![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
Hardbound. This book deals with numerical methods for solving large sparse linear systems of equations, particularly those arising from the discretization of partial differential equations. It covers both direct and iterative methods. Direct methods which are considered are variants of Gaussian elimination and fast solvers for separable partial differential equations in rectangular domains. The book reviews the classical iterative methods like Jacobi, Gauss-Seidel and alternating directions algorithms. A particular emphasis is put on the conjugate gradient as well as conjugate gradient -like methods for non symmetric problems. Most efficient preconditioners used to speed up convergence are studied. A chapter is devoted to the multigrid method and the book ends with domain decomposition algorithms that are well suited for solving linear systems on parallel computers.
This book presents contributions of international and local experts from the African Institute for Mathematical Sciences (AIMS-Cameroon) and also from other local universities in the domain of orthogonal polynomials and applications. The topics addressed range from univariate to multivariate orthogonal polynomials, from multiple orthogonal polynomials and random matrices to orthogonal polynomials and Painleve equations. The contributions are based on lectures given at the AIMS-Volkswagen Stiftung Workshop on Introduction of Orthogonal Polynomials and Applications held on October 5-12, 2018 in Douala, Cameroon. This workshop, funded within the framework of the Volkswagen Foundation Initiative "Symposia and Summer Schools", was aimed globally at promoting capacity building in terms of research and training in orthogonal polynomials and applications, discussions and development of new ideas as well as development and enhancement of networking including south-south cooperation.
This work is solely dedicated to the study of both the one variable as well as the multidimensional Lorentz spaces covering the theory of Lebesgue type spaces invariant by rearrangement. The authors provide proofs in full detail for most theorems. The self-contained text is valuable for advanced students and researchers.
This book is a monograph on chaos in dissipative systems written for those working in the physical sciences. Emphasis is on symbolic description of the dynamics and various characteristics of the attractors, and written from the view-point of practical applications without going into formal mathematical rigour. The author used elementary mathematics and calculus, and relied on physical intuition whenever possible. Substantial attention is paid to numerical techniques in the study of chaos. Part of the book is based on the publications of Chinese researchers, including those of the author's collaborators.
This set of three volumes aims to describe the recent progress in nonlinear differential equations and nonlinear dynamical systems (both continuous and discrete). Written by experts, each chapter is self-contained and aims to clearly illustrate some of the mathematical theories of nonlinear systems. These volumes should be suitable for graduate and postgraduate students in mathematics, the natural sciences, and engineering sciences, as well as for researchers (both pure and applied) interested in nonlinear systems. The common theme throughout all the volumes is on solvable and integrable nonlinear systems of equations and methods/theories that can be applied to analyze those systems. Some applications are also discussed. Features Clearly illustrates the mathematical theories of nonlinear systems and their progress to both the non-expert and active researchers in this area. Suitable for graduate students in mathematics, applied mathematics and some of the engineering sciences. Written in a careful pedagogical manner by those experts who have been involved in the research themselves, with each contribution being reasonably self-contained.
This edited monograph includes state-of-the-art contributions on continuous time dynamical networks with delays. The book is divided into four parts. The first part presents tools and methods for the analysis of time-delay systems with a particular attention on control problems of large scale or infinite-dimensional systems with delays. The second part of the book is dedicated to the use of time-delay models for the analysis and design of Networked Control Systems. The third part of the book focuses on the analysis and design of systems with asynchronous sampling intervals which occur in Networked Control Systems. The last part of the book exposes several contributions dealing with the design of cooperative control and observation laws for networked control systems. The target audience primarily comprises researchers and experts in the field of control theory, but the book may also be beneficial for graduate students.
These two volumes present the collected works of James Serrin. He did seminal work on a number of the basic tools needed for the study of solutions of partial differential equations. Many of them have been and are being applied to solving problems in science and engineering. Among the areas which he studied are maximum principle methods and related phenomena such as Harnack's inequality, the compact support principle, dead cores and bursts, free boundary problems, phase transitions, the symmetry of solutions, boundary layer theory, singularities and fine regularity properties. The volumes include commentaries by leading mathematicians to indicate the significance of the articles and to discuss further developments along the lines of these articles.
This thesis is devoted to the study of the asymptotic behavior of singularly perturbed partial differential equations and some related free boundary problems arising from these two problems. We study the free boundary problems in the singulary limit and give some characterizations, and use this to study the dynamical behavior of competing species when the competition is strong. These results have many applications in physics and biology.
This book deals with the study of sequence spaces, matrix transformations, measures of noncompactness and their various applications. The notion of measure of noncompactness is one of the most useful ones available and has many applications. The book discusses some of the existence results for various types of differential and integral equations with the help of measures of noncompactness; in particular, the Hausdorff measure of noncompactness has been applied to obtain necessary and sufficient conditions for matrix operators between BK spaces to be compact operators. The book consists of eight self-contained chapters. Chapter 1 discusses the theory of FK spaces and Chapter 2 various duals of sequence spaces, which are used to characterize the matrix classes between these sequence spaces (FK and BK spaces) in Chapters 3 and 4. Chapter 5 studies the notion of a measure of noncompactness and its properties. The techniques associated with measures of noncompactness are applied to characterize the compact matrix operators in Chapters 6. In Chapters 7 and 8, some of the existence results are discussed for various types of differential and integral equations, which are obtained with the help of argumentations based on compactness conditions.
This edited monograph contains research contributions on a wide range of topics such as stochastic control systems, adaptive control, sliding mode control and parameter identification methods. The book also covers applications of robust and adaptice control to chemical and biotechnological systems. This collection of papers commemorates the 70th birthday of Dr. Alexander S. Poznyak.
Periodically Correlated Solutions to a Class of Stochastic Difference Equations.- On Nonlinear SDE'S whose Densities Evolve in a Finite-Dimensional Family.- Composition of Skeletons and Support Theorems.- Invariant Measure for a Wave Equation on a Riemannian Manifold.- Ergodic Distributed Control for Parameter Dependent Stochastic Semilinear Systems.- Dirichlet Forms, Caccioppoli Sets and the Skorohod Equation Masatoshi Fukushima.- Rate of Convergence of Moments of Spall's SPSA Method.- General Setting for Stochastic Processes Associated with Quantum Fields.- On a Class of Semilinear Stochastic Partial Differential Equations.- Parallel Numerical Solution of a Class of Volterra Integro-Differential Equations.- On the Laws of the Oseledets Spaces of Linear Stochastic Differential Equations.- On Stationarity of Additive Bilinear State-space Representation of Time Series.- On Convergence of Approximations of Ito-Volterra Equations.- Non-isotropic Ornstein-Uhlenbeck Process and White Noise Analysis.- Stochastic Processes with Independent Increments on a Lie Group and their Selfsimilar Properties.- Optimal Damping of Forced Oscillations Discrete-time Systems by Output Feedback.- Forecast of Levy's Brownian Motion as the Observation Domain Undergoes Deformation.- A Maximal Inequality for the Skorohod Integral.- On the Kinematics of Stochastic Mechanics.- Stochastic Equations in Formal Mappings.- On Fisher's Information Matrix of an ARMA Process.- Statistical Analysis of Nonlinear and NonGaussian Time Series.- Bilinear Stochastic Systems with Long Range Dependence in Continuous Time.- On Support Theorems for Stochastic Nonlinear Partial Differential Equations.- Excitation and Performance in Continuous-time Stochastic Adaptive LQ-control.- Invariant Measures for Diffusion Processes in Conuclear Spaces.- Degree Theory on Wiener Space and an Application to a Class of SPDEs.- On the Interacting Measure-Valued Branching Processes.
This book provides a crash course on various methods from the bifurcation theory of Functional Differential Equations (FDEs). FDEs arise very naturally in economics, life sciences and engineering and the study of FDEs has been a major source of inspiration for advancement in nonlinear analysis and infinite dimensional dynamical systems. The book summarizes some practical and general approaches and frameworks for the investigation of bifurcation phenomena of FDEs depending on parameters with chap. This well illustrated book aims to be self contained so the readers will find in this book all relevant materials in bifurcation, dynamical systems with symmetry, functional differential equations, normal forms and center manifold reduction. This material was used in graduate courses on functional differential equations at Hunan University (China) and York University (Canada).
This book provides a self-contained introduction to the theory of infinite-dimensional systems theory and its applications to port-Hamiltonian systems. The textbook starts with elementary known results, then progresses smoothly to advanced topics in current research. Many physical systems can be formulated using a Hamiltonian framework, leading to models described by ordinary or partial differential equations. For the purpose of control and for the interconnection of two or more Hamiltonian systems it is essential to take into account this interaction with the environment. This book is the first textbook on infinite-dimensional port-Hamiltonian systems. An abstract functional analytical approach is combined with the physical approach to Hamiltonian systems. This combined approach leads to easily verifiable conditions for well-posedness and stability. The book is accessible to graduate engineers and mathematicians with a minimal background in functional analysis. Moreover, the theory is illustrated by many worked-out examples.
Nonlinearity and Functional Analysis is a collection of lectures that aim to present a systematic description of fundamental nonlinear results and their applicability to a variety of concrete problems taken from various fields of mathematical analysis. For decades, great mathematical interest has focused on problems associated with linear operators and the extension of the well-known results of linear algebra to an infinite-dimensional context. This interest has been crowned with deep insights, and the substantial theory that has been developed has had a profound influence throughout the mathematical sciences. This volume comprises six chapters and begins by presenting some background material, such as differential-geometric sources, sources in mathematical physics, and sources from the calculus of variations, before delving into the subject of nonlinear operators. The following chapters then discuss local analysis of a single mapping and parameter dependent perturbation phenomena before going into analysis in the large. The final chapters conclude the collection with a discussion of global theories for general nonlinear operators and critical point theory for gradient mappings. This book will be of interest to practitioners in the fields of mathematics and physics, and to those with interest in conventional linear functional analysis and ordinary and partial differential equations.
The monograph gives a detailed exposition of the theory of general elliptic operators (scalar and matrix) and elliptic boundary value problems in Hilbert scales of Hormander function spaces. This theory was constructed by the authors in a number of papers published in 2005 2009. It is distinguished by a systematic use of the method of interpolation with a functional parameter of abstract Hilbert spaces and Sobolev inner product spaces. This method, the theory and their applications are expounded for the first time in the monographic literature. The monograph is written in detail and in a reader-friendly style. The complete proofs of theorems are given. This monograph is intended for a wide range of mathematicians whose research interests concern with mathematical analysis and differential equations."
This book provides a concise and meticulous introduction to functional analysis. Since the topic draws heavily on the interplay between the algebraic structure of a linear space and the distance structure of a metric space, functional analysis is increasingly gaining the attention of not only mathematicians but also scientists and engineers. The purpose of the text is to present the basic aspects of functional analysis to this varied audience, keeping in mind the considerations of applicability. A novelty of this book is the inclusion of a result by Zabreiko, which states that every countably subadditive seminorm on a Banach space is continuous. Several major theorems in functional analysis are easy consequences of this result. The entire book can be used as a textbook for an introductory course in functional analysis without having to make any specific selection from the topics presented here. Basic notions in the setting of a metric space are defined in terms of sequences. These include total boundedness, compactness, continuity and uniform continuity. Offering concise and to-the-point treatment of each topic in the framework of a normed space and of an inner product space, the book represents a valuable resource for advanced undergraduate students in mathematics, and will also appeal to graduate students and faculty in the natural sciences and engineering. The book is accessible to anyone who is familiar with linear algebra and real analysis.
This volume constitutes the proceedings of a workshop whose main purpose was to exchange information on current topics in complex analysis, differential geometry, mathematical physics and applications, and to group aspects of new mathematics.
This book gathers contributions written by Daniel Alpay's friends and collaborators. Several of the papers were presented at the International Conference on Complex Analysis and Operator Theory held in honor of Professor Alpay's 60th birthday at Chapman University in November 2016. The main topics covered are complex analysis, operator theory and other areas of mathematics close to Alpay's primary research interests. The book is recommended for mathematicians from the graduate level on, working in various areas of mathematical analysis, operator theory, infinite dimensional analysis, linear systems, and stochastic processes.
This book presents cutting-edge contributions in the areas of control theory and partial differential equations. Over the decades, control theory has had deep and fruitful interactions with the theory of partial differential equations (PDEs). Well-known examples are the study of the generalized solutions of Hamilton-Jacobi-Bellman equations arising in deterministic and stochastic optimal control and the development of modern analytical tools to study the controllability of infinite dimensional systems governed by PDEs. In the present volume, leading experts provide an up-to-date overview of the connections between these two vast fields of mathematics. Topics addressed include regularity of the value function associated to finite dimensional control systems, controllability and observability for PDEs, and asymptotic analysis of multiagent systems. The book will be of interest for both researchers and graduate students working in these areas.
This is the first book to systematically present control theory for stochastic distributed parameter systems, a comparatively new branch of mathematical control theory. The new phenomena and difficulties arising in the study of controllability and optimal control problems for this type of system are explained in detail. Interestingly enough, one has to develop new mathematical tools to solve some problems in this field, such as the global Carleman estimate for stochastic partial differential equations and the stochastic transposition method for backward stochastic evolution equations. In a certain sense, the stochastic distributed parameter control system is the most general control system in the context of classical physics. Accordingly, studying this field may also yield valuable insights into quantum control systems. A basic grasp of functional analysis, partial differential equations, and control theory for deterministic systems is the only prerequisite for reading this book.
This book deals with evolutionary systems whose equation of state can be formulated as a linear Volterra equation in a Banach space. The main feature of the kernels involved is that they consist of unbounded linear operators. The aim is a coherent presentation of the state of art of the theory including detailed proofs and its applications to problems from mathematical physics, such as viscoelasticity, heat conduction, and electrodynamics with memory. The importance of evolutionary integral equations - which form a larger class than do evolution equations - stems from such applications and therefore special emphasis is placed on these. A number of models are derived and, by means of the developed theory, discussed thoroughly. An annotated bibliography containing 450 entries increases the book's value as an incisive reference text.
The volume will consist of about 40 articles written by some very influential mathematicians of our time and will expose the latest achievements in the broad area of nonlinear analysis and its various interdisciplinary applications.
The objective of Volume II is to show how asymptotic methods, with the thickness as the small parameter, indeed provide a powerful means of justifying two-dimensional plate theories. More specifically, without any recourse to any "a priori" assumptions of a geometrical or mechanical nature, it is shown that in the linear case, the three-dimensional displacements, once properly scaled, converge in "H"1 towards a limit that satisfies the well-known two-dimensional equations of the linear Kirchhoff-Love theory; the convergence of stress is also established. In the nonlinear case, again after "ad hoc" scalings have been performed, it is shown that the leading term of a formal asymptotic expansion of the three-dimensional solution satisfies well-known two-dimensional equations, such as those of the nonlinear Kirchhoff-Love theory, or the von Karman equations. Special attention is also given to the first convergence result obtained in this case, which leads to two-dimensional large deformation, frame-indifferent, nonlinear membrane theories. It is also demonstrated that asymptotic methods can likewise be used for justifying other lower-dimensional equations of elastic shallow shells, and the coupled pluri-dimensional equations of elastic multi-structures, i.e., structures with junctions. In each case, the existence, uniqueness or multiplicity, and regularity of solutions to the limit equations obtained in this fashion are also studied.
This volume is a selection of written notes corresponding to courses taught at the CIMPA School: "New Trends in Applied Harmonic Analysis: Sparse Representations, Compressed Sensing and Multifractal Analysis". New interactions between harmonic analysis and signal and image processing have seen striking development in the last 10 years, and several technological deadlocks have been solved through the resolution of deep theoretical problems in harmonic analysis. New Trends in Applied Harmonic Analysis focuses on two particularly active areas that are representative of such advances: multifractal analysis, and sparse representation and compressed sensing. The contributions are written by leaders in these areas, and cover both theoretical aspects and applications. This work should prove useful not only to PhD students and postdocs in mathematics and signal and image processing, but also to researchers working in related topics.
This volume of the Encyclopaedia contains four parts each of which being an informative survey of a topic in the field of several complex variables. Thefirst deals with residue theory and its applications to integrals depending on parameters, combinatorial sums and systems of algebraic equations. The second part contains recent results in complex potential theory and the third part treats function theory in the unit ball covering research of the last twenty years. The latter part includes an up-to-date account of research related to a list of problems, which was published by Rudin in 1980. The last part of the book treats complex analysis in the futuretube. The future tube is an important concept in mathematical physics, especially in axiomatic quantum field theory, and it is related to Penrose'swork on "the complex geometry of the real world." Researchers and graduate students in complex analysis and mathematical physics will use thisbook as a reference and as a guide to exciting areas of research. |
![]() ![]() You may like...
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
Calculus, Metric Edition
James Stewart, Saleem Watson, …
Hardcover
Nonlinear Differential Problems with…
Dumitru Motreanu
Paperback
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
![]()
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R3,047
Discovery Miles 30 470
|