![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
Variational methods in mechanics and physical models.- Fluid flows in dielectric porous media.- The impact of a jet with two fluids on a porous wall.- Critical point methods in nonlinear eigenvalue problems with discontinuities.- Maximum principles for elliptic systems.- Exponential dichotomy of evolution operators in Banach spaces.- Asymptotic properties of solutions to evolution equations.- On some nonlinear elastic waves biperiodical or almost periodical in mechanics and extensions hyperbolic nonlinear partial differential equations.- The controllability of infinite dimensional and distributed parameter systems.- Singularities in boundary value problems and exact controllability of hyperbolic systems.- Exact controllability of a shallow shell model.- Inverse problem: Identification of a melting front in the 2D case.- Micro-local approach to the control for the plates equation.- Bounded solutions for controlled hyperbolic systems.- Controllability and turbulence.- The H? control problem.- The H? boundary control with state feedback; the hyperbolic case.- Remarks on the theory of robust control.- The dynamic programming method.- Optimality and characteristics of Hamilton-Jacobi-Bellman equations.- Verification theorems of dynamic programming type in optimal control.- Isaacs' equations for value-functions of differential games.- Optimal control for robot manipulators.- Control theory and environmental problems: Slow fast models for management of renewable ressources.- On the Riccati equations of stochastic control.- Optimal control of nonlinear partial differential equations.- A boundary Pontryagin's principle for the optimal control of state-constrained elliptic systems.- Controllability properties for elliptic systems, the fictitious domain method and optimal shape design problems.- Optimal control for elliptic equation and applications.- Inverse problems for variational inequalities.- The variation of the drag with respect to the domain in Navier-Stokes flow, .- Mathematical programming and nonsmooth optimization.- Scalar minimax properties in vectorial optimization.- Least-norm regularization for weak two-level optimization problems.- Continuity of the value function with respect to the set of constraints.- On integral inequalities involving logconcave functions.- Numerical solution of free boundary problems in solids mechanics.- Authors' index
In this monograph, the authors present their recently developed theory of electromagnetic interactions. This neoclassical approach extends the classical electromagnetic theory down to atomic scales and allows the explanation of various non-classical phenomena in the same framework. While the classical Maxwell-Lorentz electromagnetism theory succeeds in describing the physical reality at macroscopic scales, it struggles at atomic scales. Here, quantum mechanics traditionally takes over to describe non-classical phenomena such as the hydrogen spectrum and de Broglie waves. By means of modifying the classical theory, the approach presented here is able to consistently explain quantum-mechanical effects, and while similar to quantum mechanics in some respects, this neoclassical theory also differs markedly from it. In particular, the newly developed framework omits probabilistic interpretations of the wave function and features a new fundamental spatial scale which, at the size of the free electron, is much larger than the classical electron radius and is relevant to plasmonics and emission physics. This book will appeal to researchers interested in advanced aspects of electromagnetic theory. Treating the classical approach in detail, including non-relativistic aspects and the Lagrangian framework, and comparing the neoclassical theory with quantum mechanics and the de Broglie-Bohm theory, this work is completely self-contained.
This book is the first attempt to develop systematically a general
theory of the initial-boundary value problems for nonlinear
evolution equations with pseudodifferential operators Ku on a
half-line or on a segment. We study traditionally important
problems, such as local and global existence of solutions and their
properties, in particular much attention is drawn to the asymptotic
behavior of solutions for large time. Up to now the theory of
nonlinear initial-boundary value problems with a general
pseudodifferential operator has not been well developed due to its
difficulty. There are many open natural questions. Firstly how many
boundary data should we pose on the initial-boundary value problems
for its correct solvability? As far as we know there are few
results in the case of nonlinear nonlocal equations. The methods
developed in this book are applicable to a wide class of dispersive
and dissipative nonlinear equations, both local and nonlocal.
This volume is dedicated to the eminent Georgian mathematician Roland Duduchava on the occasion of his 70th birthday. It presents recent results on Toeplitz, Wiener-Hopf, and pseudodifferential operators, boundary value problems, operator theory, approximation theory, and reflects the broad spectrum of Roland Duduchava's research. The book is addressed to a wide audience of pure and applied mathematicians.
This book provides an introduction to matrix theory and aims to provide a clear and concise exposition of the basic ideas, results and techniques in the subject. Complete proofs are given, and no knowledge beyond high school mathematics is necessary. The book includes many examples, applications and exercises for the reader, so that it can used both by students interested in theory and those who are mainly interested in learning the techniques.
This book presents papers surrounding the extensive discussions that took place from the 'Variational Analysis and Aerospace Engineering' workshop held at the Ettore Majorana Foundation and Centre for Scientific Culture in 2015. Contributions to this volume focus on advanced mathematical methods in aerospace engineering and industrial engineering such as computational fluid dynamics methods, optimization methods in aerodynamics, optimum controls, dynamic systems, the theory of structures, space missions, flight mechanics, control theory, algebraic geometry for CAD applications, and variational methods and applications. Advanced graduate students, researchers, and professionals in mathematics and engineering will find this volume useful as it illustrates current collaborative research projects in applied mathematics and aerospace engineering.
With a balanced combination of longer survey articles and shorter, peer-reviewed research-level presentations on the topic of differential and difference equations on the complex domain, this edited volume presents an up-to-date overview of areas such as WKB analysis, summability, resurgence, formal solutions, integrability, and several algebraic aspects of differential and difference equations.
The authors give a treatment of the theory of ordinary differential equations (ODEs) that is excellent for a first course at the graduate level as well as for individual study. The reader will find it to be a captivating introduction with a number of non-routine exercises dispersed throughout the book.The authors begin with a study of initial value problems for systems of differential equations including the Picard and Peano existence theorems. The continuability of solutions, their continuous dependence on initial conditions, and their continuous dependence with respect to parameters are presented in detail. This is followed by a discussion of the differentiability of solutions with respect to initial conditions and with respect to parameters. Comparison results and differential inequalities are included as well.Linear systems of differential equations are treated in detail as is appropriate for a study of ODEs at this level. Just the right amount of basic properties of matrices are introduced to facilitate the observation of matrix systems and especially those with constant coefficients. Floquet theory for linear periodic systems is presented and used to analyze nonhomogeneous linear systems.Stability theory of first order and vector linear systems are considered. The relationships between stability of solutions, uniform stability, asymptotic stability, uniformly asymptotic stability, and strong stability are examined and illustrated with examples as is the stability of vector linear systems. The book concludes with a chapter on perturbed systems of ODEs.
This book presents an in-depth study on advances in constructive approximation theory with recent problems on linear positive operators. State-of-the-art research in constructive approximation is treated with extensions to approximation results on linear positive operators in a post quantum and bivariate setting. Methods, techniques, and problems in approximation theory are demonstrated with applications to optimization, physics, and biology. Graduate students, research scientists and engineers working in mathematics, physics, and industry will broaden their understanding of operators essential to pure and applied mathematics. Topics discussed include: discrete operators, quantitative estimates, post-quantum calculus, integral operators, univariate Gruss-type inequalities for positive linear operators, bivariate operators of discrete and integral type, convergence of GBS operators.
Modern imaging techniques and computational simulations yield complex multi-valued data that require higher-order mathematical descriptors. This book addresses topics of importance when dealing with such data, including frameworks for image processing, visualization and statistical analysis of higher-order descriptors. It also provides examples of the successful use of higher-order descriptors in specific applications and a glimpse of the next generation of diffusion MRI. To do so, it combines contributions on new developments, current challenges in this area and state-of-the-art surveys. Compared to the increasing importance of higher-order descriptors in a range of applications, tools for analysis and processing are still relatively hard to come by. Even though application areas such as medical imaging, fluid dynamics and structural mechanics are very different in nature they face many shared challenges. This book provides an interdisciplinary perspective on this topic with contributions from key researchers in disciplines ranging from visualization and image processing to applications. It is based on the 5th Dagstuhl seminar on Visualization and Processing of Higher Order Descriptors for Multi-Valued Data. This book will appeal to scientists who are working to develop new analysis methods in the areas of image processing and visualization, as well as those who work with applications that generate higher-order data or could benefit from higher-order models and are searching for novel analytical tools.
This book contains 25 papers, most of which were presented, for the first time, at the International Workshop on Operator Theory and its Applications held in Groningen, the Netherlands, from June 30a "July 3, 1998. The topics include dilation and interpolation problems, reproducing kernel spaces, numerical ranges of operators, Riccati equations, harmonic analysis, spectral theory of differential operators and analytic operator functions to scattering of waves. All papers deal with operators in Banach or Hilbert spaces, or in spaces with an indefinite metric. This volume is dedicated to Israel Gohberg, one of the founding fathers of the IWOTA worskhops and an outstanding leader in operator theory. His work had a deep influence on the field and its range of applications. The IWOTA Groningen 1998, the tenth in its series, was a good occasion for a pre-celebration of his 70th birthday. This book also contains the speeches held at the workshop dinner, a review of Israel Gohberga (TM)s contributions to mathematics and a complete list of his publications. The book is of interest to a wide audience of pure and applied mathematicians.
This volume collects a selected number of papers presented at the International Workshop on Operator Theory and its Applications (IWOTA) held in July 2014 at Vrije Universiteit in Amsterdam. Main developments in the broad area of operator theory are covered, with special emphasis on applications to science and engineering. The volume also presents papers dedicated to the eightieth birthday of Damir Arov and to the sixty-fifth birthday of Leiba Rodman, both leading figures in the area of operator theory and its applications, in particular, to systems theory.
Quaternionic and Clifford analysis are an extension of complex analysis into higher dimensions. The unique starting point of Wolfgang Sproessig's work was the application of quaternionic analysis to elliptic differential equations and boundary value problems. Over the years, Clifford analysis has become a broad-based theory with a variety of applications both inside and outside of mathematics, such as higher-dimensional function theory, algebraic structures, generalized polynomials, applications of elliptic boundary value problems, wavelets, image processing, numerical and discrete analysis. The aim of this volume is to provide an essential overview of modern topics in Clifford analysis, presented by specialists in the field, and to honor the valued contributions to Clifford analysis made by Wolfgang Sproessig throughout his career.
This collection of peer-reviewed conference papers provides comprehensive coverage of cutting-edge research in topological approaches to data analysis and visualization. It encompasses the full range of new algorithms and insights, including fast homology computation, comparative analysis of simplification techniques, and key applications in materials and medical science. The volume also features material on core research challenges such as the representation of large and complex datasets and integrating numerical methods with robust combinatorial algorithms. Reflecting the focus of the TopoInVis 2013 conference, the contributions evince the progress currently being made on finding experimental solutions to open problems in the sector. They provide an inclusive snapshot of state-of-the-art research that enables researchers to keep abreast of the latest developments and provides a foundation for future progress. With papers by some of the world s leading experts in topological techniques, this volume is a major contribution to the literature in a field of growing importance with applications in disciplines that range from engineering to medicine."
This book contains extended, in-depth presentations of the plenary talks from the 16th French-German-Polish Conference on Optimization, held in Krakow, Poland in 2013. Each chapter in this book exhibits a comprehensive look at new theoretical and/or application-oriented results in mathematical modeling, optimization, and optimal control. Students and researchers involved in image processing, partial differential inclusions, shape optimization, or optimal control theory and its applications to medical and rehabilitation technology, will find this book valuable. The first chapter by Martin Burger provides an overview of recent developments related to Bregman distances, which is an important tool in inverse problems and image processing. The chapter by Piotr Kalita studies the operator version of a first order in time partial differential inclusion and its time discretization. In the chapter by Gunter Leugering, Jan Sokolowski and Antoni Zochowski, nonsmooth shape optimization problems for variational inequalities are considered. The next chapter, by Katja Mombaur is devoted to applications of optimal control and inverse optimal control in the field of medical and rehabilitation technology, in particular in human movement analysis, therapy and improvement by means of medical devices. The final chapter, by Nikolai Osmolovskii and Helmut Maurer provides a survey on no-gap second order optimality conditions in the calculus of variations and optimal control, and a discussion of their further development.
The book is an almost self-contained presentation of the most
important concepts and results in viability and invariance. The
viability of a set K with respect to a given function (or
multi-function) F, defined on it, describes the property that, for
each initial data in K, the differential equation (or inclusion)
driven by that function or multi-function) to have at least one
solution. The invariance of a set K with respect to a function (or
multi-function) F, defined on a larger set D, is that property
which says that each solution of the differential equation (or
inclusion) driven by F and issuing in K remains in K, at least for
a short time.
This book presents modern methods in functional analysis and operator theory along with their applications in recent research. The book also deals with the solvability of infinite systems of linear equations in various sequence spaces. It uses the classical sequence spaces, generalized Cesaro and difference operators to obtain calculations and simplifications of complicated spaces involving these operators. In order to make it self-contained, comprehensive and of interest to a larger mathematical community, the authors have presented necessary concepts with results for advanced research topics. This book is intended for graduate and postgraduate students, teachers and researchers as a basis for further research, advanced lectures and seminars.
This book offers a timely overview of fractional calculus applications, with a special emphasis on fractional derivatives with Mittag-Leffler kernel. The different contributions, written by applied mathematicians, physicists and engineers, offers a snapshot of recent research in the field, highlighting the current methodological frameworks together with applications in different fields of science and engineering, such as chemistry, mechanics, epidemiology and more. It is intended as a timely guide and source of inspiration for graduate students and researchers in the above-mentioned areas.
The general topic of this book is the ergodic behavior of Markov processes. A detailed introduction to methods for proving ergodicity and upper bounds for ergodic rates is presented in the first part of the book, with the focus put on weak ergodic rates, typical for Markov systems with complicated structure. The second part is devoted to the application of these methods to limit theorems for functionals of Markov processes. The book is aimed at a wide audience with a background in probability and measure theory. Some knowledge of stochastic processes and stochastic differential equations helps in a deeper understanding of specific examples. Contents Part I: Ergodic Rates for Markov Chains and Processes Markov Chains with Discrete State Spaces General Markov Chains: Ergodicity in Total Variation MarkovProcesseswithContinuousTime Weak Ergodic Rates Part II: Limit Theorems The Law of Large Numbers and the Central Limit Theorem Functional Limit Theorems
This book features a selection of high-quality papers chosen from the best presentations at the International Conference on Spectral and High-Order Methods (2016), offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.
Composed of papers presented at the 10th conference on Multiphase flow this book presents the latest research on the subject. The research included in this volume focuses on using synergies between experimental and computational techniques to gain a better understanding of all classes of multiphase and complex flow. The presented papers illustrate the close interaction between numerical modellers and researchers working to gradually resolve the many outstanding issues in our understanding of multiphase flow. Recently multiphase fluid dynamics have generated a great deal of attention, leading to many notable advances in experimental, analytical and numerical studies. Progress in numerical methods has permitted the solution of many practical problems, helping to improve our understanding of the physics involved. Multiphase flows are found in all areas of technology and the range of related problems of interest is vast, including astrophysics, biology, geophysics, atmospheric process, and many areas of engineering. The papers in the book cover a number of topics, including: Experimental measurements; Numerical methods; Multiphase flows and Flow in porous media.
The articles in this collection are a sampling of some of the research presented during the conference "Stochastic Analysis and Related Topics", held in May of 2015 at Purdue University in honor of the 60th birthday of Rodrigo Banuelos. A wide variety of topics in probability theory is covered in these proceedings, including heat kernel estimates, Malliavin calculus, rough paths differential equations, Levy processes, Brownian motion on manifolds, and spin glasses, among other topics.
This book explains the state of the art in the use of the discrete Fourier transform (DFT) of musical structures such as rhythms or scales. In particular the author explains the DFT of pitch-class distributions, homometry and the phase retrieval problem, nil Fourier coefficients and tilings, saliency, extrapolation to the continuous Fourier transform and continuous spaces, and the meaning of the phases of Fourier coefficients. This is the first textbook dedicated to this subject, and with supporting examples and exercises this is suitable for researchers and advanced undergraduate and graduate students of music, computer science and engineering. The author has made online supplementary material available, and the book is also suitable for practitioners who want to learn about techniques for understanding musical notions and who want to gain musical insights into mathematical problems. |
![]() ![]() You may like...
Handbook of Medical Image Computing and…
S. Kevin Zhou, Daniel Rueckert, …
Hardcover
Integrated Population Biology and…
Arni S.R. Srinivasa Rao, C.R. Rao
Hardcover
R6,611
Discovery Miles 66 110
Statistics for Management and Economics
Gerald Keller, Nicoleta Gaciu
Paperback
|