![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
This book deals with the development of Diophantine problems starting with Thue's path breaking result and culminating in Roth's theorem with applications. It discusses classical results including Hermite-Lindemann-Weierstrass theorem, Gelfond-Schneider theorem, Schmidt's subspace theorem and more. It also includes two theorems of Ramachandra which are not widely known and other interesting results derived on the values of Weierstrass elliptic function. Given the constantly growing number of applications of linear forms in logarithms, it is becoming increasingly important for any student wanting to work in this area to know the proofs of Baker's original results. This book presents Baker's original results in a format suitable for graduate students, with a focus on presenting the content in an accessible and simple manner. Each student-friendly chapter concludes with selected problems in the form of "Exercises" and interesting information presented as "Notes," intended to spark readers' curiosity.
A sweeping exploration of the development and far-reaching applications of harmonic analysis such as signal processing, digital music, Fourier optics, radio astronomy, crystallography, medical imaging, spectroscopy, and more. Featuring a wealth of illustrations, examples, and material not found in other harmonic analysis books, this unique monograph skillfully blends together historical narrative with scientific exposition to create a comprehensive yet accessible work. While only an understanding of calculus is required to appreciate it, there are more technical sections that will charm even specialists in harmonic analysis. From undergraduates to professional scientists, engineers, and mathematicians, there is something for everyone here. The second edition of The Evolution of Applied Harmonic Analysis contains a new chapter on atmospheric physics and climate change, making it more relevant for today's audience. Praise for the first edition: "...can be thoroughly recommended to any reader who is curious about the physical world and the intellectual underpinnings that have lead to our expanding understanding of our physical environment and to our halting steps to control it. Everyone who uses instruments that are based on harmonic analysis will benefit from the clear verbal descriptions that are supplied." - R.N. Bracewell, Stanford University "The book under review is a unique and splendid telling of the triumphs of the fast Fourier transform. I can recommend it unconditionally... Elena Prestini... has taken one major mathematical idea, that of Fourier analysis, and chased down and described a half dozen varied areas in which Fourier analysis and the FFT are now in place. Her book is much to be applauded." - Society for Industrial and Applied Mathematics "This is not simply a book about mathematics, or even the history of mathematics; it is a story about how the discipline has been applied (to borrow Fourier's expression) to 'the public good and the explanation of natural phenomena.' ... This book constitutes a significant addition to the library of popular mathematical works, and a valuable resource for students of mathematics." - Mathematical Association of America Reviews
Presenting the most important results of a new branch of functional analysis - subdifferential calculus and its applications - this monograph details new tools and techniques of convex and non-smooth analysis, such as Kantorovich spaces, vector duality, Boolean-valued and infinitesimal versions of non-standard analysis, covering a wide range of topics. The book aims to fill the gap between the theoretical core of modern functional analysis and its applicable sections, such as optimization, optimal control, mathematical programming, economics and related subjects. The material is intended for theoretical mathematicians looking for possible new applications, and applied mathematicians seeking powerful contemporary theoretical methods.
An Introduction to Wavelets is the first volume in a new series,
WAVELET ANALYSIS AND ITS APPLICATIONS. This is an introductory
treatise on wavelet analysis, with an emphasis on spline wavelets
and time-frequency analysis. Among the basic topics covered in this
book are time-frequency localization, integral wavelet transforms,
dyadic wavelets, frames, spline-wavelets, orthonormal wavelet
bases, and wavelet packets. In addition, the author presents a
unified treatment of nonorthogonal, semiorthogonal, and orthogonal
wavelets. This monograph is self-contained, the only prerequisite
being a basic knowledge of function theory and real analysis. It is
suitable as a textbook for a beginning course on wavelet analysis
and is directed toward both mathematicians and engineers who wish
to learn about the subject. Specialists may use this volume as a
valuable supplementary reading to the vast literature that has
already emerged in this field.
This book provides the mathematical foundations for Feynman's operator calculus and for the Feynman path integral formulation of quantum mechanics as a natural extension of analysis and functional analysis to the infinite-dimensional setting. In one application, the results are used to prove the last two remaining conjectures of Freeman Dyson for quantum electrodynamics. In another application, the results are used to unify methods and weaken domain requirements for non-autonomous evolution equations. Other applications include a general theory of Lebesgue measure on Banach spaces with a Schauder basis and a new approach to the structure theory of operators on uniformly convex Banach spaces. This book is intended for advanced graduate students and researchers.
This book is a monograph on chaos in dissipative systems written for those working in the physical sciences. Emphasis is on symbolic description of the dynamics and various characteristics of the attractors, and written from the view-point of practical applications without going into formal mathematical rigour. The author used elementary mathematics and calculus, and relied on physical intuition whenever possible. Substantial attention is paid to numerical techniques in the study of chaos. Part of the book is based on the publications of Chinese researchers, including those of the author's collaborators.
The second edition of this book updates and expands upon a historically important collection of mathematical problems first published in the United States by Birkhauser in 1981. These problems serve as a record of the informal discussions held by a group of mathematicians at the Scottish Cafe in Lwow, Poland, between the two world wars. Many of them were leaders in the development of such areas as functional and real analysis, group theory, measure and set theory, probability, and topology. Finding solutions to the problems they proposed has been ongoing since World War II, with prizes offered in many cases to those who are successful. In the 35 years since the first edition published, several more problems have been fully or partially solved, but even today many still remain unsolved and several prizes remain unclaimed. In view of this, the editor has gathered new and updated commentaries on the original 193 problems. Some problems are solved for the first time in this edition. Included again in full are transcripts of lectures given by Stanislaw Ulam, Mark Kac, Antoni Zygmund, Paul Erdoes, and Andrzej Granas that provide amazing insights into the mathematical environment of Lwow before World War II and the development of The Scottish Book. Also new in this edition are a brief history of the University of Wroclaw's New Scottish Book, created to revive the tradition of the original, and some selected problems from it. The Scottish Book offers a unique opportunity to communicate with the people and ideas of a time and place that had an enormous influence on the development of mathematics and try their hand on the unsolved problems. Anyone in the general mathematical community with an interest in the history of modern mathematics will find this to be an insightful and fascinating read.
This book presents an exciting collection of contributions based on the workshop "Bringing Maths to Life" held October 27-29, 2014 in Naples, Italy. The state-of-the art research in biology and the statistical and analytical challenges facing huge masses of data collection are treated in this Work. Specific topics explored in depth surround the sessions and special invited sessions of the workshop and include genetic variability via differential expression, molecular dynamics and modeling, complex biological systems viewed from quantitative models, and microscopy images processing, to name several. In depth discussions of the mathematical analysis required to extract insights from complex bodies of biological datasets, to aid development in the field novel algorithms, methods and software tools for genetic variability, molecular dynamics, and complex biological systems are presented in this book. Researchers and graduate students in biology, life science, and mathematics/statistics will find the content useful as it addresses existing challenges in identifying the gaps between mathematical modeling and biological research. The shared solutions will aid and promote further collaboration between life sciences and mathematics.
The author describes the recently developed theory of Hadamard expansions applied to the high-precision (hyperasymptotic) evaluation of Laplace and Laplace-type integrals. This brand new method builds on the well-known asymptotic method of steepest descents, of which the opening chapter gives a detailed account illustrated by a series of examples of increasing complexity. A discussion of uniformity problems associated with various coalescence phenomena, the Stokes phenomenon and hyperasymptotics of Laplace-type integrals follows. The remaining chapters deal with the Hadamard expansion of Laplace integrals, with and without saddle points. Problems of different types of saddle coalescence are also discussed. The text is illustrated with many numerical examples, which help the reader to understand the level of accuracy achievable. The author also considers applications to some important special functions. This book is ideal for graduate students and researchers working in asymptotics.
These are the proceedings of the 25th International Conference on Domain Decomposition Methods in Science and Engineering, which was held in St. John's, Newfoundland, Canada in July 2018. Domain decomposition methods are iterative methods for solving the often very large systems of equations that arise when engineering problems are discretized, frequently using finite elements or other modern techniques. These methods are specifically designed to make effective use of massively parallel, high-performance computing systems. The book presents both theoretical and computational advances in this domain, reflecting the state of art in 2018.
The book covers fundamentals of the theory of optimal methods for solving ill-posed problems, as well as ways to obtain accurate and accurate-by-order error estimates for these methods. The methods described in the current book are used to solve a number of inverse problems in mathematical physics. Contents Modulus of continuity of the inverse operator and methods for solving ill-posed problems Lavrent'ev methods for constructing approximate solutions of linear operator equations of the first kind Tikhonov regularization method Projection-regularization method Inverse heat exchange problems
Nonlinear matrix equations arise frequently in applied science and engineering. This is the first book to provide a unified treatment of structure-preserving doubling algorithms, which have been recently studied and proven effective for notoriously challenging problems, such as fluid queue theory and vibration analysis for high-speed trains. The authors present recent developments and results for the theory of doubling algorithms for nonlinear matrix equations associated with regular matrix pencils, and highlight the use of these algorithms in achieving robust solutions for notoriously challenging problems that other methods cannot. Structure-Preserving Doubling Algorithms for Nonlinear Matrix Equations is intended for researchers and computational scientists. Graduate students may also find it of interest.
Heat equation asymptotics of a generalized Ahlfors Laplacian on a manifold with boundary.- Recurrent versus diffusive quantum behavior for time-dependent Hamiltonians.- Perturbations of spectral measures for Feller operators.- A global approach to the location of quantum resonances.- On estimates for the eigen-values in some elliptic problems.- Quantum scattering with long-range magnetic fields.- Spectral invariance and submultiplicativity for Frechet algebras with applications to pseudo-differential operators and ?* -quantization.- Decroissance exponentielle des fonctions propres pour l'operateur de Kac: le cas de la dimension > 1.- Second order perturbations of divergence type operators with a spectral gap.- On the Weyl quantized relativistic Hamiltonian.- Spectral asymptotics for the family of commuting operators.- Pseudo differential operators with negative definite functions as symbol: Applications in probability theory and mathematical physics.- One-dimensional Schroedinger operators with high potential barriers.- General boundary value problems in regions with corners.- Some results for nonlinear equations in cylindrical domains.- Global representation of Langrangian distributions.- Stable asymptotics of the solution to the Dirichlet problem for elliptic equations of second order in domains with angular points or edges.- Maslov operator calculus and non-commutative analysis.- Relative time delay and trace formula for long range perturbations of Laplace operators.- Functional calculus and Fredholm criteria for boundary value problems on noncompact manifolds.- The variable discrete asymptotics of solutions of singular boundary value problems.- Schroedinger operators with arbitrary non-negative potentials.- Abel summability of the series of eigen- and associated functions of the integral and differential operators.- The relativistic oscillator.- On the ratio of odd and even spectral counting functions.- A trace class property of singularly perturbed generalized Schroedinger semi-groups.- Radiation conditions and scattering theory for N-particle Hamiltonians (main ideas of the approach).
The book discusses three classes of problems: the generalized Nash equilibrium problems, the bilevel problems and the mathematical programming with equilibrium constraints (MPEC). These problems interact through their mathematical analysis as well as their applications. The primary aim of the book is to present the modern tool of variational analysis and optimization, which are used to analyze these three classes of problems. All contributing authors are respected academicians, scientists and researchers from around the globe. These contributions are based on the lectures delivered by experts at CIMPA School, held at the University of Delhi, India, from 25 November-6 December 2013, and peer-reviewed by international experts. The book contains five chapters. Chapter 1 deals with nonsmooth, nonconvex bilevel optimization problems whose feasible set is described by using the graph of the solution set mapping of a parametric optimization problem. Chapter 2 describes a constraint qualification to MPECs considered as an application of calmness concept of multifunctions and is used to derive M-stationarity conditions for MPEC. Chapter 3 discusses the first- and second-order optimality conditions derived for a special case of a bilevel optimization problem in which the constraint set of the lower level problem is described as a general compact convex set. Chapter 4 concentrates the results of the modelization and analysis of deregulated electricity markets with a focus on auctions and mechanism design. Chapter 5 focuses on optimization approaches called reflection methods for protein conformation determination within the framework of matrix completion. The last chapter (Chap. 6) deals with the single-valuedness of quasimonotone maps by using the concept of single-directionality with a special focus on the case of the normal operator of lower semi-continuous quasiconvex functions.
1 Introductory Material.- 2 The Direct and Indirect B.I.E.M. for Bilateral Problems.- 3 Boundary Integral Formulations for Some Special Elastostatic B.V.Ps.- 4 On the Numerical Implementation of Boundary Element Equations.- 5 Extension to Dynamic Problems.- 6 Dynamic Interaction Problems.- 7 B.I. Formulations for the Signorini-Fichera Inequality Problem.- 8 Mathematical Study of the B.I. Formulations of the Signorini-Fichera B.V.P..- 9 Boundary Integral Formulation of the Frictional Unilateral Contact B.V.P..- 10 Boundary Integral Formulations for the Monotone Multivalued Boundary Conditions.- 11 Elastodynamic Unilateral Problems. A B.I.E. Approach.- 12 Nonconvex Unilateral Contact Problems.- 13 Miscellanea.- References.
This monograph presents a broad treatment of developments in an area of constructive approximation involving the so-called "max-product" type operators. The exposition highlights the max-product operators as those which allow one to obtain, in many cases, more valuable estimates than those obtained by classical approaches. The text considers a wide variety of operators which are studied for a number of interesting problems such as quantitative estimates, convergence, saturation results, localization, to name several. Additionally, the book discusses the perfect analogies between the probabilistic approaches of the classical Bernstein type operators and of the classical convolution operators (non-periodic and periodic cases), and the possibilistic approaches of the max-product variants of these operators. These approaches allow for two natural interpretations of the max-product Bernstein type operators and convolution type operators: firstly, as possibilistic expectations of some fuzzy variables, and secondly, as bases for the Feller type scheme in terms of the possibilistic integral. These approaches also offer new proofs for the uniform convergence based on a Chebyshev type inequality in the theory of possibility. Researchers in the fields of approximation of functions, signal theory, approximation of fuzzy numbers, image processing, and numerical analysis will find this book most beneficial. This book is also a good reference for graduates and postgraduates taking courses in approximation theory.
The three chapters of this book are entitled Basic Concepts, Tensor Norms, and Special Topics. The first may serve as part of an introductory course in Functional Analysis since it shows the powerful use of the projective and injective tensor norms, as well as the basics of the theory of operator ideals. The second chapter is the main part of the book: it presents the theory of tensor norms as designed by Grothendieck in the Resume and deals with the relation between tensor norms and operator ideals. The last chapter deals with special questions. Each section is accompanied by a series of exercises.
Rational extended thermodynamics (RET) is the theory that is applicable to nonequilibrium phenomena out of local equilibrium. It is expressed by the hyperbolic system of field equations with local constitutive equations and is strictly related to the kinetic theory with the closure method of the hierarchies of moment equations. The book intends to present, in a systematic way, new results obtained by RET of gases in both classical and relativistic cases, and it is a natural continuation of the book "Rational Extended Thermodynamics beyond the Monatomic Gas" by the same authors published in 2015. However, this book addresses much wider topics than those of the previous book. Its contents are as follows: RET of rarefied monatomic gases and of polyatomic gases; a simplified RET theory with 6 fields being valid far from equilibrium; RET where both molecular rotational and vibrational modes exist; mixture of gases with multi-temperature. The theory is applied to several typical topics (sound waves, shock waves, etc.) and is compared with experimental data. From a mathematical point of view, RET can be regarded as a theory of hyperbolic symmetric systems, of which it is possible to conduct a qualitative analysis. The book represents a valuable resource for applied mathematicians, physicists, and engineers, offering powerful models for many potential applications such as reentering satellites into the atmosphere, semiconductors, and nanoscale phenomena.
This monograph offers the first systematic account of (metric) regularity theory in variational analysis. It presents new developments alongside classical results and demonstrates the power of the theory through applications to various problems in analysis and optimization theory. The origins of metric regularity theory can be traced back to a series of fundamental ideas and results of nonlinear functional analysis and global analysis centered around problems of existence and stability of solutions of nonlinear equations. In variational analysis, regularity theory goes far beyond the classical setting and is also concerned with non-differentiable and multi-valued operators. The present volume explores all basic aspects of the theory, from the most general problems for mappings between metric spaces to those connected with fairly concrete and important classes of operators acting in Banach and finite dimensional spaces. Written by a leading expert in the field, the book covers new and powerful techniques, which have proven to be highly efficient even in classical settings, and outlines the theory's predominantly quantitative character, leading to a variety of new and unexpected applications. Variational Analysis of Regular Mappings is aimed at graduate students and researchers in nonlinear and functional analysis, especially those working in areas close to optimization and optimal control, and will be suitable to anyone interested in applying new concepts and ideas to operations research, control engineering and numerical analysis.
This proceedings volume originates from a conference held in Herrnhut in June 2013. It provides unique insights into the power of abstract methods and techniques in dealing successfully with numerous applications stemming from classical analysis and mathematical physics. The book features diverse topics in the area of operator semigroups, including partial differential equations, martingale and Hilbert transforms, Banach and von Neumann algebras, Schroedinger operators, maximal regularity and Fourier multipliers, interpolation, operator-theoretical problems (concerning generation, perturbation and dilation, for example), and various qualitative and quantitative Tauberian theorems with a focus on transfinite induction and magics of Cantor. The last fifteen years have seen the dawn of a new era for semigroup theory with the emphasis on applications of abstract results, often unexpected and far removed from traditional ones. The aim of the conference was to bring together prominent experts in the field of modern semigroup theory, harmonic analysis, complex analysis and mathematical physics, and to present the lively interactions between all of those areas and beyond. In addition, the meeting honored the sixtieth anniversary of Prof C. J. K. Batty, whose scientific achievements are an impressive illustration of the conference goal. These proceedings present contributions by prominent scientists at this international conference, which became a landmark event.They will be a valuable and inspiring source of information for graduate students and established researchers.
This is a book about the Hilbert space formulation of quantum mechanics and its measurement theory. It contains a synopsis of what became of the Mathematical Foundations of Quantum Mechanics since von Neumann's classic treatise with this title. Fundamental non-classical features of quantum mechanics-indeterminacy and incompatibility of observables, unavoidable measurement disturbance, entanglement, nonlocality-are explicated and analysed using the tools of operational quantum theory. The book is divided into four parts: 1. Mathematics provides a systematic exposition of the Hilbert space and operator theoretic tools and relevant measure and integration theory leading to the Naimark and Stinespring dilation theorems; 2. Elements develops the basic concepts of quantum mechanics and measurement theory with a focus on the notion of approximate joint measurability; 3. Realisations offers in-depth studies of the fundamental observables of quantum mechanics and some of their measurement implementations; and 4. Foundations discusses a selection of foundational topics (quantum-classical contrast, Bell nonlocality, measurement limitations, measurement problem, operational axioms) from a measurement theoretic perspective. The book is addressed to physicists, mathematicians and philosophers of physics with an interest in the mathematical and conceptual foundations of quantum physics, specifically from the perspective of measurement theory.
The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramer-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, information theory, or the foundations of statistics, to statisticians as well as to scientists interested in the mathematical foundations of complex systems.
This volume presents recent advances in the field of matrix analysis based on contributions at the MAT-TRIAD 2015 conference. Topics covered include interval linear algebra and computational complexity, Birkhoff polynomial basis, tensors, graphs, linear pencils, K-theory and statistic inference, showing the ubiquity of matrices in different mathematical areas. With a particular focus on matrix and operator theory, statistical models and computation, the International Conference on Matrix Analysis and its Applications 2015, held in Coimbra, Portugal, was the sixth in a series of conferences. Applied and Computational Matrix Analysis will appeal to graduate students and researchers in theoretical and applied mathematics, physics and engineering who are seeking an overview of recent problems and methods in matrix analysis.
The present volume contains the Proceedings of the International Conference on Spectral Theory and Mathematical Physics held in Santiago de Chile in November 2014. Main topics are: Ergodic Quantum Hamiltonians, Magnetic Schroedinger Operators, Quantum Field Theory, Quantum Integrable Systems, Scattering Theory, Semiclassical and Microlocal Analysis, Spectral Shift Function and Quantum Resonances. The book presents survey articles as well as original research papers on these topics. It will be of interest to researchers and graduate students in Mathematics and Mathematical Physics. |
![]() ![]() You may like...
Split Manufacturing of Integrated…
Ranga Vemuri, Suyuan Chen
Hardcover
R2,521
Discovery Miles 25 210
SolidWorks Electrical 2022 Black Book…
Gaurav Verma, Matt Weber
Hardcover
R1,456
Discovery Miles 14 560
Electronic Design Automation for…
Luciano Lavagno, Igor L Markov, …
Paperback
R4,195
Discovery Miles 41 950
New Frontiers in Cryptography - Quantum…
Khaled Salah Mohamed
Hardcover
R3,611
Discovery Miles 36 110
Wearable Monitoring Systems
Annalisa Bonfiglio, Danilo DeRossi
Hardcover
R3,052
Discovery Miles 30 520
Energy Harvesting for Self-Powered…
Mohammad Alhawari, Baker Mohammad, …
Hardcover
R3,101
Discovery Miles 31 010
Distributed, Embedded and Real-time Java…
M. Teresa Higuera-Toledano, Andy J. Wellings
Hardcover
R2,931
Discovery Miles 29 310
Semiconductor Modeling: - For Simulating…
Roy Leventhal
Hardcover
|