![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
This monograph is concerned with free-boundary problems of partial differential equations arising in the physical sciences and in engineering. The existence and uniqueness of solutions to the Hele-Shaw problem are derived and techniques to deal with the Muskat problem are discussed. Based on these, mathematical models for the dynamics of cracks in underground rocks and in-situ leaching are developed. Contents Introduction The Hele-Shaw problem A joint motion of two immiscible viscous fluids Mathematical models of in-situ leaching Dynamics of cracks in rocks Elements of continuum mechanics
These 22 papers on control of nonlinear partial differential equations highlight the area from a wide variety of viewpoints. They comprise theoretical considerations such as optimality conditions, relaxation, or stabilizability theorems, as well as the development and evaluation of new algorithms. A significant part of the volume is devoted to applications in engineering, continuum mechanics and population biology.
This is a handbook of Gamma-convergence, which is a theoretical tool used to study problems in Applied Mathematics where varying parameters are present, with many applications that range from Mechanics to Computer Vision. The book is directed to Applied Mathematicians in all fields and to Engineers with a theoretical background.
Branches of mathematics and advanced mathematical algorithms can help solve daily problems throughout various fields of applied sciences. Domains like economics, mechanical engineering, and multi-person decision making benefit from the inclusion of mathematics to maximize utility and cooperation across disciplines. There is a need for studies seeking to understand the theories and practice of using differential mathematics to increase efficiency and order in the modern world. Emerging Applications of Differential Equations and Game Theory is a collection of innovative research that examines the recent advancements on interdisciplinary areas of applied mathematics. While highlighting topics such as artificial neuron networks, stochastic optimization, and dynamical systems, this publication is ideally designed for engineers, cryptologists, economists, computer scientists, business managers, mathematicians, mechanics, academicians, researchers, and students.
The book is devoted to dynamic inequalities of Hardy type and extensions and generalizations via convexity on a time scale T. In particular, the book contains the time scale versions of classical Hardy type inequalities, Hardy and Littlewood type inequalities, Hardy-Knopp type inequalities via convexity, Copson type inequalities, Copson-Beesack type inequalities, Liendeler type inequalities, Levinson type inequalities and Pachpatte type inequalities, Bennett type inequalities, Chan type inequalities, and Hardy type inequalities with two different weight functions. These dynamic inequalities contain the classical continuous and discrete inequalities as special cases when T = R and T = N and can be extended to different types of inequalities on different time scales such as T = hN, h > 0, T = qN for q > 1, etc.In this book the authors followed the history and development of these inequalities. Each section in self-contained and one can see the relationship between the time scale versions of the inequalities and the classical ones. To the best of the authors' knowledge this is the first book devoted to Hardy-typeinequalities and their extensions on time scales.
The book contains some of the most important results on the analysis of polynomials and their derivatives. Besides the fundamental results which are treated with their proofs, the book also provides an account of the most recent developments concerning extremal properties of polynomials and their derivatives in various metrics with an extensive analysis of inequalities for trigonometric sums and algebraic polynomials, as well as their zeros. The final chapter provides some selected applications of polynomials in approximation theory and computer aided geometric design (CAGD). One can also find in this book several new research problems and conjectures with sufficient information concerning the results obtained to date towards the investigation of their solution.
The purpose of the book is to discuss the latest advances in the theory of unitary representations and harmonic analysis for solvable Lie groups. The orbit method created by Kirillov is the most powerful tool to build the ground frame of these theories. Many problems are studied in the nilpotent case, but several obstacles arise when encompassing exponentially solvable settings. The book offers the most recent solutions to a number of open questions that arose over the last decades, presents the newest related results, and offers an alluring platform for progressing in this research area. The book is unique in the literature for which the readership extends to graduate students, researchers, and beginners in the fields of harmonic analysis on solvable homogeneous spaces.
This book integrates analytical and digital solutions through Alternative Transients Program (ATP) software, recognized for its use all over the world in academia and in the electric power industry, utilizing a didactic approach appropriate for graduate students and industry professionals alike. This book presents an approach to solving singular-function differential equations representing the transient and steady-state dynamics of a circuit in a structured manner, and without the need for physical reasoning to set initial conditions to zero plus (0+). It also provides, for each problem presented, the exact analytical solution as well as the corresponding digital solution through a computer program based on the Electromagnetics Transients Program (EMTP). Of interest to undergraduate and graduate students, as well as industry practitioners, this book fills the gap between classic works in the field of electrical circuits and more advanced works in the field of transients in electrical power systems, facilitating a full understanding of digital and analytical modeling and solution of transients in basic circuits.
This book discusses the Tauberian conditions under which convergence follows from statistical summability, various linear positive operators, Urysohn-type nonlinear Bernstein operators and also presents the use of Banach sequence spaces in the theory of infinite systems of differential equations. It also includes the generalization of linear positive operators in post-quantum calculus, which is one of the currently active areas of research in approximation theory. Presenting original papers by internationally recognized authors, the book is of interest to a wide range of mathematicians whose research areas include summability and approximation theory. One of the most active areas of research in summability theory is the concept of statistical convergence, which is a generalization of the familiar and widely investigated concept of convergence of real and complex sequences, and it has been used in Fourier analysis, probability theory, approximation theory and in other branches of mathematics. The theory of approximation deals with how functions can best be approximated with simpler functions. In the study of approximation of functions by linear positive operators, Bernstein polynomials play a highly significant role due to their simple and useful structure. And, during the last few decades, different types of research have been dedicated to improving the rate of convergence and decreasing the error of approximation.
This monograph contains expert knowledge on complex fluid-flows in microfluidic devices. The topical spectrum includes, but is not limited to, aspects such as the analysis, experimental characterization, numerical simulations and numerical optimization. The target audience primarily comprises researchers who intend to embark on activities in microfluidics. The book can also be beneficial as supplementary reading in graduate courses.
This volume gathers contributions in the field of partial differential equations, with a focus on mathematical models in phase transitions, complex fluids and thermomechanics. These contributions are dedicated to Professor Gianni Gilardi on the occasion of his 70th birthday. It particularly develops the following thematic areas: nonlinear dynamic and stationary equations; well-posedness of initial and boundary value problems for systems of PDEs; regularity properties for the solutions; optimal control problems and optimality conditions; feedback stabilization and stability results. Most of the articles are presented in a self-contained manner, and describe new achievements and/or the state of the art in their line of research, providing interested readers with an overview of recent advances and future research directions in PDEs.
This volume is a handbook which contains data dealing with the characteristics of systems with distributed and lumped parameters. Some 200 problems are discussed and, for each problem, all the main characteristics of the solution are listed: standardizing functions, Green's functions, transfer functions or matrices, eigenfunctions and eigenvalues with their asymptotics, roots of characteristic equations, and others. In addition to systems described by a single differential equation, the handbook also includes degenerate multiconnected systems. The volume makes it easier to compare a large number of systems with distributed parameters. It also points the way to the solution of problems in the structural theory of distributed-parameter systems. The book contains three major chapters. Chapter 1 deals with special descriptions combining concrete and general features of distributed parameter systems of selected integro-differential equations. Also presented are the characteristics of simple quantum mechanical systems, and data for other systems. Chapter 2 presents the characteristics of systems of differential or integral equations. Several different multiconnected systems are presented. Chapter 3 describes practical prescriptions for finding and understanding the characteristics of various classes of distributed systems. The work should be useful for researchers whose work involves processes in continuous media, various kinds of field phenomena, problems of mathematical physics, and the control of distributed-parameter systems.
This book is the second of a two volume series. Covering a range of subjects from operator theory and classical harmonic analysis to Banach space theory, this book features fully-refereed, high-quality papers exploring new results and trends in weighted norm inequalities, Schur-Agler class functions, complex analysis, dynamical systems, and dyadic harmonic analysis. Graduate students and researchers in analysis will find inspiration in the articles collected in this volume, which emphasize the remarkable connections between harmonic analysis and operator theory. A survey of the two weight problem for the Hilbert transform and an expository article on the Clark model to the case of non-singular measures and applications to the study of rank-one perturbations are included. The material for this volume is based on the 13th New Mexico Analysis Seminar held at the University of New Mexico, April 3-4, 2014 and on several special sections of the Western Spring Sectional Meeting at the University of New Mexico, April 4-6,2014. During the event, participants honored the memory of Cora Sadosky-a great mathematician who recently passed away and who made significant contributions to the field of harmonic analysis. Cora was an exceptional scientist and human being. She was a world expert in harmonic analysis and operator theory, publishing over fifty-five research papers and authoring a major textbook in the field. Participants of the conference include new and senior researchers, recent doctorates as well as leading experts in the area.
This book provides an introduction to measure theory and functional analysis suitable for a beginning graduate course, and is based on notes the author had developed over several years of teaching such a course. It is unique in placing special emphasis on the separable setting, which allows for a simultaneously more detailed and more elementary exposition, and for its rapid progression into advanced topics in the spectral theory of families of self-adjoint operators. The author's notion of measurable Hilbert bundles is used to give the spectral theorem a particularly elegant formulation not to be found in other textbooks on the subject.
The main purpose of this book is to present, in a unified approach, several algorithms for fixed point computation, convex feasibility and convex optimization in infinite dimensional Banach spaces, and for problems involving, eventually, infinitely many constraints. For instance, methods like the simultaneous projection algorithm for feasibility, the proximal point algorithm and the augmented Lagrangian algorithm are rigorously formulated and analyzed in this general setting and shown to be applicable to much wider classes of problems than previously known. For this purpose, a new basic concept, "total convexity", is introduced. Its properties are deeply explored, and a comprehensive theory is presented, bringing together previously unrelated ideas from Banach space geometry, finite dimensional convex optimization and functional analysis. For making a general approach possible the work aims to improve upon classical results like the Holder-Minkowsky inequality of p. This book should be of interest to both researchers in nonlinear analysis and to applied mathematicians dealing with numerical solution of integral equations, equilibrium problems, image reconstruction, and optimal control.
The subject of nonlinear partial differential equations is experiencing a period of intense activity in the study of systems underlying basic theories in geometry, topology and physics. These mathematical models share the property of being derived from variational principles. Understanding the structure of critical configurations and the dynamics of the corresponding evolution problems is of fundamental importance for the development of the physical theories and their applications. This volume contains survey lectures in four different areas, delivered by leading resarchers at the 1995 Barrett Lectures held at The University of Tennessee: nonlinear hyperbolic systems arising in field theory and relativity (S. Klainerman); harmonic maps from Minkowski spacetime (M. Struwe); dynamics of vortices in the Ginzburg-Landau model of superconductivity (F.-H. Lin); the Seiberg-Witten equations and their application to problems in four-dimensional topology (R. Fintushel). Most of this material has not previously been available in survey form. These lectures provide an up-to-date overview and an introduction to the research literature in each of these areas, which should prove useful to researchers and graduate students in mathematical physics, partial differential equations, differential geometry and topology.
This book highlights the remarkable importance of special functions, operational calculus, and variational methods. A considerable portion of the book is dedicated to second-order partial differential equations, as they offer mathematical models of various phenomena in physics and engineering. The book provides students and researchers with essential help on key mathematical topics, which are applied to a range of practical problems. These topics were chosen because, after teaching university courses for many years, the authors have found them to be essential, especially in the contexts of technology, engineering and economics. Given the diversity topics included in the book, the presentation of each is limited to the basic notions and results of the respective mathematical domain. Chapter 1 is devoted to complex functions. Here, much emphasis is placed on the theory of holomorphic functions, which facilitate the understanding of the role that the theory of functions of a complex variable plays in mathematical physics, especially in the modeling of plane problems. In addition, the book demonstrates the importance of the theories of special functions, operational calculus, and variational calculus. In the last chapter, the authors discuss the basic elements of one of the most modern areas of mathematics, namely the theory of optimal control.
The present book is the first of the two volume proceedings of the Mark Krein International Conference on Operator Theory and Applications. This conference, which was dedicated to the 90th anniversary of the prominent mathematician Mark Krein, was held in Odessa, Ukraine, from August 18-22, 1997. The conference focused on the main ideas, methods, results, and achievements of M. G. Krein. This first volume is devoted to the theory of differential operators and related topics. It opens with a description of the conference, biographical material and a number of survey papers about the work of M. G. Krein. The main part of the book consists of original research papers presenting the state of the art in the area of differential operators. The second volume of these proceedings, entitled Operator Theory and Related Topics, concerns the other aspects of the conference. The two volumes will be of interest to a wide range of readership in pure and applied mathematics, physics and engineering sciences.
Numerical partial differential equations (PDEs) are an important part of numerical simulation, the third component of the modern methodology for science and engineering, besides the traditional theory and experiment. This volume contains papers that originated with the collaborative research of the teams that participated in the IMA Workshop for Women in Applied Mathematics: Numerical Partial Differential Equations and Scientific Computing in August 2014.
The conference has an interdisciplinary focus and aims to bring together scientists - mathematicians, electrical engineers, computer scientists, and physicists, from universities and industry - to have in-depth discussions of the latest scientific results in Computational Science and Engineering relevant to Electrical Engineering and to stimulate and inspire active participation of young researchers.
This volume presents the Proceedings of the Joint U.S. / Israel Workshop on Operator Theory and Its Applications, held February 24-28, 1992, at the Ben Gurion University of the Negev, Beersheva. This event was sponsored by the United States / Israel Binational Science Foundation and the Ben Gurion University of the Negev, and many outstanding experts in operator theory took part. The workshop honored Professor Emeritus Moshe Livsic on the occasion of his retirement. The volume contains a selection of papers covering a wide range of topics in modern operator theory and its applications, from abstract operator theory to system theory and computers in operator models. The papers treat linear and nonlinear problems, and study operators from different abstract and concrete classes. Many of the topics concern the area in which contributions of Moshe Livsic were extremely important. This book will appeal to a wide audience of pure and applied mathematicians and engineers.
Based on the third International Conference on Symmetries, Differential Equations and Applications (SDEA-III), this proceedings volume highlights recent important advances and trends in the applications of Lie groups, including a broad area of topics in interdisciplinary studies, ranging from mathematical physics to financial mathematics. The selected and peer-reviewed contributions gathered here cover Lie theory and symmetry methods in differential equations, Lie algebras and Lie pseudogroups, super-symmetry and super-integrability, representation theory of Lie algebras, classification problems, conservation laws, and geometrical methods. The SDEA III, held in honour of the Centenary of Noether's Theorem, proven by the prominent German mathematician Emmy Noether, at Istanbul Technical University in August 2017 provided a productive forum for academic researchers, both junior and senior, and students to discuss and share the latest developments in the theory and applications of Lie symmetry groups. This work has an interdisciplinary appeal and will be a valuable read for researchers in mathematics, mechanics, physics, engineering, medicine and finance.
The fascinating world of canonical moments--a unique look at this
practical, powerful statistical and probability tool
The subject of this monograph is the quaternionic spectral theory based on the notion of S-spectrum. With the purpose of giving a systematic and self-contained treatment of this theory that has been developed in the last decade, the book features topics like the S-functional calculus, the F-functional calculus, the quaternionic spectral theorem, spectral integration and spectral operators in the quaternionic setting. These topics are based on the notion of S-spectrum of a quaternionic linear operator. Further developments of this theory lead to applications in fractional diffusion and evolution problems that will be covered in a separate monograph.
In this paper, we develop via real variable methods various characterisations of the Hardy spaces in the multi-parameter flag setting. These characterisations include those via, the non-tangential and radial maximal function, the Littlewood-Paley square function and area integral, Riesz transforms and the atomic decom-position in the multi-parameter flag setting. The novel ingredients in this paper include (1) establishing appropriate discrete Calderon reproducing formulae in the flag setting and a version of the Plancherel-Polya inequalities for flag quadratic forms; (2) introducing the maximal function and area function via flag Poisson kernels and flag version of harmonic functions; (3) developing an atomic decom-position via the finite speed propagation and area function in terms of flag heat semigroups. As a consequence of these real variable methods, we obtain the full characterisations of the multi-parameter Hardy space with the flag structure. |
![]() ![]() You may like...
Learning C# by Programming Games
Arjan Egges, Jeroen D. Fokker, …
Hardcover
R2,262
Discovery Miles 22 620
Progress in Turbulence VIII…
Ramis Oerlu, Alessandro Talamelli, …
Hardcover
R4,398
Discovery Miles 43 980
Matrix and Analytical Methods for…
Valeriy Naumov, Yuliya Gaidamaka, …
Hardcover
R1,563
Discovery Miles 15 630
|