![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
In this book, the author compares the meaning of stability in different subfields of numerical mathematics. Concept of Stability in numerical mathematics opens by examining the stability of finite algorithms. A more precise definition of stability holds for quadrature and interpolation methods, which the following chapters focus on. The discussion then progresses to the numerical treatment of ordinary differential equations (ODEs). While one-step methods for ODEs are always stable, this is not the case for hyperbolic or parabolic differential equations, which are investigated next. The final chapters discuss stability for discretisations of elliptic differential equations and integral equations. In comparison among the subfields we discuss the practical importance of stability and the possible conflict between higher consistency order and stability. "
This book provides a comprehensive presentation of classical and advanced topics in estimation and control of dynamical systems with an emphasis on stochastic control. Many aspects which are not easily found in a single text are provided, such as connections between control theory and mathematical finance, as well as differential games. The book is self-contained and prioritizes concepts rather than full rigor, targeting scientists who want to use control theory in their research in applied mathematics, engineering, economics, and management science. Examples and exercises are included throughout, which will be useful for PhD courses and graduate courses in general.Dr. Alain Bensoussan is Lars Magnus Ericsson Chair at UT Dallas and Director of the International Center for Decision and Risk Analysis which develops risk management research as it pertains to large-investment industrial projects that involve new technologies, applications and markets. He is also Chair Professor at City University Hong Kong.
This book presents a method for solving linear ordinary differential equations based on the factorization of the differential operator. The approach for the case of constant coefficients is elementary, and only requires a basic knowledge of calculus and linear algebra. In particular, the book avoids the use of distribution theory, as well as the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The case of variable coefficients is addressed using Mammana's result for the factorization of a real linear ordinary differential operator into a product of first-order (complex) factors, as well as a recent generalization of this result to the case of complex-valued coefficients.
This proceedings volume gathers a selection of outstanding research papers presented at the third Conference on Isogeometric Analysis and Applications, held in Delft, The Netherlands, in April 2018. This conference series, previously held in Linz, Austria, in 2012 and Annweiler am Trifels, Germany, in 2014, has created an international forum for interaction between scientists and practitioners working in this rapidly developing field. Isogeometric analysis is a groundbreaking computational approach that aims to bridge the gap between numerical analysis and computational geometry modeling by integrating the finite element method and related numerical simulation techniques into the computer-aided design workflow, and vice versa. The methodology has matured over the last decade both in terms of our theoretical understanding, its mathematical foundation and the robustness and efficiency of its practical implementations. This development has enabled scientists and practitioners to tackle challenging new applications at the frontiers of research in science and engineering and attracted early adopters for this his novel computer-aided design and engineering technology in industry. The IGAA 2018 conference brought together experts on isogeometric analysis theory and application, share their insights into challenging industrial applications and to discuss the latest developments as well as the directions of future research and development that are required to make isogeometric analysis an established mainstream technology.
The first volume of the proceedings of the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) covers topics that include convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. It collects together the focused invited papers, as well as the reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods. Altogether, a rather comprehensive overview is given of the state of the art in the field. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. Researchers, PhD and masters level students in numerical analysis, scientific computing and related fields such as partial differential equations will find this volume useful, as will engineers working in numerical modeling and simulations."
This volume presents some recent and principal developments related to computational intelligence and optimization methods in control. Theoretical aspects and practical applications of control engineering are covered by 14 self-contained contributions. Additional gems include the discussion of future directions and research perspectives designed to add to the reader's understanding of both the challenges faced in control engineering and the insights into the developing of new techniques. With the knowledge obtained, readers are encouraged to determine the appropriate control method for specific applications.
Many of our daily-life problems can be written in the form of an optimization problem. Therefore, solution methods are needed to solve such problems. Due to the complexity of the problems, it is not always easy to find the exact solution. However, approximate solutions can be found. The theory of the best approximation is applicable in a variety of problems arising in nonlinear functional analysis and optimization. This book highlights interesting aspects of nonlinear analysis and optimization together with many applications in the areas of physical and social sciences including engineering. It is immensely helpful for young graduates and researchers who are pursuing research in this field, as it provides abundant research resources for researchers and post-doctoral fellows. This will be a valuable addition to the library of anyone who works in the field of applied mathematics, economics and engineering.
Understanding special sets of integers was classically of interest to Hadamard, Zygmund and others, and continues to be of interest today. This book is a modern treatment of the subject of interpolation and Sidon sets. It is a unique book, aimed at both new and experienced researchers. In particular, this is the only book in English which features a complete treatment of the Pisier-Bourgain results on Sidon sets, many of which were originally in French, in hard to access publications. Applications of the P-B results, due to Pisier, Bourgain, Ramsey, and the authors are included. The book introduces the reader to a wealth of methods important in mathematics today: topological, probabilistic, algebraic, combinatoric and analytic. It prepares students to perform research in the area and provides both exercises and open problems. The book also provides direction to the literature for topics it does not fully cover. The book is self-contained, with appendices covering results that are required, but not necessarily in the pre-requisite background of a student ready to choose an area for research in harmonic analysis.
This monograph presents the current status of a rapidly developing part of several complex variables, motivated by the applicability of effective results to algebraic geometry and differential geometry. Special emphasis is put on the new precise results on the L(2) extension of holomorphic functions in the past 5 years.In Chapter 1, the classical questions of several complex variables motivating the development of this field are reviewed after necessary preparations from the basic notions of those variables and of complex manifolds such as holomorphic functions, pseudoconvexity, differential forms, and cohomology. In Chapter 2, the L(2) method of solving the d-bar equation is presented emphasizing its differential geometric aspect. In Chapter 3, a refinement of the Oka-Cartan theory is given by this method. The L(2) extension theorem with an optimal constant is included, obtained recently by Z. Blocki and separately by Q.-A. Guan and X.-Y. Zhou. In Chapter 4, various results on the Bergman kernel are presented, including recent works of Maitani-Yamaguchi, Berndtsson, Guan-Zhou, and Berndtsson-Lempert. Most of these results are obtained by the L(2) method. In the last chapter, rather specific results are discussed on the existence and classification of certain holomorphic foliations and Levi flat hypersurfaces as their stables sets. These are also applications of the L(2) method obtained during the past 15 years.
This book aims to bring together researchers and practitioners from diverse disciplines-from sociology, biology, physics, and computer science-who share a passion to better understand the interdependencies within and across systems. This volume contains contributions presented at the 11th International Conference on Complex Networks (CompleNet) in Exeter, United Kingdom, 31 March - 3 April 2020. CompleNet is a venue for discussing ideas and findings about all types of networks, from biological, to technological, to informational and social. It is this interdisciplinary nature of complex networks that CompleNet aims to explore and celebrate.
The theory of dynamic equations has many interesting applications in control theory, mathematical economics, mathematical biology, engineering and technology. In some cases, there exists uncertainty, ambiguity, or vague factors in such problems, and fuzzy theory and interval analysis are powerful tools for modeling these equations on time scales. The aim of this book is to present a systematic account of recent developments; describe the current state of the useful theory; show the essential unity achieved in the theory fuzzy dynamic equations, dynamic inclusions and optimal control problems on time scales; and initiate several new extensions to other types of fuzzy dynamic systems and dynamic inclusions. The material is presented in a highly readable, mathematically solid format. Many practical problems are illustrated, displaying a wide variety of solution techniques. The book is primarily intended for senior undergraduate students and beginning graduate students of engineering and science courses. Students in mathematical and physical sciences will find many sections of direct relevance.
The monograph addresses some problems particularly with regard to ill-posedness of boundary value problems and problems where we cannot expect to have uniqueness of their solutions in the standard functional spaces. Bringing original and previous results together, it tackles computational challenges by exploiting methods of approximation and asymptotic analysis and harnessing differences between optimal control problems and their underlying PDEs
This volume is a selection of contributions offered by friends, collaborators, past students in memory of Enrico Magenes. The first part gives a wide historical perspective of Magenes' work in his 50-year mathematical career; the second part contains original research papers, and shows how ideas, methods, and techniques introduced by Magenes and his collaborators still have an impact on the current research in Mathematics.
This is a collection of papers by participants at High Dimensional Probability VI Meeting held from October 9-14, 2011 at the Banff International Research Station in Banff, Alberta, Canada. High Dimensional Probability (HDP) is an area of mathematics that includes the study of probability distributions and limit theorems in infinite-dimensional spaces such as Hilbert spaces and Banach spaces. The most remarkable feature of this area is that it has resulted in the creation of powerful new tools and perspectives, whose range of application has led to interactions with other areas of mathematics, statistics, and computer science. These include random matrix theory, nonparametric statistics, empirical process theory, statistical learning theory, concentration of measure phenomena, strong and weak approximations, distribution function estimation in high dimensions, combinatorial optimization, and random graph theory. The papers in this volumeshow that HDP theory continues to develop new tools, methods, techniques and perspectives to analyze the random phenomena. Both researchers and advanced students will find this book of great use for learning about new avenues of research.
This monograph explains the theory of quantum waveguides, that is, dynamics of quantum particles confined to regions in the form of tubes, layers, networks, etc. The focus is on relations between the confinement geometry on the one hand and the spectral and scattering properties of the corresponding quantum Hamiltonians on the other. Perturbations of such operators, in particular, by external fields are also considered. The volume provides a unique summary of twenty-five years of research activity in this area and indicates ways in which the theory can develop further. The book is fairly self-contained. While it requires some broader mathematical physics background, all the basic concepts are properly explained and proofs of most theorems are given in detail, so there is no need for additional sources. Without a parallel in the literature, the monograph by Exner and Kovarik guides the reader through this new and exciting field.
The book provides a detailed exposition of the calculus of variations on fibre bundles and graded manifolds. It presents applications in such area's as non-relativistic mechanics, gauge theory, gravitation theory and topological field theory with emphasis on energy and energy-momentum conservation laws. Within this general context the first and second Noether theorems are treated in the very general setting of reducible degenerate graded Lagrangian theory.
This volume presents selected papers by the brilliant Uruguayan mathematician Ricardo Mane, known for his outstanding contributions to dynamical systems and ergodic theory. He was a student of Jacob Palis at IMPA and pursued his whole scientific career at IMPA. Mane was invited to speak twice in the section of Ordinary Differential Equations and Dynamical Systems, at the International Congress of Mathematics held in Warsaw in 1983 and in Zurich in 1994. He was also a speaker at the Colloquium organized by the Societe Mathematique de France, celebrating R. Thom's 65 anniversary. In 1994, he became a member of the Brazilian Academy of Sciences and was awarded the Third World Academy of Sciences Prize for Mathematics.
This book presents recent developments in nonlinear dynamics and physics with an emphasis on complex systems. The contributors provide recent theoretic developments and new techniques to solve nonlinear dynamical systems and help readers understand complexity, stochasticity, and regularity in nonlinear dynamical systems. This book covers integro-differential equation solvability, Poincare recurrences in ergodic systems, orientable horseshoe structure, analytical routes of periodic motions to chaos, grazing on impulsive differential equations, from chaos to order in coupled oscillators, and differential-invariant solutions for automorphic systems, inequality under uncertainty.
This revised and extended edition of a well-established monograph in function theory contains a study on various function classes on the disc, a number of new results and new or easy proofs of old but interesting theorems (for example, the Fefferman-Stein theorem on subharmonic behavior or the theorem on conjugate functions in Bergman spaces) and a full discussion on g-functions.
The purpose of this contributed volume is to provide a primary resource for anyone interested in fixed point theory with a metric flavor. The book presents information for those wishing to find results that might apply to their own work and for those wishing to obtain a deeper understanding of the theory. The book should be of interest to a wide range of researchers in mathematical analysis as well as to those whose primary interest is the study of fixed point theory and the underlying spaces. The level of exposition is directed to a wide audience, including students and established researchers. Key topics covered include Banach contraction theorem, hyperconvex metric spaces, modular function spaces, fixed point theory in ordered sets, topological fixed point theory for set-valued maps, coincidence theorems, Lefschetz and Nielsen theories, systems of nonlinear inequalities, iterative methods for fixed point problems, and the Ekeland's variational principle.
The application of methodological approaches and mathematical formalisms proper to Physics and Engineering to investigate and describe biological processes and design biological structures has led to the development of many disciplines in the context of computational biology and biotechnology. The best known applicative domain is tissue engineering and its branches. Recent domains of interest are in the field of biophysics, e.g.: multiscale mechanics of biological membranes and films and filaments; multiscale mechanics of adhesion; biomolecular motors and force generation. Modern hypotheses, models, and tools are currently emerging and resulting from the convergence of the methods and phylosophycal apporaches of the different research areas and disciplines. All these emerging approaches share the purpose of disentangling the complexity of organisms, tissues, and cells and mimiking the function of living systems. The contributions presented in this book are current research highlights of six challenging and representative applicative domains of phyisical, engineering, and computational approaches in medicine and biology, i.e tissue engineering, modelling of molecular structures, cell mechanics and cell adhesion processes, cancer physics, and physico-chemical processes of metabolic interactions. Each chapter presents a compendium or a review of the original results achieved by authors in the last years. Furthermore, the book also wants to pinpoint the questions that are still open and that could propel the future research.
This book gives an introduction to the very active field of combinatorics of affine Schubert calculus, explains the current state of the art, and states the current open problems. Affine Schubert calculus lies at the crossroads of combinatorics, geometry, and representation theory. Its modern development is motivated by two seemingly unrelated directions. One is the introduction of k-Schur functions in the study of Macdonald polynomial positivity, a mostly combinatorial branch of symmetric function theory. The other direction is the study of the Schubert bases of the (co)homology of the affine Grassmannian, an algebro-topological formulation of a problem in enumerative geometry. This is the first introductory text on this subject. It contains many examples in Sage, a free open source general purpose mathematical software system, to entice the reader to investigate the open problems. This book is written for advanced undergraduate and graduate students, as well as researchers, who want to become familiar with this fascinating new field.
This book explains digital signal processing topics in detail, with a particular focus on ease of understanding. Accordingly, it includes a wealth of examples to aid in comprehension, and stresses simplicity. The book is divided into four chapters, which respectively address the topics sampling of continuous time signals; multirate signal processing; the discrete Fourier transform; and filter design concepts. It provides original practical techniques to draw the spectrum of aliased signals, together with well-designed numerical examples to illustrate the operation of the fast transforms, filter algorithms, and circuit designs. Readers of this book should already have some basic understanding of signals and transforms. They will learn fundamental concepts for signals and systems, as the focus is more on digital signal processing concepts rather than continuous time signal processing topics. |
![]() ![]() You may like...
Stability Analysis of Neural Networks
Grienggrai Rajchakit, Praveen Agarwal, …
Hardcover
R3,870
Discovery Miles 38 700
Service Orientation in Holonic and…
Theodor Borangiu, Damien Trentesaux, …
Hardcover
R4,722
Discovery Miles 47 220
Advances in Production Management…
Bojan Lalic, Vidosav Majstorovic, …
Hardcover
R3,209
Discovery Miles 32 090
Chaos and Complex Systems - Proceedings…
Stavros G. Stavrinides, Mehmet Ozer
Hardcover
R5,867
Discovery Miles 58 670
Analysis and Applications - ISAAC 2001
Heinrich G.W. Begehr, R.P. Gilbert, …
Hardcover
R3,220
Discovery Miles 32 200
Instabilities of Flows: With and Without…
Tapan Sengupta, Thierry Poinsot
Hardcover
R4,647
Discovery Miles 46 470
Enterprise Risk Management in…
Xianbo Zhao, Bon-Gang Hwang, …
Hardcover
|