![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics. This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry. The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses.
The domain of inverse problems has experienced a rapid expansion, driven by the increase in computing power and the progress in numerical modeling. When I started working on this domain years ago, I became somehow fr- tratedtoseethatmyfriendsworkingonmodelingwhereproducingexistence, uniqueness, and stability results for the solution of their equations, but that I was most of the time limited, because of the nonlinearity of the problem, to provethatmyleastsquaresobjectivefunctionwasdi?erentiable....Butwith my experience growing, I became convinced that, after the inverse problem has been properly trimmed, the ?nal least squares problem, the one solved on the computer, should be Quadratically (Q)-wellposed, thatis, both we- posed and optimizable: optimizability ensures that a global minimizer of the least squares function can actually be found using e?cient local optimization algorithms, and wellposedness that this minimizer is stable with respect to perturbation of the data. But the vast majority of inverse problems are nonlinear, and the clas- cal mathematical tools available for their analysis fail to bring answers to these crucial questions: for example, compactness will ensure existence, but provides no uniqueness results, and brings no information on the presence or absenceofparasiticlocalminimaorstationarypoints..
This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided.
Discontinuous dynamical systems have played an important role in both theory and applications during the last several decades. This is still an area of active research and techniques to make the applications more effective are an ongoing topic of interest. Principles of Discontinuous Dynamical Systems is devoted to the theory of differential equations with variable moments of impulses. It introduces a new strategy of implementing an equivalence to systems whose solutions have prescribed moments of impulses and utilizing special topologies in spaces of piecewise continuous functions. The achievements obtained on the basis of this approach are described in this book. The text progresses systematically, by covering preliminaries in the first four chapters. This is followed by more complex material and special topics such as Hopf bifurcation, Devaney's chaos, and the shadowing property are discussed in the last two chapters. This book is suitable for researchers and graduate students in mathematics and also in diverse areas such as biology, computer science, and engineering who deal with real world problems.
Complementarity theory, a relatively new domain in applied mathematics, has deep connections with several aspects of fundamental mathematics and also has many applications in optimization, economics and engineering. The study of variational inequalities is another domain of applied mathematics with many applications to the study of certain problems with unilateral conditions. This book is the first to discuss complementarity theory and variational inequalities using Leray-Schauder type alternatives. The ideas and method presented in this book may be considered as a starting point for new developments.
This two-volume set presents combinatorial functional equations using an algebraic approach, and illustrates their applications in combinatorial maps, graphs, networks, etc. The second volume mainly presents several kinds of meson functional equations which are divided into three types: outer, inner and surface. It is suited for a wide readership, including pure and applied mathematicians, and also computer scientists.
This book lays the foundations for a theory on almost periodic stochastic processes and their applications to various stochastic differential equations, functional differential equations with delay, partial differential equations, and difference equations. It is in part a sequel of authors recent work on almost periodic stochastic difference and differential equations and has the particularity to be the first book that is entirely devoted to almost periodic random processes and their applications. The topics treated in it range from existence, uniqueness, and stability of solutions for abstract stochastic difference and differential equations.
In developing the tools necessary for the study of complex manifolds, this comprehensive, well-organized treatment presents in its opening chapters a detailed survey of recent progress in four areas: geometry (manifolds with vector bundles), algebraic topology, differential geometry, and partial differential equations. Subsequent chapters then develop such topics as Hermitian exterior algebra and the Hodge - operator, harmonic theory on compact manifolds, differential operators on a Kahler manifold, the Hodge decomposition theorem on compact Kahler manifolds, the Hodge-Riemann bilinear relations on Kahler manifolds Griffiths' period mapping, quadratic transformations, and Kodaira's vanishing and embedding theorems. The third edition of this standard reference contains a new appendix by Oscar Garcia-Prada which gives an overview of the developments in the field during the decades since the book appeared.
In April 2007, the Deutsche Forschungsgemeinschaft (DFG) approved the Priority Program 1324 "Mathematical Methods for Extracting Quantifiable Information from Complex Systems." This volume presents a comprehensive overview of the most important results obtained over the course of the program. Mathematical models of complex systems provide the foundation for further technological developments in science, engineering and computational finance. Motivated by the trend toward steadily increasing computer power, ever more realistic models have been developed in recent years. These models have also become increasingly complex, and their numerical treatment poses serious challenges. Recent developments in mathematics suggest that, in the long run, much more powerful numerical solution strategies could be derived if the interconnections between the different fields of research were systematically exploited at a conceptual level. Accordingly, a deeper understanding of the mathematical foundations as well as the development of new and efficient numerical algorithms were among the main goals of this Priority Program. The treatment of high-dimensional systems is clearly one of the most challenging tasks in applied mathematics today. Since the problem of high-dimensionality appears in many fields of application, the above-mentioned synergy and cross-fertilization effects were expected to make a great impact. To be truly successful, the following issues had to be kept in mind: theoretical research and practical applications had to be developed hand in hand; moreover, it has proven necessary to combine different fields of mathematics, such as numerical analysis and computational stochastics. To keep the whole program sufficiently focused, we concentrated on specific but related fields of application that share common characteristics and as such, they allowed us to use closely related approaches.
Overview of Book This book evolved over a period of years as the authors taught classes in var- tional calculus and applied functional analysis to graduatestudents in engineering and mathematics. The book has likewise been in?uenced by the authors research programs that have relied on the application of functional analytic principles to problems in variational calculus, mechanics and control theory. One of the most di?cult tasks in preparing to utilize functional, convex, and set-valued analysis in practical problems in engineering and physics is the inti- dating number of de?nitions, lemmas, theorems and propositions that constitute thefoundationsoffunctionalanalysis. Itcannotbeoveremphasizedthatfunctional analysis can be a powerful tool for analyzing practical problems in mechanics and physics. However, many academicians and researchers spend their lifetime stu- ing abstract mathematics. It is a demanding ?eld that requires discipline and devotion. It is a trite analogy that mathematics can be viewed as a pyramid of knowledge, that builds layer upon layer as more mathematical structure is put in place. The di?culty lies in the fact that an engineer or scientist typically would like to start somewhere above the base of the pyramid. Engineers and scientists are not as concerned, generally speaking, with the subtleties of deriving theorems axiomatically. Rather, they are interested in gaining a working knowledge of the applicability of the theory to their ?eld of interest."
Limit theorems and asymptotic results form a central topic in probability theory and mathematical statistics. New and non-classical limit theorems have been discovered for processes in random environments, especially in connection with random matrix theory and free probability. These questions and the techniques for answering them combine asymptotic enumerative combinatorics, particle systems and approximation theory, and are important for new approaches in geometric and metric number theory as well. Thus, the contributions in this book include a wide range of applications with surprising connections ranging from longest common subsequences for words, permutation groups, random matrices and free probability to entropy problems and metric number theory. The book is the product of a conference that took place in August 2011 in Bielefeld, Germany to celebrate the 60th birthday of Friedrich Gotze, a noted expert in this field."
The purpose of this book is to present modern developments and applications of the techniques of modulus or extremal length of path families in the study of m- n pings in R, n? 2, and in metric spaces. The modulus method was initiated by Lars Ahlfors and Arne Beurling to study conformal mappings. Later this method was extended and enhanced by several other authors. The techniques are geom- ric and have turned out to be an indispensable tool in the study of quasiconformal and quasiregular mappings as well as their generalizations. The book is based on rather recent research papers and extends the modulus method beyond the classical applications of the modulus techniques presented in many monographs. Helsinki O. Martio Donetsk V. Ryazanov Haifa U. Srebro Holon E. Yakubov 2007 Contents 1 Introduction and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Moduli and Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 2 Moduli in Metric Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 3 Conformal Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 4 Geometric De nition for Quasiconformality . . . . . . . . . . . . . . . . . . . . 13 2. 5 Modulus Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2. 6 Upper Gradients and ACC Functions . . . . . . . . . . . . . . . . . . . . . . . . . 17 p n 2. 7 ACC Functions in R and Capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . 21 p 2. 8 Linear Dilatation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2. 9 Analytic De nition for Quasiconformality. . . . . . . . . . . . . . . . . . . . . . 31 n 2. 10 R as a Loewner Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2. 11 Quasisymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 Moduli and Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3. 2 QED Exceptional Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3. 3 QED Domains and Their Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3. 4 UniformandQuasicircleDomains . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A collection of self contained, state-of-the-art surveys. The authors have made an effort to achieve readability for mathematicians and scientists from other fields, for this series of handbooks to be a new reference for research, learning and teaching.
This book describes the theoretical and computational aspects of the mimetic finite difference method for a wide class of multidimensional elliptic problems, which includes diffusion, advection-diffusion, Stokes, elasticity, magnetostatics and plate bending problems. The modern mimetic discretization technology developed in part by the Authors allows one to solve these equations on unstructured polygonal, polyhedral and generalized polyhedral meshes. The book provides a practical guide for those scientists and engineers that are interested in the computational properties of the mimetic finite difference method such as the accuracy, stability, robustness, and efficiency. Many examples are provided to help the reader to understand and implement this method. This monograph also provides the essential background material and describes basic mathematical tools required to develop further the mimetic discretization technology and to extend it to various applications.
This text is a rigorous, detailed introduction to real analysis that presents the fundamentals with clear exposition and carefully written definitions, theorems, and proofs. It is organized in a distinctive, flexible way that would make it equally appropriate to undergraduate mathematics majors who want to continue in mathematics, and to future mathematics teachers who want to understand the theory behind calculus. The Real Numbers and Real Analysis will serve as an excellent one-semester text for undergraduates majoring in mathematics, and for students in mathematics education who want a thorough understanding of the theory behind the real number system and calculus.
This volume, setting out the theory of positive maps as it stands today, reflects the rapid growth in this area of mathematics since it was recognized in the 1990s that these applications of C*-algebras are crucial to the study of entanglement in quantum theory. The author, a leading authority on the subject, sets out numerous results previously unpublished in book form. In addition to outlining the properties and structures of positive linear maps of operator algebras into the bounded operators on a Hilbert space, he guides readers through proofs of the Stinespring theorem and its applications to inequalities for positive maps. The text examines the maps positivity properties, as well as their associated linear functionals together with their density operators. It features special sections on extremal positive maps and Choi matrices. In sum, this is a vital publication that covers a full spectrum of matters relating to positive linear maps, of which a large proportion is relevant and applicable to today s quantum information theory. The latter sections of the book present the material in finite dimensions, while the text as a whole appeals to a wider and more general readership by keeping the mathematics as elementary as possible throughout."
Interest in regularization methods for ill-posed nonlinear operator equations and variational inequalities of monotone type in Hilbert and Banach spaces has grown rapidly over recent years. Results in the field over the last three decades, previously only available in journal articles, are comprehensively explored with particular attention given to applications of regularization methods as well as to practical methods used in computational analysis.
In this book, we study theoretical and practical aspects of
computing methods for mathematical modelling of nonlinear systems.
A number of computing techniques are considered, such as methods of
operator approximation with any given accuracy; operator
interpolation techniques including a non-Lagrange interpolation;
methods of system representation subject to constraints associated
with concepts of causality, memory and stationarity; methods of
system representation with an accuracy that is the best within a
given class of models; methods of covariance matrix
estimation;
Thepresentbookisamemorialvolumedevotedtoourfriend,colleagueandteacher Peter Jonas who passed away on July 18, 2007. It displays recent advances in modern operator theory in Hilbert and Krein spaces and contains a collection of original research papers written by participants of the 7th Workshop on Operator Theory in Krein Spaces and Spectral Analysis, which was held at the Technische Universit. at Berlin, Germany, December 13 to 16, 2007. The articles in this v- ume contain new results for problems close to the area of research of Peter Jonas: Spectralandperturbationproblemsfor operatorsininner productspaces,gener- ized Nevanlinna functions and de?nitizable functions, scattering theory, extension theory for symmetric operators, ?xed points, hyperbolic matrix polynomials, - ment problems, inde?nite spectral and Sturm-Liouville problems, and invariant subspace problems. It is a pleasure to acknowledge the substantial ?nancial support for the 7th Workshop on Operator Theory in Krein Spaces and Spectral Analysis received from the - Berlin Mathematical School (BMS) - Gesellschaft fur .. Angewandte Mathematik und Mechanik (GAMM) - International Mathematical Union, Commission on Development and Exchanges - Institute of Mathematics of the Technische Universit. at Berlin The Editors Peter Jonas (1941-2007) In Memoriam Peter Jonas (1941-2007) Jussi Behrndt, Karl-Heinz F.. orster and Carsten Trunk Peter Jonas was born on July 18, 1941, in Memel, now Klaipeda, which was at thattime the mosteasterntownofEastPrussia.After the war,PeterJonasmoved with his mother and grandmother to Blankenfelde - a small village near Berlin, where he lived until the end of his school education.
This fascinating book is a treatise on real space-age materials. It is a mathematical treatment of a novel concept in material science that characterizes the properties of dynamic materials-that is, material substances whose properties are variable in space and time. Unlike conventional composites that are often found in nature, dynamic materials are mostly the products of modern technology developed to maintain the most effective control over dynamic processes.
This collection of 18 research papers, dedicated to Pierre Lelong, describes the state of the art on representative problems of complex analysis and geometry. The book opens with an exposition of the achievements of Pierre Lelong on plurisubharmonic functions, closed positive currents, and their further study by other mathematicians. Moreover, a list of eleven open problems is given. All other contributions contain new results related, for example, to the following items: - Capacities, product of positive currents, L2 extension theorems, Bergman kernels and metrics, new properties of convex domains of finite type - Non-compact boundaries of Levi-flat hypersurfaces of C2, compact boundary problems as application of compactly supported measures orthogonal to polynomials, Hartogs' theorem on some open subsets of a projective manifold, Malgrange vanishing theorem with support conditions - Embeddings for 3-dimensional CR-manifolds, geometrization of hypoellipticity, stationary complex curves and complete integrability - Regular polynomial mappings of Ck in complex dynamics, a direct proof of the density of repulsive cycles in the Julia set. The book is aimed at researchers and advanced graduate students in complex and real analysis, algebraic geometry and number theory.
Geometric Function Theory is that part of Complex Analysis which
covers the theory of conformal and quasiconformal mappings.
In the field of Dynamical Systems, nonlinear iterative processes play an important role. Nonlinear mappings can be found as immediate models for many systems from different scientific areas, such as engineering, economics, biology, or can also be obtained via numerical methods permitting to solve non-linear differential equations. In both cases, the understanding of specific dynamical behaviors and phenomena is of the greatest interest for scientists. This volume contains papers that were presented at the International Workshop on Nonlinear Maps and their Applications (NOMA 2011) held in Evora, Portugal, on September 15-16, 2011. This kind of collaborative effort is of paramount importance in promoting communication among the various groups that work in dynamical systems and networks in their research theoretical studies as well as for applications. This volume is suitable for graduate students as well as researchers in the field.
Borwein is an authority in the area of mathematical optimization, and his book makes an important contribution to variational analysis Provides a good introduction to the topic
This volume, dedicated to Carl Pearcy on the occasion of his 60th birthday, presents recent results in operator theory, nonselfadjoint operator algebras, measure theory and the theory of moments. The articles on these subjects have been contributed by leading area experts, many of whom were associated with Carl Pearcy as students or collaborators. The book testifies to his multifaceted interests and includes a biographical sketch and a list of publications. |
You may like...
The Host in the Machine - Examining the…
Angela Thomas-Jones
Paperback
R1,318
Discovery Miles 13 180
Optimization of Manufacturing Systems…
Yingfeng Zhang, Fei Tao
Paperback
|