniques that are related to applications in image processing and pattern recognition. It explains the basic ideas of the proposed applications in a way that can also be understood by readers outside of the field. Image processing and pattern recognition practitioners who are not evolutionary computation researchers will appreciate the discussed techniques beyond simple theoretical tools since they have been adapted to solve significant problems that commonly arise on such areas. On the other hand, members of the evolutionary computation community can learn the way in which image processing and pattern recognition problems can be translated into an optimization task. The book has been structured so that each chapter can be read independently from the others. It can serve as reference book for students and researchers with basic knowledge in image processing and EC methods.
Aimed at the community of mathematicians working on ordinary and partial differential equations, difference equations, and functional equations, this book contains selected papers based on the presentations at the International Conference on Differential & Difference Equations and Applications (ICDDEA) 2015, dedicated to the memory of Professor Georg Sell. Contributions include new trends in the field of differential and difference equations, applications of differential and difference equations, as well as high-level survey results. The main aim of this recurring conference series is to promote, encourage, cooperate, and bring together researchers in the fields of differential & difference equations. All areas of differential and difference equations are represented, with special emphasis on applications.
This set of three volumes aims to describe the recent progress in nonlinear differential equations and nonlinear dynamical systems (both continuous and discrete). Written by experts, each chapter is self-contained and aims to clearly illustrate some of the mathematical theories of nonlinear systems. These volumes should be suitable for graduate and postgraduate students in mathematics, the natural sciences, and engineering sciences, as well as for researchers (both pure and applied) interested in nonlinear systems. The common theme throughout all the volumes is on solvable and integrable nonlinear systems of equations and methods/theories that can be applied to analyze those systems. Some applications are also discussed. Features Clearly illustrates the mathematical theories of nonlinear systems and their progress to both the non-expert and active researchers in this area. Suitable for graduate students in mathematics, applied mathematics and some of the engineering sciences. Written in a careful pedagogical manner by those experts who have been involved in the research themselves, with each contribution being reasonably self-contained.
The book is complemented by biographical information. This volume is dedicated to Peter Lancaster, an outstanding expert in operator and matrix theory, numerical analysis and applications, on the occasion of his seventieth birthday. The book contains a selection of recent original research papers in linear algebra and analysis, areas in which Peter Lancaster was very active. The articles are complemented by biographical data and a list of publications. Contributed volume in honor of Peter Lancaster, an outstanding expert in operator theory, matrix theory and numerical analysis. The articles have been carefully selected and refereed and cover topics in linear algebra and analysis where Peter Lancaster was very active.
This unique text/reference presents a fresh look at nonlinear processing through nonlinear eigenvalue analysis, highlighting how one-homogeneous convex functionals can induce nonlinear operators that can be analyzed within an eigenvalue framework. The text opens with an introduction to the mathematical background, together with a summary of classical variational algorithms for vision. This is followed by a focus on the foundations and applications of the new multi-scale representation based on non-linear eigenproblems. The book then concludes with a discussion of new numerical techniques for finding nonlinear eigenfunctions, and promising research directions beyond the convex case. Topics and features: introduces the classical Fourier transform and its associated operator and energy, and asks how these concepts can be generalized in the nonlinear case; reviews the basic mathematical notion, briefly outlining the use of variational and flow-based methods to solve image-processing and computer vision algorithms; describes the properties of the total variation (TV) functional, and how the concept of nonlinear eigenfunctions relate to convex functionals; provides a spectral framework for one-homogeneous functionals, and applies this framework for denoising, texture processing and image fusion; proposes novel ways to solve the nonlinear eigenvalue problem using special flows that converge to eigenfunctions; examines graph-based and nonlocal methods, for which a TV eigenvalue analysis gives rise to strong segmentation, clustering and classification algorithms; presents an approach to generalizing the nonlinear spectral concept beyond the convex case, based on pixel decay analysis; discusses relations to other branches of image processing, such as wavelets and dictionary based methods. This original work offers fascinating new insights into established signal processing techniques, integrating deep mathematical concepts from a range of different fields, which will be of great interest to all researchers involved with image processing and computer vision applications, as well as computations for more general scientific problems.
"Discrete-Time Linear Systems: Theory and Design with Applications "combines system theory and design in order to show the importance of system theory and its role in system design. The book focuses on system theory (including optimal state feedback and optimal state estimation) and system design (with applications to feedback control systems and wireless transceivers, plus system identification and channel estimation).
This book provides a comprehensive guide to analyzing and solving optimal design problems in continuous media by means of the so-called sub-relaxation method. Though the underlying ideas are borrowed from other, more classical approaches, here they are used and organized in a novel way, yielding a distinct perspective on how to approach this kind of optimization problems. Starting with a discussion of the background motivation, the book broadly explains the sub-relaxation method in general terms, helping readers to grasp, from the very beginning, the driving idea and where the text is heading. In addition to the analytical content of the method, it examines practical issues like optimality and numerical approximation. Though the primary focus is on the development of the method for the conductivity context, the book's final two chapters explore several extensions of the method to other problems, as well as formal proofs. The text can be used for a graduate course in optimal design, even if the method would require some familiarity with the main analytical issues associated with this type of problems. This can be addressed with the help of the provided bibliography.
Degenerate and singular parabolic equations have been the subject of extensive research for the last 25 years. Despite important achievements, the issue of the Harnack inequality for non-negative solutions to these equations, both of p-Laplacian and porous medium type, while raised by several authors, has remained basically open. Recently considerable progress has been made on this issue, to the point that, except for the singular sub-critical range, both for the p-laplacian and the porous medium equations, the theory is reasonably complete. It seemed therefore timely to trace a comprehensive overview, that would highlight the main issues and also the problems that still remain open. The authors give a comprehensive treatment of the Harnack inequality for non-negative solutions to p-laplace and porous medium type equations, both in the degenerate (p2 or m1) and in the singular range (1p<2 or 0m<1), starting from the notion of solution and building all the necessary technical tools. The book is self-contained. Building on a similar monograph by the first author, the authors of the present book focus entirely on the Harnack estimates and on their applications: indeed a number of known regularity results are given a new proof, based on the Harnack inequality. It is addressed to all professionals active in the field, and also to advanced graduate students, interested in understanding the main issues of this fascinating research field.
The aim of this book is to provide a comprehensive account of higher dimensional Nevanlinna theory and its relations with Diophantine approximation theory for graduate students and interested researchers. This book with nine chapters systematically describes Nevanlinna theory of meromorphic maps between algebraic varieties or complex spaces, building up from the classical theory of meromorphic functions on the complex plane with full proofs in Chap. 1 to the current state of research. Chapter 2 presents the First Main Theorem for coherent ideal sheaves in a very general form. With the preparation of plurisubharmonic functions, how the theory to be generalized in a higher dimension is described. In Chap. 3 the Second Main Theorem for differentiably non-degenerate meromorphic maps by Griffiths and others is proved as a prototype of higher dimensional Nevanlinna theory. Establishing such a Second Main Theorem for entire curves in general complex algebraic varieties is a wide-open problem. In Chap. 4, the Cartan-Nochka Second Main Theorem in the linear projective case and the Logarithmic Bloch-Ochiai Theorem in the case of general algebraic varieties are proved. Then the theory of entire curves in semi-abelian varieties, including the Second Main Theorem of Noguchi-Winkelmann-Yamanoi, is dealt with in full details in Chap. 6. For that purpose Chap. 5 is devoted to the notion of semi-abelian varieties. The result leads to a number of applications. With these results, the Kobayashi hyperbolicity problems are discussed in Chap. 7. In the last two chapters Diophantine approximation theory is dealt with from the viewpoint of higher dimensional Nevanlinna theory, and the Lang-Vojta conjecture is confirmed in some cases. In Chap. 8 the theory over function fields is discussed. Finally, in Chap. 9, the theorems of Roth, Schmidt, Faltings, and Vojta over number fields are presented and formulated in view of Nevanlinna theory with results motivated by those in Chaps. 4, 6, and 7.
This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the subject. Most chapters may be covered or omitted, depending upon the background of the student. For example, the text may be used as a primary reference in an introductory course for difference equations which also includes discrete fractional calculus. Chapters 1-2 provide a basic introduction to the delta calculus including fractional calculus on the set of integers. For courses where students already have background in elementary real analysis, Chapters 1-2 may be covered quickly and readers may then skip to Chapters 6-7 which present some basic results in fractional boundary value problems (FBVPs). Chapters 6-7 in conjunction with some of the current literature listed in the Bibliography can provide a basis for a seminar in the current theory of FBVPs. For a two-semester course, Chapters 1-5 may be covered in depth, providing a very thorough introduction to both the discrete fractional calculus as well as the integer-order calculus.
This handbook is the third volume in a series of volumes devoted to
self contained and up-to-date surveys in the tehory of ordinary
differential equations, written by leading researchers in the area.
All contributors have made an additional effort to achieve
readability for mathematicians and scientists from other related
fields so that the chapters have been made accessible to a wide
audience.
In 1917, Johann Radon published his fundamental work, where he introduced what is now called the Radon transform. Including important contributions by several experts, this book reports on ground-breaking developments related to the Radon transform throughout these years, and also discusses novel mathematical research topics and applications for the next century.
Complex, microstructured materials are widely used in industry and technology and include alloys, ceramics and composites. Focusing on non-destructive evaluation (NDE), this book explores in detail the mathematical modeling and inverse problems encountered when using ultrasound to investigate heterogeneous microstructured materials. The outstanding features of the text are firstly, a clear description of both linear and nonlinear mathematical models derived for modelling the propagation of ultrasonic deformation waves, and secondly, the provision of solutions to the corresponding inverse problems that determine the physical parameters of the models. The data are related to nonlinearities at both a macro- and micro- level, as well as to dispersion. The authors' goal has been to construct algorithms that allow us to determine the parameters within which we are required to characterize microstructure. To achieve this, the authors not only use conventional harmonic waves, but also propose a novel methodology based on using solitary waves in NDE. The book analyzes the uniqueness and stability of the solutions, in addition to providing numerical examples.
In this monograph, we combine operator techniques with state space methods to solve factorization, spectral estimation, and interpolation problems arising in control and signal processing. We present both the theory and algorithms with some Matlab code to solve these problems. A classical approach to spectral factorization problems in control theory is based on Riccati equations arising in linear quadratic control theory and Kalman ?ltering. One advantage of this approach is that it readily leads to algorithms in the non-degenerate case. On the other hand, this approach does not easily generalize to the nonrational case, and it is not always transparent where the Riccati equations are coming from. Operator theory has developed some elegant methods to prove the existence of a solution to some of these factorization and spectral estimation problems in a very general setting. However, these techniques are in general not used to develop computational algorithms. In this monograph, we will use operator theory with state space methods to derive computational methods to solve factorization, sp- tral estimation, and interpolation problems. It is emphasized that our approach is geometric and the algorithms are obtained as a special application of the theory. We will present two methods for spectral factorization. One method derives al- rithms based on ?nite sections of a certain Toeplitz matrix. The other approach uses operator theory to develop the Riccati factorization method. Finally, we use isometric extension techniques to solve some interpolation problems.
Energy is one of the worlds most challenging problems, and power systems are an important aspect of energy related issues. This handbook contains state-of-the-art contributions on power systems modeling and optimization. The book is separated into two volumes with six sections, which cover the most important areas of energy systems. The first volume covers the topics operations planning and expansion planning while the second volume focuses on transmission and distribution modeling, forecasting in energy, energy auctions and markets, as well as risk management. The contributions are authored by recognized specialists in their fields and consist in either state-of-the-art reviews or examinations of state-of-the-art developments. The articles are not purely theoretical, but instead also discuss specific applications in power systems. |
You may like...
Word Search Books for Kids 6-8 - Word…
Nancy Dyer, Fun Space Club Kids
Paperback
R265
Discovery Miles 2 650
Ski Tips for Kids - Fun Instructional…
Mike Clelland, Alex Everett
Paperback
R329
Discovery Miles 3 290
Glossaries of Nautical Terms - English…
Auxiliary Interpreter Corps
Hardcover
R2,452
Discovery Miles 24 520
|