![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
This book provides the latest competing research results on non-commutative harmonic analysis on homogeneous spaces with many applications. It also includes the most recent developments on other areas of mathematics including algebra and geometry. Lie group representation theory and harmonic analysis on Lie groups and on their homogeneous spaces form a significant and important area of mathematical research. These areas are interrelated with various other mathematical fields such as number theory, algebraic geometry, differential geometry, operator algebra, partial differential equations and mathematical physics. Keeping up with the fast development of this exciting area of research, Ali Baklouti (University of Sfax) and Takaaki Nomura (Kyushu University) launched a series of seminars on the topic, the first of which took place on November 2009 in Kerkennah Islands, the second in Sousse on December 2011, and the third in Hammamet on December 2013. The last seminar, which took place December 18th to 23rd 2015 in Monastir, Tunisia, has promoted further research in all the fields where the main focus was in the area of Analysis, algebra and geometry and on topics of joint collaboration of many teams in several corners. Many experts from both countries have been involved.
This contributed volume contains a collection of articles on the most recent advances in integral methods. The first of two volumes, this work focuses on the construction of theoretical integral methods. Written by internationally recognized researchers, the chapters in this book are based on talks given at the Fourteenth International Conference on Integral Methods in Science and Engineering, held July 25-29, 2016, in Padova, Italy. A broad range of topics is addressed, such as:* Integral equations* Homogenization* Duality methods* Optimal design* Conformal techniques This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines, and to other professionals who use integration as an essential tool in their work.
This self-contained book covers the theory of semilinear equations with sectorial operator going back to the studies of Yosida, Henry, and Pazy, which are deeply extended nowadays. The treatment emphasizes existence-uniqueness theory as a topic of functional analysis and examines abstract evolutionary equations, with applications to the Navier-Stokes system, the quasi-geostrophic equation, and fractional reaction-diffusion equations.
This book aims at reviewing recent progress in the direction of algebraic and symbolic computation methods for functional systems, e.g. ODE systems, differential time-delay equations, difference equations and integro-differential equations. In the nineties, modern algebraic theories were introduced in mathematical systems theory and in control theory. Combined with real algebraic geometry, which was previously introduced in control theory, the past years have seen a flourishing development of algebraic methods in control theory. One of the strengths of algebraic methods lies in their close connections to computations. The use of the above-mentioned algebraic theories in control theory has been an important source of motivation to develop effective versions of these theories (when possible). With the development of computer algebra and computer algebra systems, symbolic methods for control theory have been developed over the past years. The goal of this book is to propose a partial state of the art in this direction. To make recent results more easily accessible to a large audience, the chapters include materials which survey the main mathematical methods and results and which are illustrated with explicit examples.
This monograph summarizes the recent major achievements in Moebius invariant QK spaces. First introduced by Hasi Wulan and his collaborators, the theory of QK spaces has developed immensely in the last two decades, and the topics covered in this book will be helpful to graduate students and new researchers interested in the field. Featuring a wide range of subjects, including an overview of QK spaces, QK-Teichmuller spaces, K-Carleson measures and analysis of weight functions, this book serves as an important resource for analysts interested in this area of complex analysis. Notes, numerous exercises, and a comprehensive up-to-date bibliography provide an accessible entry to anyone with a standard graduate background in real and complex analysis.
This monograph presents new theory and methods of solving inverse Stefan problems for quasilinear parabolic equations in domains with free boundaries. This new approach to the theory of ill-posed problems is useful for the modelling of nonlinear processes with phase transforms in thermophysics and mechanics of continuous media. Regularization methods and algorithms are developed for the numerical solution of inverse Stefan problems ensuring substantial savings in computational costs. Results of calculations for important applications in a continuous casting and for the treatment of materials using laser technology are also given. This text should be of interest to students and researchers whose work involves partial differential equations, numerical analysis, phase transformation, mathematical modelling, industrial mathematics and the mathematics of physics.
The scientific literature on the Hardy-Leray inequality, also known as the uncertainty principle, is very extensive and scattered. The Hardy-Leray potential shows an extreme spectral behavior and a peculiar influence on diffusion problems, both stationary and evolutionary. In this book, a big part of the scattered knowledge about these different behaviors is collected in a unified and comprehensive presentation.
This monograph combines the commutant lifting theorem for operator theory and the state space method from system theory to provide a unified approach for solving both stationary and nonstationary interpolation problems with norm constraints. Included are the operator-valued versions of the tangential Nevanlinna-Pick problem, the Hermite-FejA(c)r problem, the Nehari problem, the Sarason problem, and the two-sided Nudelman problem, and their nonstationary analogues. The main results concern the existence of solutions, the explicit construction of the central solutions in state space form, the maximum entropy property of the central solutions, and state space parametrizations of all solutions. Direct connections between the various interpolation problems are displayed. Applications to H infinity] control problems are presented. This monograph should appeal to a wide group of mathematicians and engineers. The material is self-contained and may be used for advanced graduate courses and seminars.
This unique book develops the application of experimental statistical designs and analysis to discrete-event simulation modeling. It takes a practical perspective and orients the reader with examples of the role of simulation in modeling a system. The stages and steps for applying simulation are discussed by focusing on the important role of statistics. Examples are given about how to design an experiment using techniques such as classical designs, group screening, polynomial decomposition, and Taguchi designs. Using the statistical techniques discussed, a sound simulation model can be built and adequately tested before implementation. The book also shows how simulation results can be generalized by discussing in full the growing emphasis on simulation metamodeling. Examples of this approach are presented to show that reliable and simple models could be easily obtained. Furthermore, such models are applied within a decision framework to optimize the system of interest. This expands the power of simulation from being purely descriptive of the system to being a prescriptive model. The reader is exposed to potential problems and how such problems may be harnessed. Although the book discusses statistical techniques, it is written so as to be comprehensible to anyone with a basic background in statistics. The book is a good resource for consultants and simulation practitioners; it can also be used as a textbook for classes in simulation.
This book gathers the main recent results on positive trigonometric polynomials within a unitary framework. The book has two parts: theory and applications. The theory of sum-of-squares trigonometric polynomials is presented unitarily based on the concept of Gram matrix (extended to Gram pair or Gram set). The applications part is organized as a collection of related problems that use systematically the theoretical results.
Written in honor of Victor Havin (1933-2015), this volume presents a collection of surveys and original papers on harmonic and complex analysis, function spaces and related topics, authored by internationally recognized experts in the fields. It also features an illustrated scientific biography of Victor Havin, one of the leading analysts of the second half of the 20th century and founder of the Saint Petersburg Analysis Seminar. A complete list of his publications, as well as his public speech "Mathematics as a source of certainty and uncertainty", presented at the Doctor Honoris Causa ceremony at Linkoeping University, are also included.
This book is the first part of a two volume anthology comprising a selection of 49 articles that illustrate the depth, breadth and scope of Nigel Kalton's research. Each article is accompanied by comments from an expert on the respective topic, which serves to situate the article in its proper context, to successfully link past, present and hopefully future developments of the theory, and to help readers grasp the extent of Kalton's accomplishments. Kalton's work represents a bridge to the mathematics of tomorrow, and this book will help readers to cross it. Nigel Kalton (1946-2010) was an extraordinary mathematician who made major contributions to an amazingly diverse range of fields over the course of his career.
6 Preliminaries.- 6.1 The operator of singular integration.- 6.2 The space Lp(?, ?).- 6.3 Singular integral operators.- 6.4 The spaces $$L_{p}^{ + }(\Gamma, \rho ), L_{p}^{ - }(\Gamma, \rho ) and \mathop{{L_{p}^{ - }}}\limits^{^\circ } (\Gamma, \rho )$$.- 6.5 Factorization.- 6.6 One-sided invertibility of singular integral operators.- 6.7 Fredholm operators.- 6.8 The local principle for singular integral operators.- 6.9 The interpolation theorem.- 7 General theorems.- 7.1 Change of the curve.- 7.2 The quotient norm of singular integral operators.- 7.3 The principle of separation of singularities.- 7.4 A necessary condition.- 7.5 Theorems on kernel and cokernel of singular integral operators.- 7.6 Two theorems on connections between singular integral operators.- 7.7 Index cancellation and approximative inversion of singular integral operators.- 7.8 Exercises.- Comments and references.- 8 The generalized factorization of bounded measurable functions and its applications.- 8.1 Sketch of the problem.- 8.2 Functions admitting a generalized factorization with respect to a curve in Lp(?, ?).- 8.3 Factorization in the spaces Lp(?, ?).- 8.4 Application of the factorization to the inversion of singular integral operators.- 8.5 Exercises.- Comments and references.- 9 Singular integral operators with piecewise continuous coefficients and their applications.- 9.1 Non-singular functions and their index.- 9.2 Criteria for the generalized factorizability of power functions.- 9.3 The inversion of singular integral operators on a closed curve.- 9.4 Composed curves.- 9.5 Singular integral operators with continuous coefficients on a composed curve.- 9.6 The case of the real axis.- 9.7 Another method of inversion.- 9.8 Singular integral operators with regel functions coefficients.- 9.9 Estimates for the norms of the operators P?, Q? and S?.- 9.10 Singular operators on spaces H?o(?, ?).- 9.11 Singular operators on symmetric spaces.- 9.12 Fredholm conditions in the case of arbitrary weights.- 9.13 Technical lemmas.- 9.14 Toeplitz and paired operators with piecewise continuous coefficients on the spaces lp and ?p.- 9.15 Some applications.- 9.16 Exercises.- Comments and references.- 10 Singular integral operators on non-simple curves.- 10.1 Technical lemmas.- 10.2 A preliminary theorem.- 10.3 The main theorem.- 10.4 Exercises.- Comments and references.- 11 Singular integral operators with coefficients having discontinuities of almost periodic type.- 11.1 Almost periodic functions and their factorization.- 11.2 Lemmas on functions with discontinuities of almost periodic type.- 11.3 The main theorem.- 11.4 Operators with continuous coefficients - the degenerate case.- 11.5 Exercises.- Comments and references.- 12 Singular integral operators with bounded measurable coefficients.- 12.1 Singular operators with measurable coefficients in the space L2(?).- 12.2 Necessary conditions in the space L2(?).- 12.3 Lemmas.- 12.4 Singular operators with coefficients in ?p(?). Sufficient conditions.- 12.5 The Helson-Szegoe theorem and its generalization.- 12.6 On the necessity of the condition a ? Sp.- 12.7 Extension of the class of coefficients.- 12.8 Exercises.- Comments and references.- 13 Exact constants in theorems on the boundedness of singular operators.- 13.1 Norm and quotient norm of the operator of singular integration.- 13.2 A second proof of Theorem 4.1 of Chapter 12.- 13.3 Norm and quotient norm of the operator S? on weighted spaces.- 13.4 Conditions for Fredholmness in spaces Lp(?, ?).- 13.5 Norms and quotient norm of the operator aI + bS?.- 13.6 Exercises.- Comments and references.- References.
This book gives a detailed survey of the main results on bent functions over finite fields, presents a systematic overview of their generalizations, variations and applications, considers open problems in classification and systematization of bent functions, and discusses proofs of several results. This book uniquely provides a necessary comprehensive coverage of bent functions.It serves as a useful reference for researchers in discrete mathematics, coding and cryptography. Students and professors in mathematics and computer science will also find the content valuable, especially those interested in mathematical foundations of cryptography. It can be used as a supplementary text for university courses on discrete mathematics, Boolean functions, or cryptography, and is appropriate for both basic classes for under-graduate students and advanced courses for specialists in cryptography and mathematics.
Building on fundamental results in variational analysis, this monograph presents new and recent developments in the field as well as selected applications. Accessible to a broad spectrum of potential readers, the main material is presented in finite-dimensional spaces. Infinite-dimensional developments are discussed at the end of each chapter with comprehensive commentaries which emphasize the essence of major results, track the genesis of ideas, provide historical comments, and illuminate challenging open questions and directions for future research. The first half of the book (Chapters 1-6) gives a systematic exposition of key concepts and facts, containing basic material as well as some recent and new developments. These first chapters are particularly accessible to masters/doctoral students taking courses in modern optimization, variational analysis, applied analysis, variational inequalities, and variational methods. The reader's development of skills will be facilitated as they work through each, or a portion of, the multitude of exercises of varying levels. Additionally, the reader may find hints and references to more difficult exercises and are encouraged to receive further inspiration from the gems in chapter commentaries. Chapters 7-10 focus on recent results and applications of variational analysis to advanced problems in modern optimization theory, including its hierarchical and multiobjective aspects, as well as microeconomics, and related areas. It will be of great use to researchers and professionals in applied and behavioral sciences and engineering.
Nonlinear Industrial Control Systems presents a range of mostly optimisation-based methods for severely nonlinear systems; it discusses feedforward and feedback control and tracking control systems design. The plant models and design algorithms are provided in a MATLAB (R) toolbox that enable both academic examples and industrial application studies to be repeated and evaluated, taking into account practical application and implementation problems. The text makes nonlinear control theory accessible to readers having only a background in linear systems, and concentrates on real applications of nonlinear control. It covers: different ways of modelling nonlinear systems including state space, polynomial-based, linear parameter varying, state-dependent and hybrid; design techniques for nonlinear optimal control including generalised-minimum-variance, model predictive control, quadratic-Gaussian, factorised and H design methods; design philosophies that are suitable for aerospace, automotive, marine, process-control, energy systems, robotics, servo systems and manufacturing; steps in design procedures that are illustrated in design studies to define cost-functions and cope with problems such as disturbance rejection, uncertainties and integral wind-up; and baseline non-optimal control techniques such as nonlinear Smith predictors, feedback linearization, sliding mode control and nonlinear PID. Nonlinear Industrial Control Systems is valuable to engineers in industry dealing with actual nonlinear systems. It provides students with a comprehensive range of techniques and examples for solving real nonlinear control design problems.
This book is about singular limits of systems of partial differential equations governing the motion of thermally conducting compressible viscous fluids. "The main aim is to provide mathematically rigorous arguments how to get from the compressible Navier-Stokes-Fourier system several less complex systems of partial differential equations used e.g. in meteorology or astrophysics. However, the book contains also a detailed introduction to the modelling in mechanics and thermodynamics of fluids from the viewpoint of continuum physics. The book is very interesting and important. It can be recommended not only to specialists in the field, but it can also be used for doctoral students and young researches who want to start to work in the mathematical theory of compressible fluids and their asymptotic limits." Milan Pokorny (zbMATH) "This book is of the highest quality from every point of view. It presents, in a unified way, recent research material of fundament al importance. It is self-contained, thanks to Chapter 3 (existence theory) and to the appendices. It is extremely well organized, and very well written. It is a landmark for researchers in mathematical fluid dynamics, especially those interested in the physical meaning of the equations and statements." Denis Serre (MathSciNet)
The fundamentals of the discipline, now complete with the latest experimental research and techniques Factor analysis is a mathematical tool for examining a wide range of data sets, with applications especially important to the design of experiments (DOE), spectroscopy, chromatography, and chemometrics. Whereas the first two editions concentrated on standardizing the fundamentals of this emerging discipline, the Third Edition of Factor Analysis in Chemistry, the "bible" of factor analysis, proves a comprehensive handbook at a level that is consistent with the research and design of experiments today. With the exception of updates, the introductory chapters remain unchanged. Chapter 6 has been edited to focus on evolutionary methods, including window factor analysis, transmutation, and DECRA. Selections on partial least squares and multimode analysis have been expanded and consolidated into two new chapters, 7 and 8. Some of the latest advances in a wide variety of fields, such as chromatography, NMR, biomedicine, environmental science, food, and fuels, are described in the applications chapters (chapters 9 through 12). Other features of the text include:
Factor Analysis in Chemistry, Third Edition remains the premier reference in its field.
This text emphasizes the physical interpretation of mathematical solutions and introduces applied mathematics while presenting differential equations. Coverage includes Fourier series, orthogonal functions, boundary value problems, Green's functions, and transform methods. This text is ideal for students in science, engineering, and applied mathematics.
This book presents the basic concepts of calculus and its relevance to real-world problems, covering the standard topics in their conventional order. By focusing on applications, it allows readers to view mathematics in a practical and relevant setting. Organized into 12 chapters, this book includes numerous interesting, relevant and up-to date applications that are drawn from the fields of business, economics, social and behavioural sciences, life sciences, physical sciences, and other fields of general interest. It also features MATLAB, which is used to solve a number of problems. The book is ideal as a first course in calculus for mathematics and engineering students. It is also useful for students of other sciences who are interested in learning calculus.
Differential and complex geometry are two central areas of mathematics with a long and intertwined history. This book, the first to provide a unified historical perspective of both subjects, explores their origins and developments from the sixteenth to the twentieth century. Providing a detailed examination of the seminal contributions to differential and complex geometry up to the twentieth-century embedding theorems, this monograph includes valuable excerpts from the original documents, including works of Descartes, Fermat, Newton, Euler, Huygens, Gauss, Riemann, Abel, and Nash. Suitable for beginning graduate students interested in differential, algebraic or complex geometry, this book will also appeal to more experienced readers.
The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2014), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of papers will provide the reader with a snapshot of the state-of-the-art and help initiate new research directions through the extensive biography.
This book discusses the state-of-the-art and open problems in computational finance. It presents a collection of research outcomes and reviews of the work from the STRIKE project, an FP7 Marie Curie Initial Training Network (ITN) project in which academic partners trained early-stage researchers in close cooperation with a broader range of associated partners, including from the private sector. The aim of the project was to arrive at a deeper understanding of complex (mostly nonlinear) financial models and to develop effective and robust numerical schemes for solving linear and nonlinear problems arising from the mathematical theory of pricing financial derivatives and related financial products. This was accomplished by means of financial modelling, mathematical analysis and numerical simulations, optimal control techniques and validation of models. In recent years the computational complexity of mathematical models employed in financial mathematics has witnessed tremendous growth. Advanced numerical techniques are now essential to the majority of present-day applications in the financial industry. Special attention is devoted to a uniform methodology for both testing the latest achievements and simultaneously educating young PhD students. Most of the mathematical codes are linked into a novel computational finance toolbox, which is provided in MATLAB and PYTHON with an open access license. The book offers a valuable guide for researchers in computational finance and related areas, e.g. energy markets, with an interest in industrial mathematics.
The conference took place in Lviv, Ukraine and was dedicated to a famous Polish mathematician Stefan Banach { the most outstanding representative of the Lviv mathematical school. Banach spaces, introduced by Stefan Banach at the beginning of twentieth century, are familiar now to every mathematician. The book contains a short historical article and scientific contributions of the conference participants, mostly in the areas of functional analysis, general topology, operator theory and related topics.
This monograph investigates the existence of higher order sliding mode in discrete-time systems and propounds a new concept of discrete-time higher order sliding mode. The authors propose a definition of discrete-time higher order sliding mode and a control law is designed by means of a concept for an uncertain linear-time invariant system, as well as the behavior of the closed-loop system is analyzed. Moreover, the book includes a thorough treatment of the probabilistic and non-deterministic case, i.e. stochastic discrete-time higher order sliding mode. The target audience primarily comprises research experts in control theory but the book may also be beneficial for graduate students alike. |
![]() ![]() You may like...
The Colour of Madness - Mental Health…
Samara Linton, Rianna Walcott
Hardcover
Wagner: Tannhauser - 3 CDs+ Bonus Disc…
Richard Wagner, Various Artists, …
CD
R1,274
Discovery Miles 12 740
Algorithmic Culture - How Big Data and…
Stefka Hristova, Soonkwan Hong, …
Hardcover
R2,583
Discovery Miles 25 830
|