Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
This book is about the subject of higher smoothness in separable real Banach spaces. It brings together several angles of view on polynomials, both in finite and infinite setting. Also a rather thorough and systematic view of the more recent results, and the authors work is given. The book revolves around two main broad questions: What is the best smoothness of a given Banach space, and its structural consequences? How large is a supply of smooth functions in the sense of approximating continuous functions in the uniform topology, i.e. how does the Stone-Weierstrass theorem generalize into infinite dimension where measure and compactness are not available? The subject of infinite dimensional real higher smoothness is treated here for the first time in full detail, therefore this book may also serve as a reference book.
This book explains the state of the art in the use of the discrete Fourier transform (DFT) of musical structures such as rhythms or scales. In particular the author explains the DFT of pitch-class distributions, homometry and the phase retrieval problem, nil Fourier coefficients and tilings, saliency, extrapolation to the continuous Fourier transform and continuous spaces, and the meaning of the phases of Fourier coefficients. This is the first textbook dedicated to this subject, and with supporting examples and exercises this is suitable for researchers and advanced undergraduate and graduate students of music, computer science and engineering. The author has made online supplementary material available, and the book is also suitable for practitioners who want to learn about techniques for understanding musical notions and who want to gain musical insights into mathematical problems.
The general topic of this book is the ergodic behavior of Markov processes. A detailed introduction to methods for proving ergodicity and upper bounds for ergodic rates is presented in the first part of the book, with the focus put on weak ergodic rates, typical for Markov systems with complicated structure. The second part is devoted to the application of these methods to limit theorems for functionals of Markov processes. The book is aimed at a wide audience with a background in probability and measure theory. Some knowledge of stochastic processes and stochastic differential equations helps in a deeper understanding of specific examples. Contents Part I: Ergodic Rates for Markov Chains and Processes Markov Chains with Discrete State Spaces General Markov Chains: Ergodicity in Total Variation MarkovProcesseswithContinuousTime Weak Ergodic Rates Part II: Limit Theorems The Law of Large Numbers and the Central Limit Theorem Functional Limit Theorems
Basic Multivariable Calculus fills the need for a student-oriented text devoted exclusively to the third-semester course in multivariable calculus. In this text, the basic algebraic, analytic, and geometric concepts of multivariable and vector calculus are carefully explained, with an emphasis on developing the student's intuitive understanding and computational technique. A wealth of figures supports geometrical interpretation, while exercise sets, review sections, practice exams, and historical notes keep the students active in, and involved with, the mathematical ideas. All necessary linear algebra is developed within the text, and the material can be readily coordinated with computer laboratories. Basic Multivariable Calculus is the product of an extensive writing, revising, and class-testing collaboration by the authors of Calculus III (Springer-Verlag) and Vector Calculus (W.H. Freeman & Co.). Incorporating many features from these highly respected texts, it is both a synthesis of the authors' previous work and a new and original textbook.
This monograph presents the summability of higher dimensional Fourier series, and generalizes the concept of Lebesgue points. Focusing on Fejer and Cesaro summability, as well as theta-summation, readers will become more familiar with a wide variety of summability methods. Within the theory of higher dimensional summability of Fourier series, the book also provides a much-needed simple proof of Lebesgue's theorem, filling a gap in the literature. Recent results and real-world applications are highlighted as well, making this a timely resource. The book is structured into four chapters, prioritizing clarity throughout. Chapter One covers basic results from the one-dimensional Fourier series, and offers a clear proof of the Lebesgue theorem. In Chapter Two, convergence and boundedness results for the lq-summability are presented. The restricted and unrestricted rectangular summability are provided in Chapter Three, as well as the sufficient and necessary condition for the norm convergence of the rectangular theta-means. Chapter Four then introduces six types of Lebesgue points for higher dimensional functions. Lebesgue Points and Summability of Higher Dimensional Fourier Series will appeal to researchers working in mathematical analysis, particularly those interested in Fourier and harmonic analysis. Researchers in applied fields will also find this useful.
Modern imaging techniques and computational simulations yield complex multi-valued data that require higher-order mathematical descriptors. This book addresses topics of importance when dealing with such data, including frameworks for image processing, visualization and statistical analysis of higher-order descriptors. It also provides examples of the successful use of higher-order descriptors in specific applications and a glimpse of the next generation of diffusion MRI. To do so, it combines contributions on new developments, current challenges in this area and state-of-the-art surveys. Compared to the increasing importance of higher-order descriptors in a range of applications, tools for analysis and processing are still relatively hard to come by. Even though application areas such as medical imaging, fluid dynamics and structural mechanics are very different in nature they face many shared challenges. This book provides an interdisciplinary perspective on this topic with contributions from key researchers in disciplines ranging from visualization and image processing to applications. It is based on the 5th Dagstuhl seminar on Visualization and Processing of Higher Order Descriptors for Multi-Valued Data. This book will appeal to scientists who are working to develop new analysis methods in the areas of image processing and visualization, as well as those who work with applications that generate higher-order data or could benefit from higher-order models and are searching for novel analytical tools.
In the second edition of this classic monograph, complete with four new chapters and updated references, readers will now have access to content describing and analysing classical and modern methods with emphasis on the algebraic structure of linear iteration, which is usually ignored in other literature. The necessary amount of work increases dramatically with the size of systems, so one has to search for algorithms that most efficiently and accurately solve systems of, e.g., several million equations. The choice of algorithms depends on the special properties the matrices in practice have. An important class of large systems arises from the discretization of partial differential equations. In this case, the matrices are sparse (i.e., they contain mostly zeroes) and well-suited to iterative algorithms. The first edition of this book grew out of a series of lectures given by the author at the Christian-Albrecht University of Kiel to students of mathematics. The second edition includes quite novel approaches.
This book provides a comprehensive introduction to all major topics in digital signal processing (DSP). The book is designed to serve as a textbook for courses offered to undergraduate students enrolled in electrical, electronics, and communication engineering disciplines. The text is augmented with many illustrative examples for easy understanding of the topics covered. Every chapter contains several numerical problems with answers followed by question-and-answer type assignments. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in electrical engineering and related programs.
This book features a selection of high-quality papers chosen from the best presentations at the International Conference on Spectral and High-Order Methods (2016), offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.
The articles in this collection are a sampling of some of the research presented during the conference "Stochastic Analysis and Related Topics", held in May of 2015 at Purdue University in honor of the 60th birthday of Rodrigo Banuelos. A wide variety of topics in probability theory is covered in these proceedings, including heat kernel estimates, Malliavin calculus, rough paths differential equations, Levy processes, Brownian motion on manifolds, and spin glasses, among other topics.
Variational methods in mechanics and physical models.- Fluid flows in dielectric porous media.- The impact of a jet with two fluids on a porous wall.- Critical point methods in nonlinear eigenvalue problems with discontinuities.- Maximum principles for elliptic systems.- Exponential dichotomy of evolution operators in Banach spaces.- Asymptotic properties of solutions to evolution equations.- On some nonlinear elastic waves biperiodical or almost periodical in mechanics and extensions hyperbolic nonlinear partial differential equations.- The controllability of infinite dimensional and distributed parameter systems.- Singularities in boundary value problems and exact controllability of hyperbolic systems.- Exact controllability of a shallow shell model.- Inverse problem: Identification of a melting front in the 2D case.- Micro-local approach to the control for the plates equation.- Bounded solutions for controlled hyperbolic systems.- Controllability and turbulence.- The H? control problem.- The H? boundary control with state feedback; the hyperbolic case.- Remarks on the theory of robust control.- The dynamic programming method.- Optimality and characteristics of Hamilton-Jacobi-Bellman equations.- Verification theorems of dynamic programming type in optimal control.- Isaacs' equations for value-functions of differential games.- Optimal control for robot manipulators.- Control theory and environmental problems: Slow fast models for management of renewable ressources.- On the Riccati equations of stochastic control.- Optimal control of nonlinear partial differential equations.- A boundary Pontryagin's principle for the optimal control of state-constrained elliptic systems.- Controllability properties for elliptic systems, the fictitious domain method and optimal shape design problems.- Optimal control for elliptic equation and applications.- Inverse problems for variational inequalities.- The variation of the drag with respect to the domain in Navier-Stokes flow, .- Mathematical programming and nonsmooth optimization.- Scalar minimax properties in vectorial optimization.- Least-norm regularization for weak two-level optimization problems.- Continuity of the value function with respect to the set of constraints.- On integral inequalities involving logconcave functions.- Numerical solution of free boundary problems in solids mechanics.- Authors' index
For one- or two-semester junior orsenior level courses in Advanced Calculus, Analysis I, or Real Analysis. This title is part of the Pearson Modern Classicsseries. This text prepares students for future coursesthat use analytic ideas, such as real and complex analysis, partial andordinary differential equations, numerical analysis, fluid mechanics, anddifferential geometry. This book is designed to challenge advanced studentswhile encouraging and helping weaker students. Offering readability,practicality and flexibility, Wade presents fundamental theorems and ideas froma practical viewpoint, showing students the motivation behind the mathematicsand enabling them to construct their own proofs.
This collection of peer-reviewed conference papers provides comprehensive coverage of cutting-edge research in topological approaches to data analysis and visualization. It encompasses the full range of new algorithms and insights, including fast homology computation, comparative analysis of simplification techniques, and key applications in materials and medical science. The volume also features material on core research challenges such as the representation of large and complex datasets and integrating numerical methods with robust combinatorial algorithms. Reflecting the focus of the TopoInVis 2013 conference, the contributions evince the progress currently being made on finding experimental solutions to open problems in the sector. They provide an inclusive snapshot of state-of-the-art research that enables researchers to keep abreast of the latest developments and provides a foundation for future progress. With papers by some of the world s leading experts in topological techniques, this volume is a major contribution to the literature in a field of growing importance with applications in disciplines that range from engineering to medicine."
This book is the first attempt to develop systematically a general
theory of the initial-boundary value problems for nonlinear
evolution equations with pseudodifferential operators Ku on a
half-line or on a segment. We study traditionally important
problems, such as local and global existence of solutions and their
properties, in particular much attention is drawn to the asymptotic
behavior of solutions for large time. Up to now the theory of
nonlinear initial-boundary value problems with a general
pseudodifferential operator has not been well developed due to its
difficulty. There are many open natural questions. Firstly how many
boundary data should we pose on the initial-boundary value problems
for its correct solvability? As far as we know there are few
results in the case of nonlinear nonlocal equations. The methods
developed in this book are applicable to a wide class of dispersive
and dissipative nonlinear equations, both local and nonlocal.
This textbook introduces spectral theory for bounded linear operators by focusing on (i) the spectral theory and functional calculus for normal operators acting on Hilbert spaces; (ii) the Riesz-Dunford functional calculus for Banach-space operators; and (iii) the Fredholm theory in both Banach and Hilbert spaces. Detailed proofs of all theorems are included and presented with precision and clarity, especially for the spectral theorems, allowing students to thoroughly familiarize themselves with all the important concepts. Covering both basic and more advanced material, the five chapters and two appendices of this volume provide a modern treatment on spectral theory. Topics range from spectral results on the Banach algebra of bounded linear operators acting on Banach spaces to functional calculus for Hilbert and Banach-space operators, including Fredholm and multiplicity theories. Supplementary propositions and further notes are included as well, ensuring a wide range of topics in spectral theory are covered. Spectral Theory of Bounded Linear Operators is ideal for graduate students in mathematics, and will also appeal to a wider audience of statisticians, engineers, and physicists. Though it is mostly self-contained, a familiarity with functional analysis, especially operator theory, will be helpful.
Composed of papers presented at the 10th conference on Multiphase flow this book presents the latest research on the subject. The research included in this volume focuses on using synergies between experimental and computational techniques to gain a better understanding of all classes of multiphase and complex flow. The presented papers illustrate the close interaction between numerical modellers and researchers working to gradually resolve the many outstanding issues in our understanding of multiphase flow. Recently multiphase fluid dynamics have generated a great deal of attention, leading to many notable advances in experimental, analytical and numerical studies. Progress in numerical methods has permitted the solution of many practical problems, helping to improve our understanding of the physics involved. Multiphase flows are found in all areas of technology and the range of related problems of interest is vast, including astrophysics, biology, geophysics, atmospheric process, and many areas of engineering. The papers in the book cover a number of topics, including: Experimental measurements; Numerical methods; Multiphase flows and Flow in porous media.
Thurston maps are topological generalizations of postcritically-finite rational maps. This book provides a comprehensive study of ergodic theory of expanding Thurston maps, focusing on the measure of maximal entropy, as well as a more general class of invariant measures, called equilibrium states, and certain weak expansion properties of such maps. In particular, we present equidistribution results for iterated preimages and periodic points with respect to the unique measure of maximal entropy by investigating the number and locations of fixed points. We then use the thermodynamical formalism to establish the existence, uniqueness, and various other properties of the equilibrium state for a Holder continuous potential on the sphere equipped with a visual metric. After studying some weak expansion properties of such maps, we obtain certain large deviation principles for iterated preimages and periodic points under an additional assumption on the critical orbits of the maps. This enables us to obtain general equidistribution results for such points with respect to the equilibrium states under the same assumption.
This book presents, in his own words, the life of Hugo Steinhaus (1887-1972), noted Polish mathematician of Jewish background, educator, and mathematical popularizer. A student of Hilbert, a pioneer of the foundations of probability and game theory, and a contributor to the development of functional analysis, he was one of those instrumental to the extraordinary flowering of Polish mathematics before and after World War I. In particular, it was he who "discovered" the great Stefan Banach. Exhibiting his great integrity and wit, Steinhaus's personal story of the turbulent times he survived - including two world wars and life postwar under the Soviet heel - cannot but be of consuming interest. His account of the years spent evading Nazi terror is especially moving. The steadfast honesty and natural dignity he maintained while pursuing a life of demanding scientific and intellectual enquiry in the face of encroaching calamity and chaos show him to be truly a mathematician for all seasons. The present work will be of great interest not only to mathematicians wanting to learn some of the details of the mathematical blossoming that occurred in Poland in the first half of the 20th century, but also to anyone wishing to read a first-hand account of the history of those unquiet times in Europe - and indeed world-wide - by someone of uncommon intelligence and forthrightness situated near an eye of the storm.
This book contains 25 papers, most of which were presented, for the first time, at the International Workshop on Operator Theory and its Applications held in Groningen, the Netherlands, from June 30a "July 3, 1998. The topics include dilation and interpolation problems, reproducing kernel spaces, numerical ranges of operators, Riccati equations, harmonic analysis, spectral theory of differential operators and analytic operator functions to scattering of waves. All papers deal with operators in Banach or Hilbert spaces, or in spaces with an indefinite metric. This volume is dedicated to Israel Gohberg, one of the founding fathers of the IWOTA worskhops and an outstanding leader in operator theory. His work had a deep influence on the field and its range of applications. The IWOTA Groningen 1998, the tenth in its series, was a good occasion for a pre-celebration of his 70th birthday. This book also contains the speeches held at the workshop dinner, a review of Israel Gohberga (TM)s contributions to mathematics and a complete list of his publications. The book is of interest to a wide audience of pure and applied mathematicians.
This work is solely dedicated to the study of both the one variable as well as the multidimensional Lorentz spaces covering the theory of Lebesgue type spaces invariant by rearrangement. The authors provide proofs in full detail for most theorems. The self-contained text is valuable for advanced students and researchers.
This book discusses recent developments in semigroup theory and its applications in areas such as operator algebras, operator approximations and category theory. All contributing authors are eminent researchers in their respective fields, from across the world. Their papers, presented at the 2014 International Conference on Semigroups, Algebras and Operator Theory in Cochin, India, focus on recent developments in semigroup theory and operator algebras. They highlight current research activities on the structure theory of semigroups as well as the role of semigroup theoretic approaches to other areas such as rings and algebras. The deliberations and discussions at the conference point to future research directions in these areas. This book presents 16 unpublished, high-quality and peer-reviewed research papers on areas such as structure theory of semigroups, decidability vs. undecidability of word problems, regular von Neumann algebras, operator theory and operator approximations. Interested researchers will find several avenues for exploring the connections between semigroup theory and the theory of operator algebras.
This book provides a systematic and thorough overview of the classical bending members based on the theory for thin beams (shear-rigid) according to Euler-Bernoulli, and the theories for thick beams (shear-flexible) according to Timoshenko and Levinson. The understanding of basic, i.e., one-dimensional structural members, is essential in applied mechanics. A systematic and thorough introduction to the theoretical concepts for one-dimensional members keeps the requirements on engineering mathematics quite low, and allows for a simpler transfer to higher-order structural members. The new approach in this textbook is that it treats single-plane bending in the x-y plane as well in the x-z plane equivalently and applies them to the case of unsymmetrical bending. The fundamental understanding of these one-dimensional members allows a simpler understanding of thin and thick plate bending members. Partial differential equations lay the foundation to mathematically describe the mechanical behavior of all classical structural members known in engineering mechanics. Based on the three basic equations of continuum mechanics, i.e., the kinematics relationship, the constitutive law, and the equilibrium equation, these partial differential equations that describe the physical problem can be derived. Nevertheless, the fundamental knowledge from the first years of engineering education, i.e., higher mathematics, physics, materials science, applied mechanics, design, and programming skills, might be required to master this topic.
In this text, a theory for general linear parabolic partial differential equations is established which covers equations with inhomogeneous symbol structure as well as mixed-order systems. Typical applications include several variants of the Stokes system and free boundary value problems. We show well-posedness in "Lp-Lq"-Sobolev spaces in time and space for the linear problems (i.e., maximal regularity) which is the key step for the treatment of nonlinear problems. The theory is based on the concept of the Newton polygon and can cover equations which are not accessible by standard methods as, e.g., semigroup theory. Results are obtained in different types of non-integer "Lp"-Sobolev spaces as Besov spaces, Bessel potential spaces, and Triebel Lizorkin spaces. The last-mentioned class appears in a natural way as traces of "Lp-Lq"-Sobolev spaces. We also present a selection of applications in the whole space and on half-spaces. Among others, we prove well-posedness of the linearizations of the generalized thermoelastic plate equation, the two-phase Navier Stokes equations with Boussinesq Scriven surface, and the "Lp-Lq" two-phase Stefan problem with Gibbs Thomson correction. " |
You may like...
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
(1)
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
Calculus - A Complete Course
Robert Adams, Christopher Essex
Hardcover
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,832
Discovery Miles 28 320
Annual Report of the Commissioner of…
Uni States Office of Indian Affairs
Hardcover
R896
Discovery Miles 8 960
AP Calculus Premium, 2022-2023: 12…
David Bock, Dennis Donovan, …
Paperback
R521
Discovery Miles 5 210
|