![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
This graduate-level introduction to ordinary differential equations combines both qualitative and numerical analysis of solutions, in line with Poincare's vision for the field over a century ago. Taking into account the remarkable development of dynamical systems since then, the authors present the core topics that every young mathematician of our time--pure and applied alike--ought to learn. The book features a dynamical perspective that drives the motivating questions, the style of exposition, and the arguments and proof techniques. The text is organized in six cycles. The first cycle deals with the foundational questions of existence and uniqueness of solutions. The second introduces the basic tools, both theoretical and practical, for treating concrete problems. The third cycle presents autonomous and non-autonomous linear theory. Lyapunov stability theory forms the fourth cycle. The fifth one deals with the local theory, including the Grobman-Hartman theorem and the stable manifold theorem. The last cycle discusses global issues in the broader setting of differential equations on manifolds, culminating in the Poincare-Hopf index theorem. The book is appropriate for use in a course or for self-study. The reader is assumed to have a basic knowledge of general topology, linear algebra, and analysis at the undergraduate level. Each chapter ends with a computational experiment, a diverse list of exercises, and detailed historical, biographical, and bibliographic notes seeking to help the reader form a clearer view of how the ideas in this field unfolded over time.
Boundary value problems on bounded or unbounded intervals, involving two or more coupled systems of nonlinear differential and integral equations with full nonlinearities, are scarce in the literature. The present work by the authors desires to fill this gap. The systems covered here include differential and integral equations of Hammerstein-type with boundary constraints, on bounded or unbounded intervals. These are presented in several forms and conditions (three points, mixed, with functional dependence, homoclinic and heteroclinic, amongst others). This would be the first time that differential and integral coupled systems are studied systematically. The existence, and in some cases, the localization of the solutions are carried out in Banach space, following several types of arguments and approaches such as Schauder's fixed-point theorem or Guo-Krasnosel'ski? fixed-point theorem in cones, allied to Green's function or its estimates, lower and upper solutions, convenient truncatures, the Nagumo condition presented in different forms, the concept of equiconvergence, Caratheodory functions, and sequences. Moreover, the final part in the volume features some techniques on how to relate differential coupled systems to integral ones, which require less regularity. Parallel to the theoretical explanation of this work, there is a range of practical examples and applications involving real phenomena, focusing on physics, mechanics, biology, forestry, and dynamical systems, which researchers and students will find useful.
Uncertainties in GPS Positioning: A Mathematical Discourse describes the calculations performed by a GPS receiver and the problems associated with ensuring that the derived location is a close match to the actual location. Inaccuracies in calculating a location can have serious repercussions, so this book is a timely source for information on this rapidly evolving technology.
This book highlights new developments in the wide and growing field of partial differential equations (PDE)-constrained optimization. Optimization problems where the dynamics evolve according to a system of PDEs arise in science, engineering, and economic applications and they can take the form of inverse problems, optimal control problems or optimal design problems. This book covers new theoretical, computational as well as implementation aspects for PDE-constrained optimization problems under uncertainty, in shape optimization, and in feedback control, and it illustrates the new developments on representative problems from a variety of applications.
Using the familiar software Microsoft ® Excel, this book examines the applications of complex variables. Implementation of the included problems in Excel eliminates the “black box” nature of more advanced computer software and programming languages and therefore the reader has the chance to become more familiar with the underlying mathematics of the complex variable problems. This book consists of two parts. In Part I, several topics are covered that one would expect to find in an introductory text on complex variables. These topics include an overview of complex numbers, functions of a complex variable, and the Cauchy integral formula. In particular, attention is given to the study of analytic complex variable functions. This attention is warranted because of the property that the real and imaginary parts of an analytic complex variable function can be used to solve the Laplace partial differential equation (PDE). Laplace's equation is ubiquitous throughout science and engineering as it can be used to model the steady-state conditions of several important transport processes including heat transfer, soil-water flow, electrostatics, and ideal fluid flow, among others. In Part II, a specialty application of complex variables known as the Complex Variable Boundary Element Method (CVBEM) is examined. CVBEM is a numerical method used for solving boundary value problems governed by Laplace's equation. This part contains a detailed description of the CVBEM and a guide through each step of constructing two CVBEM programs in Excel. The writing of these programs is the culminating event of the book. Students of complex variables and anyone with interest in a novel method for approximating potential functions using the principles of complex variables are the intended audience for this book. The Microsoft Excel applications (including simple programs as well as the CVBEM program) covered will also be of interest in the industry, as these programs are accessible to anybody with Microsoft Office.
An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation introduces the reader to the methodology of modern applied mathematics in modeling, analysis, and scientific computing with emphasis on the use of ordinary and partial differential equations. Each topic is introduced with an attractive physical problem, where a mathematical model is constructed using physical and constitutive laws arising from the conservation of mass, conservation of momentum, or Maxwell's electrodynamics. Relevant mathematical analysis (which might employ vector calculus, Fourier series, nonlinear ODEs, bifurcation theory, perturbation theory, potential theory, control theory, or probability theory) or scientific computing (which might include Newton's method, the method of lines, finite differences, finite elements, finite volumes, boundary elements, projection methods, smoothed particle hydrodynamics, or Lagrangian methods) is developed in context and used to make physically significant predictions. The target audience is advanced undergraduates (who have at least a working knowledge of vector calculus and linear ordinary differential equations) or beginning graduate students. Readers will gain a solid and exciting introduction to modeling, mathematical analysis, and computation that provides the key ideas and skills needed to enter the wider world of modern applied mathematics.
The author's goal is a rigorous presentation of the fundamentals of analysis, starting from elementary level and moving to the advanced coursework. The curriculum of all mathematics (pure or applied) and physics programs include a compulsory course in mathematical analysis. This book will serve as can serve a main textbook of such (one semester) courses. The book can also serve as additional reading for such courses as real analysis, functional analysis, harmonic analysis etc. For non-math major students requiring math beyond calculus, this is a more friendly approach than many math-centric options.
Complex analysis is found in many areas of applied mathematics, from fluid mechanics, thermodynamics, signal processing, control theory, mechanical and electrical engineering to quantum mechanics, among others. And of course, it is a fundamental branch of pure mathematics. The coverage in this text includes advanced topics that are not always considered in more elementary texts. These topics include, a detailed treatment of univalent functions, harmonic functions, subharmonic and superharmonic functions, Nevanlinna theory, normal families, hyperbolic geometry, iteration of rational functions, and analytic number theory. As well, the text includes in depth discussions of the Dirichlet Problem, Green's function, Riemann Hypothesis, and the Laplace transform. Some beautiful color illustrations supplement the text of this most elegant subject.
This unique book gathers various scientific and mathematical approaches to and descriptions of the natural and physical world stemming from a broad range of mathematical areas - from model systems, differential equations, statistics, and probability - all of which scientifically and mathematically reveal the inherent beauty of natural and physical phenomena. Topics include Archimedean and Non-Archimedean approaches to mathematical modeling; thermography model with application to tungiasis inflammation of the skin; modeling of a tick-Killing Robot; various aspects of the mathematics for Covid-19, from simulation of social distancing scenarios to the evolution dynamics of the coronavirus in some given tropical country to the spatiotemporal modeling of the progression of the pandemic. Given its scope and approach, the book will benefit researchers and students of mathematics, the sciences and engineering, and everyone else with an appreciation for the beauty of nature. The outcome is a mathematical enrichment of nature's beauty in its various manifestations. This volume honors Dr. John Adam, a Professor at Old Dominion University, USA, for his lifetime achievements in the fields of mathematical modeling and applied mathematics. Dr. Adam has published over 110 papers and authored several books.
Analysis in singular spaces is becoming an increasingly important area of research, with motivation coming from the calculus of variations, PDEs, geometric analysis, metric geometry and probability theory, just to mention a few areas. In all these fields, the role of measure theory is crucial and an appropriate understanding of the interaction between the relevant measure-theoretic framework and the objects under investigation is important to a successful research. The aim of this book, which gathers contributions from leading specialists with different backgrounds, is that of creating a collection of various aspects of measure theory occurring in recent research with the hope of increasing interactions between different fields. List of contributors: Luigi Ambrosio, Vladimir I. Bogachev, Fabio Cavalletti, Guido De Philippis, Shouhei Honda, Tom Leinster, Christian Leonard, Andrea Marchese, Mark W. Meckes, Filip Rindler, Nageswari Shanmugalingam, Takashi Shioya, and Christina Sormani.
Larson/Edwards' student-oriented CALCULUS: EARLY TRANSCENDENTAL FUNCTIONS, 8th INTERNATIONAL METRIC Edition with WebAssign digital resources and online tutorials clearly introduces the concepts and rules behind calculus. Updated content is designed to remove barriers to learning to include all students in the learning experience. New features, such as "Big Ideas of Calculus," and updated exercises work with annotated examples and online tutorials at CalcView.com, CalcChat.com and LarsonCalculus.com to help students master key concepts. New automatically-graded Proof Problems, Expanded Problems and interactive learning modules also strengthen conceptual understanding. You can customize WebAssign online resources to deliver content that's best for your course needs.
This book describes three classes of nonlinear partial integro-differential equations. These models arise in electromagnetic diffusion processes and heat flow in materials with memory. Mathematical modeling of these processes is briefly described in the first chapter of the book. Investigations of the described equations include theoretical as well as approximation properties. Qualitative and quantitative properties of solutions of initial-boundary value problems are performed therafter. All statements are given with easy understandable proofs. For approximate solution of problems different varieties of numerical methods are investigated. Comparison analyses of those methods are carried out. For theoretical results the corresponding graphical illustrations are included in the book. At the end of each chapter topical bibliographies are provided.
Derivative with a New Parameter: Theory, Methods and Applications discusses the first application of the local derivative that was done by Newton for general physics, and later for other areas of the sciences. The book starts off by giving a history of derivatives, from Newton to Caputo. It then goes on to introduce the new parameters for the local derivative, including its definition and properties. Additional topics define beta-Laplace transforms, beta-Sumudu transforms, and beta-Fourier transforms, including their properties, and then go on to describe the method for partial differential with the beta derivatives. Subsequent sections give examples on how local derivatives with a new parameter can be used to model different applications, such as groundwater flow and different diseases. The book gives an introduction to the newly-established local derivative with new parameters, along with their integral transforms and applications, also including great examples on how it can be used in epidemiology and groundwater studies.
Containing selected papers on the fundamentals and applications of Complexity Science, this multi-disciplinary book presents new approaches for resolving complex issues that cannot be resolved using conventional mathematical or software models. Complex Systems problems can occur in a variety of areas such as physical sciences and engineering, the economy, the environment, humanities and social and political sciences. Complexity Science problems, the science of open systems consisting of large numbers of diverse components engaged in rich interaction, can occur in a variety of areas such as physical sciences and engineering, the economy, the environment, humanities and social and political sciences. The global behaviour of these systems emerges from the interaction of constituent components and is unpredictable but not random. The key attribute of Complex Systems is the ability to self-organise and adapt to unpredictable changes in their environment. Renown complexity thinkers and practitioners as well as those who are new to the area of complexity will find interest in this book.
The focus of these conference proceedings is on research, development, and applications in the fields of numerical geometry, scientific computing and numerical simulation, particularly in mesh generation and related problems. In addition, this year's special focus is on Delaunay triangulations and their applications, celebrating the 130th birthday of Boris Delaunay. In terms of content, the book strikes a balance between engineering algorithms and mathematical foundations. It presents an overview of recent advances in numerical geometry, grid generation and adaptation in terms of mathematical foundations, algorithm and software development and applications. The specific topics covered include: quasi-conformal and quasi-isometric mappings, hyperelastic deformations, multidimensional generalisations of the equidistribution principle, discrete differential geometry, spatial and metric encodings, Voronoi-Delaunay theory for tilings and partitions, duality in mathematical programming and numerical geometry, mesh-based optimisation and optimal control methods. Further aspects examined include iterative solvers for variational problems and algorithm and software development. The applications of the methods discussed are multidisciplinary and include problems from mathematics, physics, biology, chemistry, material science, and engineering.
This book provides an itinerary to quantum mechanics taking into account the basic mathematics to formulate it. Specifically, it features the main experiments and postulates of quantum mechanics pointing out their mathematical prominent aspects showing how physical concepts and mathematical tools are deeply intertwined. The material covers topics such as analytic mechanics in Newtonian, Lagrangian, and Hamiltonian formulations, theory of light as formulated in special relativity, and then why quantum mechanics is necessary to explain experiments like the double-split, atomic spectra, and photoelectric effect. The Schroedinger equation and its solutions are developed in detail. It is pointed out that, starting from the concept of the harmonic oscillator, it is possible to develop advanced quantum mechanics. Furthermore, the mathematics behind the Heisenberg uncertainty principle is constructed towards advanced quantum mechanical principles. Relativistic quantum mechanics is finally considered.The book is devoted to undergraduate students from University courses of Physics, Mathematics, Chemistry, and Engineering. It consists of 50 self-contained lectures, and any statement and theorem are demonstrated in detail. It is the companion book of "A Mathematical Journey to Relativity", by the same Authors, published by Springer in 2020.
In addition to expanding and clarifying a number of sections of the first edition, it generalizes the analysis that eliminates the noncausal pre-acceleration so that it applies to removing any pre-deceleration as well. It also introduces a robust power series solution to the equation of motion that produces an extremely accurate solution to problems such as the motion of electrons in uniform magnetic fields. |
![]() ![]() You may like...
Nonlinear Differential Problems with…
Dumitru Motreanu
Paperback
Calculus, Metric Edition
James Stewart, Saleem Watson, …
Hardcover
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,968
Discovery Miles 29 680
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
![]()
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
|