![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
The book is an almost self-contained presentation of the most
important concepts and results in viability and invariance. The
viability of a set K with respect to a given function (or
multi-function) F, defined on it, describes the property that, for
each initial data in K, the differential equation (or inclusion)
driven by that function or multi-function) to have at least one
solution. The invariance of a set K with respect to a function (or
multi-function) F, defined on a larger set D, is that property
which says that each solution of the differential equation (or
inclusion) driven by F and issuing in K remains in K, at least for
a short time.
Composed of papers presented at the 10th conference on Multiphase flow this book presents the latest research on the subject. The research included in this volume focuses on using synergies between experimental and computational techniques to gain a better understanding of all classes of multiphase and complex flow. The presented papers illustrate the close interaction between numerical modellers and researchers working to gradually resolve the many outstanding issues in our understanding of multiphase flow. Recently multiphase fluid dynamics have generated a great deal of attention, leading to many notable advances in experimental, analytical and numerical studies. Progress in numerical methods has permitted the solution of many practical problems, helping to improve our understanding of the physics involved. Multiphase flows are found in all areas of technology and the range of related problems of interest is vast, including astrophysics, biology, geophysics, atmospheric process, and many areas of engineering. The papers in the book cover a number of topics, including: Experimental measurements; Numerical methods; Multiphase flows and Flow in porous media.
Banach spaces and algebras are a key topic of pure mathematics.
Graham Allan's careful and detailed introductory account will prove
essential reading for anyone wishing to specialise in functional
analysis and is aimed at final year undergraduates or masters level
students. Based on the author's lectures to fourth year students at
Cambridge University, the book assumes knowledge typical of first
degrees in mathematics, including metric spaces, analytic topology,
and complex analysis. However, readers are not expected to be
familiar with the Lebesgue theory of measure and integration.
For one- or two-semester junior orsenior level courses in Advanced Calculus, Analysis I, or Real Analysis. This title is part of the Pearson Modern Classicsseries. This text prepares students for future coursesthat use analytic ideas, such as real and complex analysis, partial andordinary differential equations, numerical analysis, fluid mechanics, anddifferential geometry. This book is designed to challenge advanced studentswhile encouraging and helping weaker students. Offering readability,practicality and flexibility, Wade presents fundamental theorems and ideas froma practical viewpoint, showing students the motivation behind the mathematicsand enabling them to construct their own proofs.
The monograph is written with a view to provide basic tools for
researchers working in Mathematical Analysis and Applications,
concentrating on differential, integral and finite difference
equations. It contains many inequalities which have only recently
appeared in the literature and which can be used as powerful tools
and will be a valuable source for a long time to come. It is
self-contained and thus should be useful for those who are
interested in learning or applying the inequalities with explicit
estimates in their studies.
Classification of Lipschitz Mappings presents a systematic, self-contained treatment of a new classification of Lipschitz mappings and its application in many topics of metric fixed point theory. Suitable for readers interested in metric fixed point theory, differential equations, and dynamical systems, the book only requires a basic background in functional analysis and topology. The author focuses on a more precise classification of Lipschitzian mappings. The mean Lipschitz condition introduced by Goebel, Japon Pineda, and Sims is relatively easy to check and turns out to satisfy several principles: Regulating the possible growth of the sequence of Lipschitz constants k(Tn) Ensuring good estimates for k0(T) and k (T) Providing some new results in metric fixed point theory
This work is solely dedicated to the study of both the one variable as well as the multidimensional Lorentz spaces covering the theory of Lebesgue type spaces invariant by rearrangement. The authors provide proofs in full detail for most theorems. The self-contained text is valuable for advanced students and researchers.
The classical optimal control theory deals with the determination of an optimal control that optimizes the criterion subjects to the dynamic constraint expressing the evolution of the system state under the influence of control variables. If this is extended to the case of multiple controllers (also called players) with different and sometimes conflicting optimization criteria (payoff function) it is possible to begin to explore differential games. Zero-sum differential games, also called differential games of pursuit, constitute the most developed part of differential games and are rigorously investigated. In this book, the full theory of differential games of pursuit with complete and partial information is developed. Numerous concrete pursuit-evasion games are solved ("life-line" games, simple pursuit games, etc.), and new time-consistent optimality principles in the n-person differential game theory are introduced and investigated.
This book collects 10 mathematical essays on approximation in Analysis and Topology by some of the most influent mathematicians of the last third of the 20th Century. Besides the papers contain the very ultimate results in each of their respective fields, many of them also include a series of historical remarks about the state of mathematics at the time they found their most celebrated results, as well as some of their personal circumstances originating them, which makes particularly attractive the book for all scientist interested in these fields, from beginners to experts. These gem pieces of mathematical intra-history should delight to many forthcoming generations of mathematicians, who will enjoy some of the most fruitful mathematics of the last third of 20th century presented by their own authors.
This is an introductory book on supercomputer applications written by a researcher who is working on solving scientific and engineering application problems on parallel computers. The book is intended to quickly bring researchers and graduate students working on numerical solutions of partial differential equations with various applications into the area of parallel processing.The book starts from the basic concepts of parallel processing, like speedup, efficiency and different parallel architectures, then introduces the most frequently used algorithms for solving PDEs on parallel computers, with practical examples. Finally, it discusses more advanced topics, including different scalability metrics, parallel time stepping algorithms and new architectures and heterogeneous computing networks which have emerged in the last few years of high performance computing. Hundreds of references are also included in the book to direct interested readers to more detailed and in-depth discussions of specific topics.
Collected together in this book are ten state-of-the-art expository articles on the most important topics in optimization, written by leading experts in the field. The book therefore provides a primary reference for those performing research in some area of optimization or for those who have some basic knowledge of optimization techniques but wish to learn the most up-to-date and efficient algorithms for particular classes of problems. The first sections of each chapter are expository and therefore accessible to master's level graduate students. However, the chapters also contain advanced material on current topics of interest to researchers. For instance there are chapters which describe the polynomial-time linear programming algorithms of Khachian and Karmarkar and the techniques used to solve combinatorial and integer programming problems, an order of magnitude larger than was possible just a few years ago. Overall a comprehensive yet lively and up-to-date discussion of the state-of-the-art in optimization is presented in this book.
This multi-disciplinary book presents new approaches for resolving complex issues that cannot be resolved using conventional mathematical or software models.Complex Systems occur in an infinite variety of problems encompassing fields as diverse as economics, the environment, humanities, social and political sciences, physical sciences and engineering. The papers in the book cover such topics as: Complex business processes; Supply chain complexity; Complex adaptive software; Management of complexity; Complexity in social systems; Complexity in engineering; Complex issues in biological and medical sciences; Complex energy systems Complexity and evolution.
The fundamental contributions made by the late Victor Lomonosov in several areas of analysis are revisited in this book, in particular, by presenting new results and future directions from world-recognized specialists in the field. The invariant subspace problem, Burnside's theorem, and the Bishop-Phelps theorem are discussed in detail. This volume is an essential reference to both researchers and graduate students in mathematical analysis.
Hardbound. This book deals with numerical methods for solving large sparse linear systems of equations, particularly those arising from the discretization of partial differential equations. It covers both direct and iterative methods. Direct methods which are considered are variants of Gaussian elimination and fast solvers for separable partial differential equations in rectangular domains. The book reviews the classical iterative methods like Jacobi, Gauss-Seidel and alternating directions algorithms. A particular emphasis is put on the conjugate gradient as well as conjugate gradient -like methods for non symmetric problems. Most efficient preconditioners used to speed up convergence are studied. A chapter is devoted to the multigrid method and the book ends with domain decomposition algorithms that are well suited for solving linear systems on parallel computers.
This book is a monograph on chaos in dissipative systems written for those working in the physical sciences. Emphasis is on symbolic description of the dynamics and various characteristics of the attractors, and written from the view-point of practical applications without going into formal mathematical rigour. The author used elementary mathematics and calculus, and relied on physical intuition whenever possible. Substantial attention is paid to numerical techniques in the study of chaos. Part of the book is based on the publications of Chinese researchers, including those of the author's collaborators.
This set of three volumes aims to describe the recent progress in nonlinear differential equations and nonlinear dynamical systems (both continuous and discrete). Written by experts, each chapter is self-contained and aims to clearly illustrate some of the mathematical theories of nonlinear systems. These volumes should be suitable for graduate and postgraduate students in mathematics, the natural sciences, and engineering sciences, as well as for researchers (both pure and applied) interested in nonlinear systems. The common theme throughout all the volumes is on solvable and integrable nonlinear systems of equations and methods/theories that can be applied to analyze those systems. Some applications are also discussed. Features Clearly illustrates the mathematical theories of nonlinear systems and their progress to both the non-expert and active researchers in this area. Suitable for graduate students in mathematics, applied mathematics and some of the engineering sciences. Written in a careful pedagogical manner by those experts who have been involved in the research themselves, with each contribution being reasonably self-contained.
The monograph gives a detailed exposition of the theory of general elliptic operators (scalar and matrix) and elliptic boundary value problems in Hilbert scales of Hormander function spaces. This theory was constructed by the authors in a number of papers published in 2005 2009. It is distinguished by a systematic use of the method of interpolation with a functional parameter of abstract Hilbert spaces and Sobolev inner product spaces. This method, the theory and their applications are expounded for the first time in the monographic literature. The monograph is written in detail and in a reader-friendly style. The complete proofs of theorems are given. This monograph is intended for a wide range of mathematicians whose research interests concern with mathematical analysis and differential equations."
This volume constitutes the proceedings of a workshop whose main purpose was to exchange information on current topics in complex analysis, differential geometry, mathematical physics and applications, and to group aspects of new mathematics.
The objective of Volume II is to show how asymptotic methods, with the thickness as the small parameter, indeed provide a powerful means of justifying two-dimensional plate theories. More specifically, without any recourse to any "a priori" assumptions of a geometrical or mechanical nature, it is shown that in the linear case, the three-dimensional displacements, once properly scaled, converge in "H"1 towards a limit that satisfies the well-known two-dimensional equations of the linear Kirchhoff-Love theory; the convergence of stress is also established. In the nonlinear case, again after "ad hoc" scalings have been performed, it is shown that the leading term of a formal asymptotic expansion of the three-dimensional solution satisfies well-known two-dimensional equations, such as those of the nonlinear Kirchhoff-Love theory, or the von Karman equations. Special attention is also given to the first convergence result obtained in this case, which leads to two-dimensional large deformation, frame-indifferent, nonlinear membrane theories. It is also demonstrated that asymptotic methods can likewise be used for justifying other lower-dimensional equations of elastic shallow shells, and the coupled pluri-dimensional equations of elastic multi-structures, i.e., structures with junctions. In each case, the existence, uniqueness or multiplicity, and regularity of solutions to the limit equations obtained in this fashion are also studied. |
![]() ![]() You may like...
Safety Risk Management - Integrating…
Kurt J Engemann, Eirik B. Abrahamsen
Hardcover
R3,136
Discovery Miles 31 360
Development of New Radical Cascades and…
Marie-Helene Larraufie
Hardcover
R4,052
Discovery Miles 40 520
|