![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
A novel, practical introduction to functional analysis In the twenty years since the first edition of Applied Functional Analysis was published, there has been an explosion in the number of books on functional analysis. Yet none of these offers the unique perspective of this new edition. Jean-Pierre Aubin updates his popular reference on functional analysis with new insights and recent discoveries-adding three new chapters on set-valued analysis and convex analysis, viability kernels and capture basins, and first-order partial differential equations. He presents, for the first time at an introductory level, the extension of differential calculus in the framework of both the theory of distributions and set-valued analysis, and discusses their application for studying boundary-value problems for elliptic and parabolic partial differential equations and for systems of first-order partial differential equations. To keep the presentation concise and accessible, Jean-Pierre Aubin introduces functional analysis through the simple Hilbertian structure. He seamlessly blends pure mathematics with applied areas that illustrate the theory, incorporating a broad range of examples from numerical analysis, systems theory, calculus of variations, control and optimization theory, convex and nonsmooth analysis, and more. Finally, a summary of the essential theorems as well as exercises reinforcing key concepts are provided. Applied Functional Analysis, Second Edition is an excellent and timely resource for both pure and applied mathematicians.
This book offers a timely overview of fractional calculus applications, with a special emphasis on fractional derivatives with Mittag-Leffler kernel. The different contributions, written by applied mathematicians, physicists and engineers, offers a snapshot of recent research in the field, highlighting the current methodological frameworks together with applications in different fields of science and engineering, such as chemistry, mechanics, epidemiology and more. It is intended as a timely guide and source of inspiration for graduate students and researchers in the above-mentioned areas.
This book covers the construction, analysis, and theory of continuous nowhere differentiable functions, comprehensively and accessibly. After illuminating the significance of the subject through an overview of its history, the reader is introduced to the sophisticated toolkit of ideas and tricks used to study the explicit continuous nowhere differentiable functions of Weierstrass, Takagi-van der Waerden, Bolzano, and others. Modern tools of functional analysis, measure theory, and Fourier analysis are applied to examine the generic nature of continuous nowhere differentiable functions, as well as linear structures within the (nonlinear) space of continuous nowhere differentiable functions. To round out the presentation, advanced techniques from several areas of mathematics are brought together to give a state-of-the-art analysis of Riemann's continuous, and purportedly nowhere differentiable, function. For the reader's benefit, claims requiring elaboration, and open problems, are clearly indicated. An appendix conveniently provides background material from analysis and number theory, and comprehensive indices of symbols, problems, and figures enhance the book's utility as a reference work. Students and researchers of analysis will value this unique book as a self-contained guide to the subject and its methods.
This book is the first attempt to develop systematically a general
theory of the initial-boundary value problems for nonlinear
evolution equations with pseudodifferential operators Ku on a
half-line or on a segment. We study traditionally important
problems, such as local and global existence of solutions and their
properties, in particular much attention is drawn to the asymptotic
behavior of solutions for large time. Up to now the theory of
nonlinear initial-boundary value problems with a general
pseudodifferential operator has not been well developed due to its
difficulty. There are many open natural questions. Firstly how many
boundary data should we pose on the initial-boundary value problems
for its correct solvability? As far as we know there are few
results in the case of nonlinear nonlocal equations. The methods
developed in this book are applicable to a wide class of dispersive
and dissipative nonlinear equations, both local and nonlocal.
This book focuses on the theory of the Zakharov system in the context of plasma physics. It has been over 40 years since the system was first derived by V. E. Zakharov - and in the course of those decades, many innovative achievements with major impacts on other research fields have been made. The book represents a first attempt to highlight the mathematical theories that are most important to researchers, including the existence and unique problems, blow-up, low regularity, large time behavior and the singular limit. Rather than attempting to examine every aspect of the Zakharov system in detail, it provides an effective road map to help readers access the frontier of studies on this system.
The articles in this collection are a sampling of some of the research presented during the conference "Stochastic Analysis and Related Topics", held in May of 2015 at Purdue University in honor of the 60th birthday of Rodrigo Banuelos. A wide variety of topics in probability theory is covered in these proceedings, including heat kernel estimates, Malliavin calculus, rough paths differential equations, Levy processes, Brownian motion on manifolds, and spin glasses, among other topics.
This book introduces readers to one of the first methods developed for the numerical treatment of boundary value problems on polygonal and polyhedral meshes, which it subsequently analyzes and applies in various scenarios. The BEM-based finite element approaches employs implicitly defined trial functions, which are treated locally by means of boundary integral equations. A detailed construction of high-order approximation spaces is discussed and applied to uniform, adaptive and anisotropic polytopal meshes. The main benefits of these general discretizations are the flexible handling they offer for meshes, and their natural incorporation of hanging nodes. This can especially be seen in adaptive finite element strategies and when anisotropic meshes are used. Moreover, this approach allows for problem-adapted approximation spaces as presented for convection-dominated diffusion equations. All theoretical results and considerations discussed in the book are verified and illustrated by several numerical examples and experiments. Given its scope, the book will be of interest to mathematicians in the field of boundary value problems, engineers with a (mathematical) background in finite element methods, and advanced graduate students.
This book explains the state of the art in the use of the discrete Fourier transform (DFT) of musical structures such as rhythms or scales. In particular the author explains the DFT of pitch-class distributions, homometry and the phase retrieval problem, nil Fourier coefficients and tilings, saliency, extrapolation to the continuous Fourier transform and continuous spaces, and the meaning of the phases of Fourier coefficients. This is the first textbook dedicated to this subject, and with supporting examples and exercises this is suitable for researchers and advanced undergraduate and graduate students of music, computer science and engineering. The author has made online supplementary material available, and the book is also suitable for practitioners who want to learn about techniques for understanding musical notions and who want to gain musical insights into mathematical problems.
This book presents an upper level text on semilinear evolutionary partial differential equations aimed at the graduate and postgraduate level. Cazenave and Haraux present in a self-contained way, the typical basic properties of solutions to semi-linear evolutionary partial differential equations, with special emphasis on global properties. The main objective of this book is to provide a didactic approach to the subject , and the main readership will be graduate students in mathematical analysis, as well as professional applied mathematicians.
Formed of papers presented at the 20th International Conference on Computational Methods and Experimental Measurements, this volume provides a view of the latest work on the interaction between computational methods and experiments. The continuous improvement in computer efficiency, coupled with diminishing costs and the rapid development of numerical procedures have generated an ever-increasing expansion of computational simulations that permeate all fields of science and technology. As these procedures continue to grow in magnitude and complexity, it is essential to validate their results to be certain of their reliability. This can be achieved by performing dedicated and accurate experiments, which have undergone constant and enormous development. At the same time, current experimental techniques have become more complex and sophisticated so that they require the intensive use of computers, both for running experiments as well as acquiring and processing the resulting data. Some of the subject areas covered are: Fluid flow studies and experiments; Structural and stress analysis; Materials characterization; Electromagnetic problems; Structural integrity; Destructive and non-destructive testing; Heat transfer and thermal processes; Advances in computational methods; Automotive applications; Aerospace applications; Ocean engineering and marine structures; Fluid structure interaction; Bio-electromagnetics; Process simulations; Environmental monitoring, modelling and applications; Validation of computer modelling; Data and signal processing; Virtual testing and verification; Electromagnetic compatibility; Life cycle assessment.
Shortlisted for the Royal Society Science Book Prize 2019 A magisterial history of calculus (and the people behind it) from one of the world's foremost mathematicians. This is the captivating story of mathematics' greatest ever idea: calculus. Without it, there would be no computers, no microwave ovens, no GPS, and no space travel. But before it gave modern man almost infinite powers, calculus was behind centuries of controversy, competition, and even death. Taking us on a thrilling journey through three millennia, professor Steven Strogatz charts the development of this seminal achievement from the days of Archimedes to today's breakthroughs in chaos theory and artificial intelligence. Filled with idiosyncratic characters from Pythagoras to Fourier, Infinite Powers is a compelling human drama that reveals the legacy of calculus on nearly every aspect of modern civilisation, including science, politics, medicine, philosophy, and much besides.
This book contains 25 papers, most of which were presented, for the first time, at the International Workshop on Operator Theory and its Applications held in Groningen, the Netherlands, from June 30a "July 3, 1998. The topics include dilation and interpolation problems, reproducing kernel spaces, numerical ranges of operators, Riccati equations, harmonic analysis, spectral theory of differential operators and analytic operator functions to scattering of waves. All papers deal with operators in Banach or Hilbert spaces, or in spaces with an indefinite metric. This volume is dedicated to Israel Gohberg, one of the founding fathers of the IWOTA worskhops and an outstanding leader in operator theory. His work had a deep influence on the field and its range of applications. The IWOTA Groningen 1998, the tenth in its series, was a good occasion for a pre-celebration of his 70th birthday. This book also contains the speeches held at the workshop dinner, a review of Israel Gohberga (TM)s contributions to mathematics and a complete list of his publications. The book is of interest to a wide audience of pure and applied mathematicians.
The ideas of Fourier have made their way into every branch of mathematics and mathematical physics, from the theory of numbers to quantum mechanics. Fourier Series and Integrals focuses on the extraordinary power and flexibility of Fourier's basic series and integrals and on the astonishing variety of applications in which it is the chief tool. It presents a mathematical account of Fourier ideas on the circle and the line, on finite commutative groups, and on a few important noncommutative groups. A wide variety of exercises are placed in nearly every section as an integral part of the text.
This book presents a collection of expository and research papers on various topics in matrix and operator theory, contributed by several experts on the occasion of Albrecht Boettcher's 60th birthday. Albrecht Boettcher himself has made substantial contributions to the subject in the past. The book also includes a biographical essay, a complete bibliography of Albrecht Boettcher's work and brief informal notes on personal encounters with him. The book is of interest to graduate and advanced undergraduate students majoring in mathematics, researchers in matrix and operator theory as well as engineers and applied mathematicians.
This volume is dedicated to the eminent Georgian mathematician Roland Duduchava on the occasion of his 70th birthday. It presents recent results on Toeplitz, Wiener-Hopf, and pseudodifferential operators, boundary value problems, operator theory, approximation theory, and reflects the broad spectrum of Roland Duduchava's research. The book is addressed to a wide audience of pure and applied mathematicians.
Thurston maps are topological generalizations of postcritically-finite rational maps. This book provides a comprehensive study of ergodic theory of expanding Thurston maps, focusing on the measure of maximal entropy, as well as a more general class of invariant measures, called equilibrium states, and certain weak expansion properties of such maps. In particular, we present equidistribution results for iterated preimages and periodic points with respect to the unique measure of maximal entropy by investigating the number and locations of fixed points. We then use the thermodynamical formalism to establish the existence, uniqueness, and various other properties of the equilibrium state for a Holder continuous potential on the sphere equipped with a visual metric. After studying some weak expansion properties of such maps, we obtain certain large deviation principles for iterated preimages and periodic points under an additional assumption on the critical orbits of the maps. This enables us to obtain general equidistribution results for such points with respect to the equilibrium states under the same assumption.
This book presents and discusses the state of the art and future perspectives in mathematical modeling and homogenization techniques with the focus on addressing key physiological issues in the context of multiphase healthy and malignant biological materials. The highly interdisciplinary content brings together contributions from scientists with complementary areas of expertise, such as pure and applied mathematicians, engineers, and biophysicists. The book also features the lecture notes from a half-day introductory course on asymptotic homogenization. These notes are suitable for undergraduate mathematics or physics students, while the other chapters are aimed at graduate students and researchers.
This two-volume work introduces the theory and applications of Schur-convex functions. The second volume mainly focuses on the application of Schur-convex functions in sequences inequalities, integral inequalities, mean value inequalities for two variables, mean value inequalities for multi-variables, and in geometric inequalities.
This book covers novel research on construction and analysis of optimal cryptographic functions such as almost perfect nonlinear (APN), almost bent (AB), planar and bent functions. These functions have optimal resistance to linear and/or differential attacks, which are the two most powerful attacks on symmetric cryptosystems. Besides cryptographic applications, these functions are significant in many branches of mathematics and information theory including coding theory, combinatorics, commutative algebra, finite geometry, sequence design and quantum information theory. The author analyzes equivalence relations for these functions and develops several new methods for construction of their infinite families. In addition, the book offers solutions to two longstanding open problems, including the problem on characterization of APN and AB functions via Boolean, and the problem on the relation between two classes of bent functions.
Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.
Some extremum and unilateral boundary value problems in viscous hydrodynamics.- On axisymmetric motion of the fluid with a free surface.- On the occurrence of singularities in axisymmetrical problems of hele-shaw type.- New asymptotic method for solving of mixed boundary value problems.- Some results on the thermistor problem.- New applications of energy methods to parabolic and elliptic free boundary problems.- A localized finite element method for nonlinear water wave problems.- Approximate method of investigation of normal oscillations of viscous incompressible liquid in container.- The classical Stefan problem as the limit case of the Stefan problem with a kinetic condition at the free boundary.- A mathematical model of oscillations energy dissipation of viscous liquid in a tank.- Existence of the classical solution of a two-phase multidimensional Stefan problem on any finite time interval.- Asymptotic theory of propagation of nonstationary surface and internal waves over uneven bottom.- Multiparametric problems of two-dimensional free boundary seepage.- Nonisothermal two-phase filtration in porous media.- Explicit solution of time-dependent free boundary problems.- Nonequilibrium phase transitions in frozen grounds.- System of variational inequalities arising in nonlinear diffusion with phase change.- Contact viscoelastoplastic problem for a beam.- Application of a finite-element method to two-dimensional contact problems.- Computations of a gas bubble motion in liquid.- Waves on the liquid-gas free surface in the presence of the acoustic field in gas.- Smooth bore in a two-layer fluid.- Numerical calculation of movable free and contact boundaries in problems of dynamic deformation of viscoelastic bodies.- On the canonical variables for two-dimensional vortex hydrodynamics of incompressible fluid.- About the method with regularization for solving the contact problem in elasticity.- Space evolution of tornado-like vortex core.- Optimal shape design for parabolic system and two-phase Stefan problem.- Incompressible fluid flows with free boundary and the methods for their research.- On the Stefan problems for the system of equations arising in the modelling of liquid-phase epitaxy processes.- Stefan problem with surface tension as a limit of the phase field model.- The modelization of transformation phase via the resolution of an inclusion problem with moving boundary.- To the problem of constructing weak solutions in dynamic elastoplasticity.- The justification of the conjugate conditions for the Euler's and Darcy's equations.- On an evolution problem of thermo-capillary convection.- Front tracking methods for one-dimensional moving boundary problems.- On Cauchy problem for long wave equations.- On fixed point (trial) methods for free boundary problems.- Nonlinear theory of dynamics of a viscous fluid with a free boundary in the process of a solid body wetting.
Banach spaces and algebras are a key topic of pure mathematics.
Graham Allan's careful and detailed introductory account will prove
essential reading for anyone wishing to specialise in functional
analysis and is aimed at final year undergraduates or masters level
students. Based on the author's lectures to fourth year students at
Cambridge University, the book assumes knowledge typical of first
degrees in mathematics, including metric spaces, analytic topology,
and complex analysis. However, readers are not expected to be
familiar with the Lebesgue theory of measure and integration.
|
You may like...
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
Schaum's Outline of Differential…
Richard Bronson, Gabriel B Costa
Paperback
R476
Discovery Miles 4 760
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
(1)
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
Calculus, Metric Edition
James Stewart, Saleem Watson, …
Hardcover
|