![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
The Norbert Wiener Center for Harmonic Analysis and Applications provides a state-of-the-art research venue for the broad emerging area of mathematical engineering in the context of harmonic analysis. This two-volume set consists of contributions from speakers at the February Fourier Talks (FFT) from 2006-2011. The FFT are organized by the Norbert Wiener Center in the Department of Mathematics at the University of Maryland, College Park. These volumes span a large spectrum of harmonic analysis and its applications. They are divided into the following parts: Volume I * Sampling Theory * Remote Sensing * Mathematics of Data Processing * Applications of Data Processing Volume II * Measure Theory * Filtering * Operator Theory * Biomathematics Each part provides state-of-the-art results, with contributions from an impressive array of mathematicians, engineers, and scientists in academia, industry, and government. Excursions in Harmonic Analysis: The February Fourier Talks at the Norbert Wiener Center is an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, engineering, and physics.
Concentration analysis provides, in settings without a priori available compactness, a manageable structural description for the functional sequences intended to approximate solutions of partial differential equations. Since the introduction of concentration compactness in the 1980s, concentration analysis today is formalized on the functional-analytic level as well as in terms of wavelets, extends to a wide range of spaces, involves much larger class of invariances than the original Euclidean rescalings and has a broad scope of applications to PDE. This book represents current research in concentration and blow-up phenomena from various perspectives, with a variety of applications to elliptic and evolution PDEs, as well as a systematic functional-analytic background for concentration phenomena, presented by profile decompositions based on wavelet theory and cocompact imbeddings.
Designed for a one-semester advanced calculus course, "Advanced Calculus" explores the theory of calculus and highlights the connections between calculus and real analysis -- providing a mathematically sophisticated introduction to functional analytical concepts. The text is interesting to read and includes many illustrative worked-out examples and instructive exercises, and precise historical notes to aid in further exploration of calculus. Ancillary list: * Companion website, Ebook- http:
//www.elsevierdirect.com/product.jsp?isbn=9780123749550 * Student
Solutions Manual- To come * Instructors Solutions Manual- To
come
This book presents the proceedings of the international conference Particle Systems and Partial Differential Equations I, which took place at the Centre of Mathematics of the University of Minho, Braga, Portugal, from the 5th to the 7th of December, 2012. The purpose of the conference was to bring together world leaders to discuss their topics of expertise and to present some of their latest research developments in those fields. Among the participants were researchers in probability, partial differential equations and kinetics theory. The aim of the meeting was to present to a varied public the subject of interacting particle systems, its motivation from the viewpoint of physics and its relation with partial differential equations or kinetics theory and to stimulate discussions and possibly new collaborations among researchers with different backgrounds. The book contains lecture notes written by Francois Golse on the derivation of hydrodynamic equations (compressible and incompressible Euler and Navier-Stokes) from the Boltzmann equation, and several short papers written by some of the participants in the conference. Among the topics covered by the short papers are hydrodynamic limits; fluctuations; phase transitions; motions of shocks and anti shocks in exclusion processes; large number asymptotics for systems with self-consistent coupling; quasi-variational inequalities; unique continuation properties for PDEs and others. The book will benefit probabilists, analysts and mathematicians who are interested in statistical physics, stochastic processes, partial differential equations and kinetics theory, along with physicists."
Degenerate and singular parabolic equations have been the subject of extensive research for the last 25 years. Despite important achievements, the issue of the Harnack inequality for non-negative solutions to these equations, both of p-Laplacian and porous medium type, while raised by several authors, has remained basically open. Recently considerable progress has been made on this issue, to the point that, except for the singular sub-critical range, both for the p-laplacian and the porous medium equations, the theory is reasonably complete. It seemed therefore timely to trace a comprehensive overview, that would highlight the main issues and also the problems that still remain open. The authors give a comprehensive treatment of the Harnack inequality for non-negative solutions to p-laplace and porous medium type equations, both in the degenerate (p2 or m1) and in the singular range (1p<2 or 0m<1), starting from the notion of solution and building all the necessary technical tools. The book is self-contained. Building on a similar monograph by the first author, the authors of the present book focus entirely on the Harnack estimates and on their applications: indeed a number of known regularity results are given a new proof, based on the Harnack inequality. It is addressed to all professionals active in the field, and also to advanced graduate students, interested in understanding the main issues of this fascinating research field.
Scientists and engineers are mainly using Richardson extrapolation as a computational tool for increasing the accuracy of various numerical algorithms for the treatment of systems of ordinary and partial differential equations and for improving the computational efficiency of the solution process by the automatic variation of the time-stepsizes. A third issue, the stability of the computations, is very often the most important one and, therefore, it is the major topic studied in all chapters of this book. Clear explanations and many examples make this text an easy-to-follow handbook for applied mathematicians, physicists and engineers working with scientific models based on differential equations. Contents The basic properties of Richardson extrapolation Richardson extrapolation for explicit Runge-Kutta methods Linear multistep and predictor-corrector methods Richardson extrapolation for some implicit methods Richardson extrapolation for splitting techniques Richardson extrapolation for advection problems Richardson extrapolation for some other problems General conclusions
This book begins with the fundamentals of the generalized inverses, then moves to more advanced topics. It presents a theoretical study of the generalization of Cramer's rule, determinant representations of the generalized inverses, reverse order law of the generalized inverses of a matrix product, structures of the generalized inverses of structured matrices, parallel computation of the generalized inverses, perturbation analysis of the generalized inverses, an algorithmic study of the computational methods for the full-rank factorization of a generalized inverse, generalized singular value decomposition, imbedding method, finite method, generalized inverses of polynomial matrices, and generalized inverses of linear operators. This book is intended for researchers, postdocs, and graduate students in the area of the generalized inverses with an undergraduate-level understanding of linear algebra.
This book is a useful overview of results in multivariate probability distributions and multivariate analysis as well as a reference to harmonic analysis on symmetric cones adapted to the needs of researchers in analysis and probability theory.
This monograph offers an introduction to finite Blaschke products and their connections to complex analysis, linear algebra, operator theory, matrix analysis, and other fields. Old favorites such as the Caratheodory approximation and the Pick interpolation theorems are featured, as are many topics that have never received a modern treatment, such as the Bohr radius and Ritt's theorem on decomposability. Deep connections to hyperbolic geometry are explored, as are the mapping properties, zeros, residues, and critical points of finite Blaschke products. In addition, model spaces, rational functions with real boundary values, spectral mapping properties of the numerical range, and the Darlington synthesis problem from electrical engineering are also covered. Topics are carefully discussed, and numerous examples and illustrations highlight crucial ideas. While thorough explanations allow the reader to appreciate the beauty of the subject, relevant exercises following each chapter improve technical fluency with the material. With much of the material previously scattered throughout mathematical history, this book presents a cohesive, comprehensive and modern exposition accessible to undergraduate students, graduate students, and researchers who have familiarity with complex analysis.
This volume, which is dedicated to Heinz Langer, includes biographical material and carefully selected papers. Heinz Langer has made fundamental contributions to operator theory. In particular, he has studied the domains of operator pencils and nonlinear eigenvalue problems, the theory of indefinite inner product spaces, operator theory in Pontryagin and Krein spaces, and applications to mathematical physics. His works include studies on and applications of Schur analysis in the indefinite setting, where the factorization theorems put forward by Krein and Langer for generalized Schur functions, and by Dijksma-Langer-Luger-Shondin, play a key role. The contributions in this volume reflect Heinz Langer's chief research interests and will appeal to a broad readership whose work involves operator theory.
Ring theory provides the algebraic underpinnings for many areas of mathematics, computer science, and physics. For example, ring theory appears in: functional analysis; algebraic topology; algebraic number theory; coding theory; and in the study of quantum theory. This volume is a collection of research papers, many presented at the 3rd Korea-China-Japan International Symposium on Ring Theory held jointly with the 2nd Korea-Japan Ring Theory Seminar, in Korea, The articles examine wide-ranging developments and methodologies in various areas, including classical Hopf algebras and quantum groups.
This volume presents original papers ranging from an experimental study on cavitation jets to an up-to-date mathematical analysis of the Navier-Stokes equations for free boundary problems, reflecting topics featured at the International Conference on Mathematical Fluid Dynamics, Present and Future, held 11-14 November 2014 at Waseda University in Tokyo. The contributions address subjects in one- and two-phase fluid flows, including cavitation, liquid crystal flows, plasma flows, and blood flows. Written by internationally respected experts, these papers highlight the connections between mathematical, experimental, and computational fluid dynamics. The book is aimed at a wide readership in mathematics and engineering, including researchers and graduate students interested in mathematical fluid dynamics.
This book features papers presented during a special session on algebra, functional analysis, complex analysis, and pluripotential theory. Research articles focus on topics such as slow convergence, spectral expansion, holomorphic extension, m-subharmonic functions, pseudo-Galilean group, involutive algebra, Log-integrable measurable functions, Gibbs measures, harmonic and analytic functions, local automorphisms, Lie algebras, and Leibniz algebras. Many of the papers address the theory of harmonic functions, and the book includes a number of extensive survey papers. Graduate and researchers interested in functional analysis, complex analysis, operator algebras and non-associative algebras will find this book relevant to their studies. The special session was part of the second USA-Uzbekistan Conference on Analysis and Mathematical Physics held on August 8-12, 2017 at Urgench State University (Uzbekistan). The conference encouraged communication and future collaboration among U.S. mathematicians and their counterparts in Uzbekistan and other countries. Main themes included algebra and functional analysis, dynamical systems, mathematical physics and partial differential equations, probability theory and mathematical statistics, and pluripotential theory. A number of significant, recently established results were disseminated at the conference's scheduled plenary talks, while invited talks presented a broad spectrum of findings in several sessions. Based on a different session from the conference, Differential Equations and Dynamical Systems is also published in the Springer Proceedings in Mathematics & Statistics Series.
This book offers engineering students an introduction to the theory of partial differential equations and then guiding them through the modern problems in this subject. Divided into two parts, in the first part readers already well-acquainted with problems from the theory of differential and integral equations gain insights into the classical notions and problems, including differential operators, characteristic surfaces, Levi functions, Green's function, and Green's formulas. Readers are also instructed in the extended potential theory in its three forms: the volume potential, the surface single-layer potential and the surface double-layer potential. Furthermore, the book presents the main initial boundary value problems associated with elliptic, parabolic and hyperbolic equations. The second part of the book, which is addressed first and foremost to those who are already acquainted with the notions and the results from the first part, introduces readers to modern aspects of the theory of partial differential equations.
This book proves that Feynman's original definition of the path integral actually converges to the fundamental solution of the Schroedinger equation at least in the short term if the potential is differentiable sufficiently many times and its derivatives of order equal to or higher than two are bounded. The semi-classical asymptotic formula up to the second term of the fundamental solution is also proved by a method different from that of Birkhoff. A bound of the remainder term is also proved.The Feynman path integral is a method of quantization using the Lagrangian function, whereas Schroedinger's quantization uses the Hamiltonian function. These two methods are believed to be equivalent. But equivalence is not fully proved mathematically, because, compared with Schroedinger's method, there is still much to be done concerning rigorous mathematical treatment of Feynman's method. Feynman himself defined a path integral as the limit of a sequence of integrals over finite-dimensional spaces which is obtained by dividing the time interval into small pieces. This method is called the time slicing approximation method or the time slicing method.This book consists of two parts. Part I is the main part. The time slicing method is performed step by step in detail in Part I. The time interval is divided into small pieces. Corresponding to each division a finite-dimensional integral is constructed following Feynman's famous paper. This finite-dimensional integral is not absolutely convergent. Owing to the assumption of the potential, it is an oscillatory integral. The oscillatory integral techniques developed in the theory of partial differential equations are applied to it. It turns out that the finite-dimensional integral gives a finite definite value. The stationary phase method is applied to it. Basic properties of oscillatory integrals and the stationary phase method are explained in the book in detail.Those finite-dimensional integrals form a sequence of approximation of the Feynman path integral when the division goes finer and finer. A careful discussion is required to prove the convergence of the approximate sequence as the length of each of the small subintervals tends to 0. For that purpose the book uses the stationary phase method of oscillatory integrals over a space of large dimension, of which the detailed proof is given in Part II of the book. By virtue of this method, the approximate sequence converges to the limit. This proves that the Feynman path integral converges. It turns out that the convergence occurs in a very strong topology. The fact that the limit is the fundamental solution of the Schroedinger equation is proved also by the stationary phase method. The semi-classical asymptotic formula naturally follows from the above discussion.A prerequisite for readers of this book is standard knowledge of functional analysis. Mathematical techniques required here are explained and proved from scratch in Part II, which occupies a large part of the book, because they are considerably different from techniques usually used in treating the Schroedinger equation.
This is the second edition of the book which has two additional new chapters on Maxwell's equations as well as a section on properties of solution spaces of Maxwell's equations and their trace spaces. These two new chapters, which summarize the most up-to-date results in the literature for the Maxwell's equations, are sufficient enough to serve as a self-contained introductory book on the modern mathematical theory of boundary integral equations in electromagnetics. The book now contains 12 chapters and is divided into two parts. The first six chapters present modern mathematical theory of boundary integral equations that arise in fundamental problems in continuum mechanics and electromagnetics based on the approach of variational formulations of the equations. The second six chapters present an introduction to basic classical theory of the pseudo-differential operators. The aforementioned corresponding boundary integral operators can now be recast as pseudo-differential operators. These serve as concrete examples that illustrate the basic ideas of how one may apply the theory of pseudo-differential operators and their calculus to obtain additional properties for the corresponding boundary integral operators. These two different approaches are complementary to each other. Both serve as the mathematical foundation of the boundary element methods, which have become extremely popular and efficient computational tools for boundary problems in applications. This book contains a wide spectrum of boundary integral equations arising in fundamental problems in continuum mechanics and electromagnetics. The book is a major scholarly contribution to the modern approaches of boundary integral equations, and should be accessible and useful to a large community of advanced graduate students and researchers in mathematics, physics, and engineering.
This monograph gives a systematic account of the theory of vector-valued Laplace transforms, ranging from representation theory to Tauberian theorems. In parallel, the theory of linear Cauchy problems and semigroups of operators is developed completely in the spirit of Laplace transforms. Existence and uniqueness, regularity, approximation and above all asymptotic behaviour of solutions are studied. Diverse applications to partial differential equations are given. The book contains an introduction to the Bochner integral and several appendices on background material. It is addressed to students and researchers interested in evolution equations, Laplace and Fourier transforms, and functional analysis. The second edition contains detailed notes on the developments in the last decade. They include, for instance, a new characterization of well-posedness of abstract wave equations in Hilbert space due to M. Crouzeix. Moreover new quantitative results on asymptotic behaviour of Laplace transforms have been added. The references are updated and some errors have been corrected.
This unique book describes, analyses, and improves various approaches and techniques for the numerical solution of delay differential equations. It includes a list of available codes and also aids the reader in writing his or her own.
This book gathers papers from the International Conference on Differential & Difference Equations and Applications 2017 (ICDDEA 2017), held in Lisbon, Portugal on June 5-9, 2017. The editors have compiled the strongest research presented at the conference, providing readers with valuable insights into new trends in the field, as well as applications and high-level survey results. The goal of the ICDDEA was to promote fruitful collaborations between researchers in the fields of differential and difference equations. All areas of differential and difference equations are represented, with a special emphasis on applications.
F. dell'Isola, L. Placidi: Variational principles are a powerful tool also for formulating field theories. - F. dell'Isola, P. Seppecher, A. Madeo: Beyond Euler-Cauchy Continua. The structure of contact actions in N-th gradient generalized continua: a generalization of the Cauchy tetrahedron argument. - B. Bourdin, G.A. Francfort: Fracture. - S. Gavrilyuk: Multiphase flow modeling via Hamilton's principle. - V. L. Berdichevsky: Introduction to stochastic variational problems. - A. Carcaterra: New concepts in damping generation and control: theoretical formulation and industrial applications. - F. dell'Isola, P. Seppecher, A. Madeo: Fluid shock wave generation at solid-material discontinuity surfaces in porous media. Variational methods give an efficient and elegant way to
formulate and solve mathematical problems that are of interest to
scientists and engineers. In this book three fundamental aspects of
the variational formulation of mechanics will be presented:
physical, mathematical and applicative ones.
Dyadic (Walsh) analysis emerged as a new research area in applied mathematics and engineering in early seventies within attempts to provide answers to demands from practice related to application of spectral analysis of different classes of signals, including audio, video, sonar, and radar signals. In the meantime, it evolved in a mature mathematical discipline with fundamental results and important features providing basis for various applications. The book will provide fundamentals of the area through reprinting carefully selected earlier publications followed by overview of recent results concerning particular subjects in the area written by experts, most of them being founders of the field, and some of their followers. In this way, this first volume of the two volume book offers a rather complete coverage of the development of dyadic Walsh analysis, and provides a deep insight into its mathematical foundations necessary for consideration of generalizations and applications that are the subject of the second volume. The presented theory is quite sufficient to be a basis for further research in the subject area as well as to be applied in solving certain new problems or improving existing solutions for tasks in the areas which motivated development of the dyadic analysis.
This unique text/reference presents a fresh look at nonlinear processing through nonlinear eigenvalue analysis, highlighting how one-homogeneous convex functionals can induce nonlinear operators that can be analyzed within an eigenvalue framework. The text opens with an introduction to the mathematical background, together with a summary of classical variational algorithms for vision. This is followed by a focus on the foundations and applications of the new multi-scale representation based on non-linear eigenproblems. The book then concludes with a discussion of new numerical techniques for finding nonlinear eigenfunctions, and promising research directions beyond the convex case. Topics and features: introduces the classical Fourier transform and its associated operator and energy, and asks how these concepts can be generalized in the nonlinear case; reviews the basic mathematical notion, briefly outlining the use of variational and flow-based methods to solve image-processing and computer vision algorithms; describes the properties of the total variation (TV) functional, and how the concept of nonlinear eigenfunctions relate to convex functionals; provides a spectral framework for one-homogeneous functionals, and applies this framework for denoising, texture processing and image fusion; proposes novel ways to solve the nonlinear eigenvalue problem using special flows that converge to eigenfunctions; examines graph-based and nonlocal methods, for which a TV eigenvalue analysis gives rise to strong segmentation, clustering and classification algorithms; presents an approach to generalizing the nonlinear spectral concept beyond the convex case, based on pixel decay analysis; discusses relations to other branches of image processing, such as wavelets and dictionary based methods. This original work offers fascinating new insights into established signal processing techniques, integrating deep mathematical concepts from a range of different fields, which will be of great interest to all researchers involved with image processing and computer vision applications, as well as computations for more general scientific problems.
This book presents the use of efficient Evolutionary Computation (EC) algorithms for solving diverse real-world image processing and pattern recognition problems. It provides an overview of the different aspects of evolutionary methods in order to enable the reader in reaching a global understanding of the field and, in conducting studies on specific evolutionary techniques that are related to applications in image processing and pattern recognition. It explains the basic ideas of the proposed applications in a way that can also be understood by readers outside of the field. Image processing and pattern recognition practitioners who are not evolutionary computation researchers will appreciate the discussed techniques beyond simple theoretical tools since they have been adapted to solve significant problems that commonly arise on such areas. On the other hand, members of the evolutionary computation community can learn the way in which image processing and pattern recognition problems can be translated into an optimization task. The book has been structured so that each chapter can be read independently from the others. It can serve as reference book for students and researchers with basic knowledge in image processing and EC methods.
"Discrete-Time Linear Systems: Theory and Design with Applications "combines system theory and design in order to show the importance of system theory and its role in system design. The book focuses on system theory (including optimal state feedback and optimal state estimation) and system design (with applications to feedback control systems and wireless transceivers, plus system identification and channel estimation).
This two-volume set presents combinatorial functional equations using an algebraic approach, and illustrates their applications in combinatorial maps, graphs, networks, etc. The second volume mainly presents several kinds of meson functional equations which are divided into three types: outer, inner and surface. It is suited for a wide readership, including pure and applied mathematicians, and also computer scientists. |
![]() ![]() You may like...
Calculus - A Complete Course
Robert Adams, Christopher Essex
Hardcover
Student Solutions Manual for Calculus…
Robert Adams, Christopher Essex
Paperback
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
|