![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
This book is about nonlinear observability. It provides a modern theory of observability based on a new paradigm borrowed from theoretical physics and the mathematical foundation of that paradigm. In the case of observability, this framework takes into account the group of invariance that is inherent to the concept of observability, allowing the reader to reach an intuitive derivation of significant results in the literature of control theory. The book provides a complete theory of observability and, consequently, the analytical solution of some open problems in control theory. Notably, it presents the first general analytic solution of the nonlinear unknown input observability (nonlinear UIO), a very complex open problem studied in the 1960s. Based on this solution, the book provides examples with important applications for neuroscience, including a deep study of the integration of multiple sensory cues from the visual and vestibular systems for self-motion perception. A New Theory Based on the Group of Invariance is the only book focused solely on observability. It provides readers with many applications, mostly in robotics and autonomous navigation, as well as complex examples in the framework of vision-aided inertial navigation for aerial vehicles. For these applications, it also includes all the derivations needed to separate the observable part of the system from the unobservable, an analysis with practical importance for obtaining the basic equations for implementing any estimation scheme or for achieving a closed-form solution to the problem.
Understanding special sets of integers was classically of interest to Hadamard, Zygmund and others, and continues to be of interest today. This book is a modern treatment of the subject of interpolation and Sidon sets. It is a unique book, aimed at both new and experienced researchers. In particular, this is the only book in English which features a complete treatment of the Pisier-Bourgain results on Sidon sets, many of which were originally in French, in hard to access publications. Applications of the P-B results, due to Pisier, Bourgain, Ramsey, and the authors are included. The book introduces the reader to a wealth of methods important in mathematics today: topological, probabilistic, algebraic, combinatoric and analytic. It prepares students to perform research in the area and provides both exercises and open problems. The book also provides direction to the literature for topics it does not fully cover. The book is self-contained, with appendices covering results that are required, but not necessarily in the pre-requisite background of a student ready to choose an area for research in harmonic analysis.
This monograph explains the theory of quantum waveguides, that is, dynamics of quantum particles confined to regions in the form of tubes, layers, networks, etc. The focus is on relations between the confinement geometry on the one hand and the spectral and scattering properties of the corresponding quantum Hamiltonians on the other. Perturbations of such operators, in particular, by external fields are also considered. The volume provides a unique summary of twenty-five years of research activity in this area and indicates ways in which the theory can develop further. The book is fairly self-contained. While it requires some broader mathematical physics background, all the basic concepts are properly explained and proofs of most theorems are given in detail, so there is no need for additional sources. Without a parallel in the literature, the monograph by Exner and Kovarik guides the reader through this new and exciting field.
This volume presents selected papers by the brilliant Uruguayan mathematician Ricardo Mane, known for his outstanding contributions to dynamical systems and ergodic theory. He was a student of Jacob Palis at IMPA and pursued his whole scientific career at IMPA. Mane was invited to speak twice in the section of Ordinary Differential Equations and Dynamical Systems, at the International Congress of Mathematics held in Warsaw in 1983 and in Zurich in 1994. He was also a speaker at the Colloquium organized by the Societe Mathematique de France, celebrating R. Thom's 65 anniversary. In 1994, he became a member of the Brazilian Academy of Sciences and was awarded the Third World Academy of Sciences Prize for Mathematics.
This is a book comprising selected papers of colleagues and friends of Heinrich Begehr on the occasion of his 80th birthday. It aims at being a tribute to the excellent achievements of Heinrich Begehr in complex analysis and complex differential equations, and especially to his prominent role as one of the creators and long-time leader of the International Society for Analysis, its Applications and Computation (ISAAC).
The book provides a detailed exposition of the calculus of variations on fibre bundles and graded manifolds. It presents applications in such area's as non-relativistic mechanics, gauge theory, gravitation theory and topological field theory with emphasis on energy and energy-momentum conservation laws. Within this general context the first and second Noether theorems are treated in the very general setting of reducible degenerate graded Lagrangian theory.
This book explains digital signal processing topics in detail, with a particular focus on ease of understanding. Accordingly, it includes a wealth of examples to aid in comprehension, and stresses simplicity. The book is divided into four chapters, which respectively address the topics sampling of continuous time signals; multirate signal processing; the discrete Fourier transform; and filter design concepts. It provides original practical techniques to draw the spectrum of aliased signals, together with well-designed numerical examples to illustrate the operation of the fast transforms, filter algorithms, and circuit designs. Readers of this book should already have some basic understanding of signals and transforms. They will learn fundamental concepts for signals and systems, as the focus is more on digital signal processing concepts rather than continuous time signal processing topics.
This volume is a selection of contributions offered by friends, collaborators, past students in memory of Enrico Magenes. The first part gives a wide historical perspective of Magenes' work in his 50-year mathematical career; the second part contains original research papers, and shows how ideas, methods, and techniques introduced by Magenes and his collaborators still have an impact on the current research in Mathematics.
This is a collection of papers by participants at High Dimensional Probability VI Meeting held from October 9-14, 2011 at the Banff International Research Station in Banff, Alberta, Canada. High Dimensional Probability (HDP) is an area of mathematics that includes the study of probability distributions and limit theorems in infinite-dimensional spaces such as Hilbert spaces and Banach spaces. The most remarkable feature of this area is that it has resulted in the creation of powerful new tools and perspectives, whose range of application has led to interactions with other areas of mathematics, statistics, and computer science. These include random matrix theory, nonparametric statistics, empirical process theory, statistical learning theory, concentration of measure phenomena, strong and weak approximations, distribution function estimation in high dimensions, combinatorial optimization, and random graph theory. The papers in this volumeshow that HDP theory continues to develop new tools, methods, techniques and perspectives to analyze the random phenomena. Both researchers and advanced students will find this book of great use for learning about new avenues of research.
This monograph presents the most recent progress in bifurcation theory of impulsive dynamical systems with time delays and other functional dependence. It covers not only smooth local bifurcations, but also some non-smooth bifurcation phenomena that are unique to impulsive dynamical systems. The monograph is split into four distinct parts, independently addressing both finite and infinite-dimensional dynamical systems before discussing their applications. The primary contributions are a rigorous nonautonomous dynamical systems framework and analysis of nonlinear systems, stability, and invariant manifold theory. Special attention is paid to the centre manifold and associated reduction principle, as these are essential to the local bifurcation theory. Specifying to periodic systems, the Floquet theory is extended to impulsive functional differential equations, and this permits an exploration of the impulsive analogues of saddle-node, transcritical, pitchfork and Hopf bifurcations. Readers will learn how techniques of classical bifurcation theory extend to impulsive functional differential equations and, as a special case, impulsive differential equations without delays. They will learn about stability for fixed points, periodic orbits and complete bounded trajectories, and how the linearization of the dynamical system allows for a suitable definition of hyperbolicity. They will see how to complete a centre manifold reduction and analyze a bifurcation at a nonhyperbolic steady state.
This book provides an overview of different topics related to the theory of partial differential equations. Selected exercises are included at the end of each chapter to prepare readers for the "research project for beginners" proposed at the end of the book. It is a valuable resource for advanced graduates and undergraduate students who are interested in specializing in this area. The book is organized in five parts: In Part 1 the authors review the basics and the mathematical prerequisites, presenting two of the most fundamental results in the theory of partial differential equations: the Cauchy-Kovalevskaja theorem and Holmgren's uniqueness theorem in its classical and abstract form. It also introduces the method of characteristics in detail and applies this method to the study of Burger's equation. Part 2 focuses on qualitative properties of solutions to basic partial differential equations, explaining the usual properties of solutions to elliptic, parabolic and hyperbolic equations for the archetypes Laplace equation, heat equation and wave equation as well as the different features of each theory. It also discusses the notion of energy of solutions, a highly effective tool for the treatment of non-stationary or evolution models and shows how to define energies for different models. Part 3 demonstrates how phase space analysis and interpolation techniques are used to prove decay estimates for solutions on and away from the conjugate line. It also examines how terms of lower order (mass or dissipation) or additional regularity of the data may influence expected results. Part 4 addresses semilinear models with power type non-linearity of source and absorbing type in order to determine critical exponents: two well-known critical exponents, the Fujita exponent and the Strauss exponent come into play. Depending on concrete models these critical exponents divide the range of admissible powers in classes which make it possible to prove quite different qualitative properties of solutions, for example, the stability of the zero solution or blow-up behavior of local (in time) solutions. The last part features selected research projects and general background material.
This is the first book devoted to the task of computing integrability structures by computer. The symbolic computation of integrability operator is a computationally hard problem and the book covers a huge number of situations through tutorials. The mathematical part of the book is a new approach to integrability structures that allows to treat all of them in a unified way. The software is an official package of Reduce. Reduce is free software, so everybody can download it and make experiments using the programs available at our website.
The purpose of this contributed volume is to provide a primary resource for anyone interested in fixed point theory with a metric flavor. The book presents information for those wishing to find results that might apply to their own work and for those wishing to obtain a deeper understanding of the theory. The book should be of interest to a wide range of researchers in mathematical analysis as well as to those whose primary interest is the study of fixed point theory and the underlying spaces. The level of exposition is directed to a wide audience, including students and established researchers. Key topics covered include Banach contraction theorem, hyperconvex metric spaces, modular function spaces, fixed point theory in ordered sets, topological fixed point theory for set-valued maps, coincidence theorems, Lefschetz and Nielsen theories, systems of nonlinear inequalities, iterative methods for fixed point problems, and the Ekeland's variational principle.
Are you looking for new lectures for your course on algorithms, combinatorial optimization, or algorithmic game theory? Maybe you need a convenient source of relevant, current topics for a graduate student or advanced undergraduate student seminar? Or perhaps you just want an enjoyable look at some beautiful mathematical and algorithmic results, ideas, proofs, concepts, and techniques in discrete mathematics and theoretical computer science? Gems of Combinatorial Optimization and Graph Algorithms is a handpicked collection of up-to-date articles, carefully prepared by a select group of international experts, who have contributed some of their most mathematically or algorithmically elegant ideas. Topics include longest tours and Steiner trees in geometric spaces, cartograms, resource buying games, congestion games, selfish routing, revenue equivalence and shortest paths, scheduling, linear structures in graphs, contraction hierarchies, budgeted matching problems, and motifs in networks. This volume is aimed at readers with some familiarity of combinatorial optimization, and appeals to researchers, graduate students, and advanced undergraduate students alike.
This book gives an introduction to the very active field of combinatorics of affine Schubert calculus, explains the current state of the art, and states the current open problems. Affine Schubert calculus lies at the crossroads of combinatorics, geometry, and representation theory. Its modern development is motivated by two seemingly unrelated directions. One is the introduction of k-Schur functions in the study of Macdonald polynomial positivity, a mostly combinatorial branch of symmetric function theory. The other direction is the study of the Schubert bases of the (co)homology of the affine Grassmannian, an algebro-topological formulation of a problem in enumerative geometry. This is the first introductory text on this subject. It contains many examples in Sage, a free open source general purpose mathematical software system, to entice the reader to investigate the open problems. This book is written for advanced undergraduate and graduate students, as well as researchers, who want to become familiar with this fascinating new field.
The monograph addresses some problems particularly with regard to ill-posedness of boundary value problems and problems where we cannot expect to have uniqueness of their solutions in the standard functional spaces. Bringing original and previous results together, it tackles computational challenges by exploiting methods of approximation and asymptotic analysis and harnessing differences between optimal control problems and their underlying PDEs
This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behaviour of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schroedinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial boundary value problems and for open questions are provided. In this second edition, initial-boundary value problems in waveguides are additionally considered.
This book explores the design of optimal trajectories for space maneuver vehicles (SMVs) using optimal control-based techniques. It begins with a comprehensive introduction to and overview of three main approaches to trajectory optimization, and subsequently focuses on the design of a novel hybrid optimization strategy that combines an initial guess generator with an improved gradient-based inner optimizer. Further, it highlights the development of multi-objective spacecraft trajectory optimization problems, with a particular focus on multi-objective transcription methods and multi-objective evolutionary algorithms. In its final sections, the book studies spacecraft flight scenarios with noise-perturbed dynamics and probabilistic constraints, and designs and validates new chance-constrained optimal control frameworks. The comprehensive and systematic treatment of practical issues in spacecraft trajectory optimization is one of the book's major features, making it particularly suited for readers who are seeking practical solutions in spacecraft trajectory optimization. It offers a valuable asset for researchers, engineers, and graduate students in GNC systems, engineering optimization, applied optimal control theory, etc.
The application of methodological approaches and mathematical formalisms proper to Physics and Engineering to investigate and describe biological processes and design biological structures has led to the development of many disciplines in the context of computational biology and biotechnology. The best known applicative domain is tissue engineering and its branches. Recent domains of interest are in the field of biophysics, e.g.: multiscale mechanics of biological membranes and films and filaments; multiscale mechanics of adhesion; biomolecular motors and force generation. Modern hypotheses, models, and tools are currently emerging and resulting from the convergence of the methods and phylosophycal apporaches of the different research areas and disciplines. All these emerging approaches share the purpose of disentangling the complexity of organisms, tissues, and cells and mimiking the function of living systems. The contributions presented in this book are current research highlights of six challenging and representative applicative domains of phyisical, engineering, and computational approaches in medicine and biology, i.e tissue engineering, modelling of molecular structures, cell mechanics and cell adhesion processes, cancer physics, and physico-chemical processes of metabolic interactions. Each chapter presents a compendium or a review of the original results achieved by authors in the last years. Furthermore, the book also wants to pinpoint the questions that are still open and that could propel the future research.
Brownian dynamics serve as mathematical models for the diffusive motion of microscopic particles of various shapes in gaseous, liquid, or solid environments. The renewed interest in Brownian dynamics is due primarily to their key role in molecular and cellular biophysics: diffusion of ions and molecules is the driver of all life. Brownian dynamics simulations are the numerical realizations of stochastic differential equations that model the functions of biological micro devices such as protein ionic channels of biological membranes, cardiac myocytes, neuronal synapses, and many more. Stochastic differential equations are ubiquitous models in computational physics, chemistry, biophysics, computer science, communications theory, mathematical finance theory, and many other disciplines. Brownian dynamics simulations of the random motion of particles, be it molecules or stock prices, give rise to mathematical problems that neither the kinetic theory of Maxwell and Boltzmann, nor Einstein's and Langevin's theories of Brownian motion could predict.This book takes the readers on a journey that starts with the rigorous definition of mathematical Brownian motion, and ends with the explicit solution of a series of complex problems that have immediate applications. It is aimed at applied mathematicians, physicists, theoretical chemists, and physiologists who are interested in modeling, analysis, and simulation of micro devices of microbiology. The book contains exercises and worked out examples throughout.
Functional Analysis is based on the lecture notes of distinguished authors and is designed to cater to the needs of students who are yet to be exposed to the subject, as well as senior undergraduate- and graduate-level students at universities the world over. The text begins with a preliminary chapter that establishes uniform notations and covers background material in real analysis, linear algebra, and metric spaces. It is followed by chapters on Normed and Banach Spaces, Bounded Linear Operators and Bounded Linear Functional. This text also deals with the concept and specific geometry of Hilbert Spaces, Functional and Operators on Hilbert Spaces, and an Introduction to Spectral Theory. The appendix provides an introduction to Schauder Bases. This is a second edition, written in a more simple and lucid language and illustrated with familiar examples. It is an ideal textbook for easy comprehension of the subject. The clear explanations, numerous examples, problems and illustrative figures also make the text invaluable for self-study and as a reference book.
This contributed volume discusses aspects of nonlinear analysis in which optimization plays an important role, as well as topics which are applied to the study of optimization problems. Topics include set-valued analysis, mixed concave-convex sub-superlinear Schroedinger equation, Schroedinger equations in nonlinear optics, exponentially convex functions, optimal lot size under the occurrence of imperfect quality items, generalized equilibrium problems, artificial topologies on a relativistic spacetime, equilibrium points in the restricted three-body problem, optimization models for networks of organ transplants, network curvature measures, error analysis through energy minimization and stability problems, Ekeland variational principles in 2-local Branciari metric spaces, frictional dynamic problems, norm estimates for composite operators, operator factorization and solution of second-order nonlinear difference equations, degenerate Kirchhoff-type inclusion problems, and more.
This volume gathers contributions reflecting topics presented during an INDAM workshop held in Rome in May 2016. The event brought together many prominent researchers in both Mathematical Analysis and Numerical Computing, the goal being to promote interdisciplinary collaborations. Accordingly, the following thematic areas were developed: 1. Lagrangian discretizations and wavefront tracking for synchronization models; 2. Astrophysics computations and post-Newtonian approximations; 3. Hyperbolic balance laws and corrugated isometric embeddings; 4. "Caseology" techniques for kinetic equations; 5. Tentative computations of compressible non-standard solutions; 6. Entropy dissipation, convergence rates and inverse design issues. Most of the articles are presented in a self-contained manner; some highlight new achievements, while others offer snapshots of the "state of the art" in certain fields. The book offers a unique resource, both for young researchers looking to quickly enter a given area of application, and for more experienced ones seeking comprehensive overviews and extensive bibliographic references. |
![]() ![]() You may like...
Macular Edema - Conference Proceedings…
Thomas J. Wolfensberger
Hardcover
R4,385
Discovery Miles 43 850
The Uncovery - Understanding the Power…
George A Wood, Brit Eaton
Paperback
Developments and Novel Approaches in…
Bilen Emek Abali, Ivan Giorgio
Hardcover
R5,091
Discovery Miles 50 910
|