![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
A substantial number of problems in physics, chemical physics, and biology, are modeled through reaction-diffusion equations to describe temperature distribution or chemical substance concentration. For problems arising from ecology, sociology, or population dynamics, they describe the density of some populations or species. In this book the state variable is a concentration, or a density according to the cases. The reaction function may be complex and include time delays terms that model various situations involving maturation periods, resource regeneration times, or incubation periods. The dynamics may occur in heterogeneous media and may depend upon a small or large parameter, as well as the reaction term. From a purely formal perspective, these parameters are indexed by n. Therefore, reaction-diffusion equations give rise to sequences of Cauchy problems.The first part of the book is devoted to the convergence of these sequences in a sense made precise in the book. The second part is dedicated to the specific case when the reaction-diffusion problems depend on a small parameter intended to tend towards 0. This parameter accounts for the size of small spatial and randomly distributed heterogeneities. The convergence results obtained in the first part, with additionally some probabilistic tools, are applied to this specific situation. The limit problems are illustrated through biological invasion, food-limited or prey-predator models where the interplay between environment heterogeneities in the individual evolution of propagation species plays an essential role. They provide a description in terms of deterministic and homogeneous reaction-diffusion equations, for which numerical schemes are possible.
Using the familiar software Microsoft ® Excel, this book examines the applications of complex variables. Implementation of the included problems in Excel eliminates the “black box” nature of more advanced computer software and programming languages and therefore the reader has the chance to become more familiar with the underlying mathematics of the complex variable problems. This book consists of two parts. In Part I, several topics are covered that one would expect to find in an introductory text on complex variables. These topics include an overview of complex numbers, functions of a complex variable, and the Cauchy integral formula. In particular, attention is given to the study of analytic complex variable functions. This attention is warranted because of the property that the real and imaginary parts of an analytic complex variable function can be used to solve the Laplace partial differential equation (PDE). Laplace's equation is ubiquitous throughout science and engineering as it can be used to model the steady-state conditions of several important transport processes including heat transfer, soil-water flow, electrostatics, and ideal fluid flow, among others. In Part II, a specialty application of complex variables known as the Complex Variable Boundary Element Method (CVBEM) is examined. CVBEM is a numerical method used for solving boundary value problems governed by Laplace's equation. This part contains a detailed description of the CVBEM and a guide through each step of constructing two CVBEM programs in Excel. The writing of these programs is the culminating event of the book. Students of complex variables and anyone with interest in a novel method for approximating potential functions using the principles of complex variables are the intended audience for this book. The Microsoft Excel applications (including simple programs as well as the CVBEM program) covered will also be of interest in the industry, as these programs are accessible to anybody with Microsoft Office.
Complex Systems occur in an infinite variety of problems, not only in the realm of physical sciences and engineering, but encompassing fields as diverse as economy, the environment, humanities, social and political sciences. The high level of dynamics of such systems, which is usually expressed through the frequent occurrence of unpredictable disruptive events, makes conventional optimizers, batch schedulers and resource planning systems unworkable. Composed of selected research papers, this book brings together new developments and processes for managing complexity. The included works originate from renowned complexity thinkers, well established practitioners and new researchers in the field and detail issues of common interest. This title will particularly appeal to researchers, developers and users of complex systems from a variety of disciplines, alongside specialists in modelling complex issues.
Functional analysis is a powerful tool when applied to mathematical
problems arising from physical situations. The present book
provides, by careful selection of material, a collection of
concepts and techniques essential for the modern practitioner.
Emphasis is placed on the solution of equations (including
nonlinear and partial differential equations). The assumed
background is limited to elementary real variable theory and
finite-dimensional vector spaces.
Effective Dynamics of Stochastic Partial Differential Equations focuses on stochastic partial differential equations with slow and fast time scales, or large and small spatial scales. The authors have developed basic techniques, such as averaging, slow manifolds, and homogenization, to extract effective dynamics from these stochastic partial differential equations. The authors experience both as researchers and teachers enable
them to convert current research on extracting effective dynamics
of stochastic partial differential equations into concise and
comprehensive chapters. The book helps readers by providing an
accessible introduction to probability tools in Hilbert space and
basics of stochastic partial differential equations. Each chapter
also includes exercises and problems to enhance
comprehension.
"Boundary Element Method for Plate Analysis" offers one of the first systematic and detailed treatments of the application of BEM to plate analysis and design. Aiming to fill in the knowledge gaps left by contributed volumes on the topic and increase the accessibility of the extensive journal literature covering BEM applied to plates, author John T. Katsikadelis draws heavily on his pioneering work in the field to provide a complete introduction to theory and application. Beginning with a chapter of preliminary mathematical background
to make the book a self-contained resource, Katsikadelis moves on
to cover the application of BEM to basic thin plate problems and
more advanced problems. Each chapter contains several examples
described in detail and closes with problems to solve. Presenting
the BEM as an efficient computational method for practical plate
analysis and design, "Boundary Element Method for Plate Analysis"
is a valuable reference for researchers, students and engineers
working with BEM and plate challenges within mechanical, civil,
aerospace and marine engineering.
Boundary value problems on bounded or unbounded intervals, involving two or more coupled systems of nonlinear differential and integral equations with full nonlinearities, are scarce in the literature. The present work by the authors desires to fill this gap. The systems covered here include differential and integral equations of Hammerstein-type with boundary constraints, on bounded or unbounded intervals. These are presented in several forms and conditions (three points, mixed, with functional dependence, homoclinic and heteroclinic, amongst others). This would be the first time that differential and integral coupled systems are studied systematically. The existence, and in some cases, the localization of the solutions are carried out in Banach space, following several types of arguments and approaches such as Schauder's fixed-point theorem or Guo-Krasnosel'ski? fixed-point theorem in cones, allied to Green's function or its estimates, lower and upper solutions, convenient truncatures, the Nagumo condition presented in different forms, the concept of equiconvergence, Caratheodory functions, and sequences. Moreover, the final part in the volume features some techniques on how to relate differential coupled systems to integral ones, which require less regularity. Parallel to the theoretical explanation of this work, there is a range of practical examples and applications involving real phenomena, focusing on physics, mechanics, biology, forestry, and dynamical systems, which researchers and students will find useful.
Nonsmooth Analysis is a relatively recent area of mathematical
analysis. The literature about this subject consists mainly in
research papers and books. The purpose of this book is to provide a
handbook for undergraduate and graduate students of mathematicsthat
introduce this interesting area in detail.
Thomas' Calculus: Early Transcendentals goes beyond memorizing formulas and routine procedures to help you develop deeper understanding. It guides you to a level of mathematical proficiency, with additional support if needed through its clear and intuitive explanations, current applications and generalized concepts. Technology exercises in every section use the calculator or computer for solving problems, and Computer Explorations offer exercises requiring a computer algebra system like Maple or Mathematica. The 15th Edition adds exercises, revises figures and language for clarity, and updates many applications.
The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.
Formal analysis is the study of formal power series, formal Laurent series, formal root series, and other formal series or formal functionals. This book is the first comprehensive presentation of the topic that systematically introduces formal analysis, including its algebraic, analytic, and topological structure, along with various applications.
The book is designed for undergraduate or beginning level graduate students, and students from interdisciplinary areas including engineers, and others who need to use partial differential equations, Fourier series, Fourier and Laplace transforms. The prerequisite is a basic knowledge of calculus, linear algebra, and ordinary differential equations.The textbook aims to be practical, elementary, and reasonably rigorous; the book is concise in that it describes fundamental solution techniques for first order, second order, linear partial differential equations for general solutions, fundamental solutions, solution to Cauchy (initial value) problems, and boundary value problems for different PDEs in one and two dimensions, and different coordinates systems. Analytic solutions to boundary value problems are based on Sturm-Liouville eigenvalue problems and series solutions.The book is accompanied with enough well tested Maple files and some Matlab codes that are available online. The use of Maple makes the complicated series solution simple, interactive, and visible. These features distinguish the book from other textbooks available in the related area.
Precise approach with definitions, theorems, proofs, examples and exercises. Topics include partial differentiation, vectors, differential geometry, Stieltjes integral, infinite series, gamma function, Fourier series, Laplace transform, much more. Numerous graded exercises with selected answers.
This book describes state-of-the-art advances and applications of the unified transform and its relation to the boundary element method. The authors present the solution of boundary value problems from several different perspectives, in particular the type of problems modeled by partial differential equations (PDEs). They discuss recent applications of the unified transform to the analysis and numerical modeling of boundary value problems for linear and integrable nonlinear PDEs and the closely related boundary element method, a well-established numerical approach for solving linear elliptic PDEs. The text is divided into three parts. Part I contains new theoretical results on linear and nonlinear evolutionary and elliptic problems. New explicit solution representations for several classes of boundary value problems are constructed and rigorously analyzed. Part II is a detailed overview of variational formulations for elliptic problems. It places the unified transform approach in a classic context alongside the boundary element method and stresses its novelty. Part III presents recent numerical applications based on the boundary element method and on the unified transform.
This proceedings volume collects select contributions presented at the International Conference in Operator Theory held at Hammamet, Tunisia, on April 30 May 3, 2018. Edited and refereed by well-known experts in the field, this wide-ranging collection of survey and research articles presents the state of the art in the field of operator theory, covering topics such as operator and spectral theory, fixed point theory, functional analysis etc.
|
You may like...
Calculus, Metric Edition
James Stewart, Saleem Watson, …
Hardcover
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
(1)
Nonlinear Differential Problems with…
Dumitru Motreanu
Paperback
Student Solutions Manual for Thomas…
Joel Hass, Christopher Heil, …
Paperback
R2,152
Discovery Miles 21 520
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
|