![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
Semiconcavity is a natural generalization of concavity that retains most of the good properties known in convex analysis, but arises in a wider range of applications. This text is the first comprehensive exposition of the theory of semiconcave functions, and of the role they play in optimal control and Hamilton-Jacobi equations. The first part covers the general theory, encompassing all key results and illustrating them with significant examples. The latter part is devoted to applications concerning the Bolza problem in the calculus of variations and optimal exit time problems for nonlinear control systems. The exposition is essentially self-contained since the book includes all prerequisites from convex analysis, nonsmooth analysis, and viscosity solutions.
This is the first monograph devoted to a fairly wide class of operators, namely band and band-dominated operators and their Fredholm theory. The main tool in studying this topic is limit operators. Applications are presented to several important classes of such operators: convolution type operators and pseudo-differential operators on bad domains and with bad coefficients.
This book deals with methods for solving nonstiff ordinary differential equations. The first chapter describes the historical development of the classical theory from Newton, Leibniz, Euler, and Hamilton to limit cycles and strange attractors. In a second chapter a modern treatment of Runge-Kutta and extrapolation methods is given. Also included are continuous methods for dense output, parallel Runge-Kutta methods, special methods for Hamiltonian systems, second order differential equations and delay equations. The third chapter begins with the classical theory of multistep methods, and concludes with the theory of general linear methods. Many applications from physics, chemistry, biology, and astronomy together with computer programs and numerical comparisons are presented. This new edition has been rewritten, errors have been eliminated and new material has been included. The book will be immensely useful to graduate students and researchers in numerical analysis and scientific computing, and to scientists in the fields mentioned above.
This book reflects a significant part of authors' research activity dur ing the last ten years. The present monograph is constructed on the results obtained by the authors through their direct cooperation or due to the authors separately or in cooperation with other mathematicians. All these results fit in a unitary scheme giving the structure of this work. The book is mainly addressed to researchers and scholars in Pure and Applied Mathematics, Mechanics, Physics and Engineering. We are greatly indebted to Viorica Venera Motreanu for the careful reading of the manuscript and helpful comments on important issues. We are also grateful to our Editors of Kluwer Academic Publishers for their professional assistance. Our deepest thanks go to our numerous scientific collaborators and friends, whose work was so important for us. D. Motreanu and V. Radulescu IX Introduction The present monograph is based on original results obtained by the authors in the last decade. This book provides a comprehensive expo sition of some modern topics in nonlinear analysis with applications to the study of several classes of boundary value problems. Our framework includes multivalued elliptic problems with discontinuities, variational inequalities, hemivariational inequalities and evolution problems. The treatment relies on variational methods, monotonicity principles, topo logical arguments and optimization techniques. Excepting Sections 1 and 3 in Chapter 1 and Sections 1 and 3 in Chapter 2, the material is new in comparison with any other book, representing research topics where the authors contributed. The outline of our work is the following."
The aim of the book is to present the state of the art of the theory of symmetric (Hermitian) matrix Riccati equations and to contribute to the development of the theory of non-symmetric Riccati equations as well as to certain classes of coupled and generalized Riccati equations occurring in differential games and stochastic control. The volume offers a complete treatment of generalized and coupled Riccati equations. It deals with differential, discrete-time, algebraic or periodic symmetric and non-symmetric equations, with special emphasis on those equations appearing in control and systems theory. Extensions to Riccati theory allow to tackle robust control problems in a unified approach. The book is intended to make available classical and recent results to engineers and mathematicians alike. It is accessible to graduate students in mathematics, applied mathematics, control engineering, physics or economics. Researchers working in any of the fields where Riccati equations are used can find the main results with the proper mathematical background.
The 3rd International ISAAC Congress took place from August 20 to 25, 2001 in Berlin, Germany, supported by the German Research Foundation (DFG), the city of Berlin through Investitionsbank Berlin and the Freie Universitiit Berlin. 10 ISAAC Awards were presented to young researchers in analysis its applications and computation from all over the world on the basis of financial support from Siemens, Daimler Crysler, Motorola and the Berlin Mathematical Society and book gifts from Birkhauser Verlag, Elsevier, Kluwer Academic Publisher, Springer Verlag and World Scientific. The ISAAC is grateful to all these institutions, firms and publishers for their support. Due to the support from DFG and from Investitions bank Berlin many of the 362 registrated participants could be financially supported. Unfortunately the financial supports were granted too late to reach more people from former SU as the procedere for visa is still more than cumbersome and embassies are not at all flexible. Hence, a big part of the financial support could not be used and had to be returned. The 10 plenary lectures were 1. Antoniou, 1. Prigogine (Intern. Solvay Inst. Phys. Chem., Brussels): Irreversibility and the probabilistic description of unstable evolutions beyond the Hilbert space framework (read by 1. Antoniou), N.S. Bakhvalov, M.E. Eglit (Math. Mech. Dept., Lomonosov State Univ."
As is well known, The Great Divide (a.k.a. The Continental Divide) is formed by the Rocky Mountains stretching from north to south across North America. It creates a virtual "stone wall" so high that wind, rain, snow, etc. cannot cross it. This keeps the weather distinct on both sides. Since railroad trains cannot climb steep grades and tunnels through these mountains are almost formidable, the Canadian Pacific Railroad searched for a mountain pass providing the lowest grade for its tracks. Employees discovered a suitable mountain pass, called the Kicking Horse Pass, el. 5404 ft., near Banff, Alberta. (One can speculate as to the reason for the name.) This pass is also used by the Trans-Canada Highway. At the highest point of the pass the railroad tracks are horizontal with mountains rising on both sides. A mountain stream divides into two branches, one flowing into the Atlantic Ocean and the other into the Pacific. One can literally stand (as the author did) with one foot in the Atlantic Ocean and the other in the Pacific. The author has observed many mountain passes in the Rocky Mountains and Alps. What connections do mountain passes have with nonlinear partial dif ferential equations? To find out, read on ..."
This book is devoted to the broad field of Fourier analysis and its applications to several areas of mathematics, including problems in the theory of pseudo-differential operators, partial differential equations, and time-frequency analysis. It is based on lectures given at the international conference Fourier Analysis and Pseudo-Differential Operators, June 25 30, 2012, at Aalto University, Finland. This collection of 20 refereed articles is based on selected talks and presents the latest advances in the field. The conference was a satellite meeting of the 6th European Congress of Mathematics, which took place in Krakow in July 2012; it was also the 6th meeting in the series Fourier Analysis and Partial Differential Equations. "
This volume includes 28 chapters by authors who are leading researchers of the world describing many of the up-to-date aspects in the field of several complex variables (SCV). These contributions are based upon their presentations at the 10th Korean Conference on Several Complex Variables (KSCV10), held as a satellite conference to the International Congress of Mathematicians (ICM) 2014 in Seoul, Korea. SCV has been the term for multidimensional complex analysis, one of the central research areas in mathematics. Studies over time have revealed a variety of rich, intriguing, new knowledge in complex analysis and geometry of analytic spaces and holomorphic functions which were "hidden" in the case of complex dimension one. These new theories have significant intersections with algebraic geometry, differential geometry, partial differential equations, dynamics, functional analysis and operator theory, and sheaves and cohomology, as well as the traditional analysis of holomorphic functions in all dimensions. This book is suitable for a broad audience of mathematicians at and above the beginning graduate-student level. Many chapters pose open-ended problems for further research, and one in particular is devoted to problems for future investigations.
The topics of this set of student-oriented books are presented in a discursive style that is readable and easy to follow. Numerous clearly stated, completely worked out examples together with carefully selected problem sets with answers are used to enhance students' understanding and manipulative skill. The goal is to help students feel comfortable and confident in using advanced mathematical tools in junior, senior, and beginning graduate courses.
di?erential operators in particular will be developed hand in glove with appli- tions andcomputation inthe physical,biologicaland medicalsciences.This theme will play an important role in the forthcoming volumes on pseudo-di?erential - erators originating from IGPDO. The Editors OperatorTheory: Advances andApplications,Vol.189, 1-14 c 2008Birkh. auserVerlagBasel/Switzerland Phase-Space Weyl Calculus and Global Hypoellipticity of a Class of Degenerate Elliptic Partial Di?erential Operators Maurice de Gosson Abstract. In a recent series of papers M.W. Wong has studied a degenerate elliptic partial di?erential operator related to the Heisenberg group. It turns out that Wong's example is best understood when replaced in the context of the phase-space Weyl calculus we have developed in previous work; this - proach highlights the relationship of Wong's constructions with the quantum mechanics of charged particles in a uniform magnetic ?eld. Using Shubin's classes of pseudodi?erential symbols we prove global hypoellipticity results for arbitrary phase-space operators arising from elliptic operators on con- uration space. Mathematics Subject Classi?cation (2000). Primary 47F30; Secondary 35B65, 46F05. Keywords. Degenerate elliptic operators, hypoellipticity, phase space Weyl calculus, Shubin symbols.
First book to offer a guide to the foundations of the XFEM and its implementation A revolution similar to that initiated by the FEM is taking place through the XFEM, which is already implemented in leading commercial packages (ABAQUS, ANSYS, etc.) that are taught at undergraduate and post-graduate levels and to industrial end-users. XFEM provides a detailed overview of the basics around the newly introduced extended finite element method for applications in solving moving boundary problems. XFEM is introduced naturally as an extension of FEM, through simple one dimensional examples which then allow the introduction of higher-dimensional problems. Throughout the book, each key concept is highlighted by the corresponding piece of MATLAB code which is provided via an accompanying web portal. Uniquely, this portal allows readers to obtain real-time feedback and help from an existing community of more than 130 researchers and industrialists. Demystifies the theory behind XFEM and makes it accessible to all with previous knowledge of the FEM Provides a simple introduction to XFEM but also provides a range of tools which the reader can build upon to take on a large breadth of more complex problems. Presents each key theoretical concept in parallel with its implementational aspects in the form of simple MATLAB routines provided along with the book via an interactive companion website and portal Provides a detailed account of applications of XFEM to fracture mechanics, including techniques absent from current literature
With applications in quantum field theory, elementary particle physics and general relativity, this two-volume work studies invariance of differential operators under Lie algebras, quantum groups, superalgebras including infinite-dimensional cases, Schroedinger algebras, applications to holography. This first volume covers the general aspects of Lie algebras and group theory supplemented by many concrete examples for a great variety of noncompact semisimple Lie algebras and groups. Contents: Introduction Lie Algebras and Groups Real Semisimple Lie Algebras Invariant Differential Operators Case of the Anti-de Sitter Group Conformal Case in 4D Kazhdan-Lusztig Polynomials, Subsingular Vectors, and Conditionally Invariant Equations Invariant Differential Operators for Noncompact Lie Algebras Parabolically Related to Conformal Lie Algebras Multilinear Invariant Differential Operators from New Generalized Verma Modules Bibliography Author Index Subject Index
In August 1995 an international symposium on "Quasiconformal Mappings and Analysis" was held in Ann Arbor on the occasion of Professor Fred- erick W. Gehring's 70th birthday and his impending retirement from the Mathematics Department at the University of Michigan. The concept of the symposium was to feature broad survey talks on a wide array of topics related to Gehring's basic research contributions in the field of quasicon- formal mappings, emphasizing their relations to other parts of analysis. Principal speakers were Kari Astala, Albert Baernstein, Clifford Earle, Pe- ter Jones, Irwin Kra, OUi Lehto, Gaven Martin, Dennis Sullivan, and Jussi Vaisala. Financial support was provided by the National Science Founda- tion, with additional grants from the University of Michigan and from the Institute for Mathematics and its Applications. The symposium was a great success. The speakers rose to the occasion and presented excellent survey lectures. The present volume was conceived as a means for disseminating those expositions to a wider audience. Ad- ditional mathematicians, some of whom had not been able to attend the symposium, were invited to contribute similar articles. The result is a fit- ting tribute to Fred Gehring's pre-eminent role in developing the theory of quasiconformal mappings, through his own research and writings and lec- tures, and through his supervision of graduate students. The volume begins with descriptions of Gehring's mathematical career and an overview of his research achievements.
Evolution equations of hyperbolic or more general p-evolution type form an active field of current research. This volume aims to collect some recent advances in the area in order to allow a quick overview of ongoing research. The contributors are first rate mathematicians. This collection of research papers is centred around parametrix constructions and microlocal analysis; asymptotic constructions of solutions; energy and dispersive estimates; and associated spectral transforms. Applications concerning elasticity and general relativity complement the volume. The book gives an overview of a variety of ongoing current research in the field and, therefore, allows researchers as well as students to grasp new aspects and broaden their understanding of the area. "
Featuring the clearly presented and expertly-refereed contributions of leading researchers in the field of approximation theory, this volume is a collection of the best contributions at the Third International Conference on Applied Mathematics and Approximation Theory, an international conference held at TOBB University of Economics and Technology in Ankara, Turkey, on May 28-31, 2015. The goal of the conference, and this volume, is to bring together key work from researchers in all areas of approximation theory, covering topics such as ODEs, PDEs, difference equations, applied analysis, computational analysis, signal theory, positive operators, statistical approximation, fuzzy approximation, fractional analysis, semigroups, inequalities, special functions and summability. These topics are presented both within their traditional context of approximation theory, while also focusing on their connections to applied mathematics. As a result, this collection will be an invaluable resource for researchers in applied mathematics, engineering and statistics.
For the past 25 years, the Geometrization Program of Thurston has been a driving force for research in 3-manifold topology. This has inspired a surge of activity investigating hyperbolic 3-manifolds (and Kleinian groups), as these manifolds form the largest and least well-understood class of compact 3-manifolds. Familiar and new tools from diverse areas of mathematics have been utilized in these investigations, from topology, geometry, analysis, group theory, and from the point of view of this book, algebra and number theory. This book is aimed at readers already familiar with the basics of hyperbolic 3-manifolds or Kleinian groups, and it is intended to introduce them to the interesting connections with number theory and the tools that will be required to pursue them. While there are a number of texts which cover the topological, geometric and analytical aspects of hyperbolic 3-manifolds, this book is unique in that it deals exclusively with the arithmetic aspects, which are not covered in other texts. Colin Maclachlan is a Reader in the Department of Mathematical Sciences at the University of Aberdeen in Scotland where he has served since 1968. He is a former President of the Edinburgh Mathematical Society. Alan Reid is a Professor in the Department of Mathematics at The University of Texas at Austin. He is a former Royal Society University Research Fellow, Alfred P. Sloan Fellow and winner of the Sir Edmund Whittaker Prize from The Edinburgh Mathematical Society. Both authors have published extensively in the general area of discrete groups, hyperbolic manifolds and low-dimensional topology.
This IMA Volume in Mathematics and its Applications ESSAYS ON MATHEMATICAL ROBOTICS is based on the proceedings of a workshop that was an integral part of the 1992-93 IMA program on "Control Theory." The workshop featured a mathematicalintroductionto kinematics and fine motion planning; dynam- ics and control of kinematically redundant robot arms including snake-like robots, multi-fingered robotic hands; methods of non-holonomic motion planning for space robots, multifingered robot hands and mobile robots; new techniques in analytical mechanics for writing the dynamics of com- plicated multi-body systems subject to constraints on angular momentum or other non-holonomic constraints. In addition to papers representing proceedings of the Workshop, this volume contains several longer papers surveying developments of the intervening years. We thank John Baillieul, Shankar S. Sastry, and Hector J. Sussmann for organizing the workshop and editing the proceedings. We also take this opportunity to thank the National Science Foundation and the Army Research Office, whose financial support made the workshop possible. Avner Friedman Willard Miller, Jr.
The monograph is devoted to the study of functional equations
with the transformed argument on the real line and on the unit
circle. Such equations systematically arise in dynamical systems,
differential equations, probabilities, singularities of smooth
mappings, and other areas. The purpose of the book is to present
modern methods and new results in the subject, with an emphasis on
a connection between local and global solvability. The general
concepts developed in the book are applicable to multidimensional
functional equations. Some of the methods are presented for the
first time in the monograph literature.
Fifteen years ago, most mathematicians who worked in the intersection of function theory and operator theory thought that progress on the Bergman spaces was unlikely, yet today the situation has completely changed. For several years, research interest and activity have expanded in this area and there are now rich theories describing the Bergman spaces and their operators. This book is a timely treatment of the theory, written by three of the major players in the field.
A lively and vivid look at the material from function theory, including the residue calculus, supported by examples and practice exercises throughout. There is also ample discussion of the historical evolution of the theory, biographical sketches of important contributors, and citations - in the original language with their English translation - from their classical works. Yet the book is far from being a mere history of function theory, and even experts will find a few new or long forgotten gems here. Destined to accompany students making their way into this classical area of mathematics, the book offers quick access to the essential results for exam preparation. Teachers and interested mathematicians in finance, industry and science will profit from reading this again and again, and will refer back to it with pleasure.
Graduate students in mathematics, who want to travel light, will find this book invaluable; impatient young researchers in other fields will enjoy it as an instant reference to the highlights of modern analysis. Starting with general topology, it moves on to normed and seminormed linear spaces. From there it gives an introduction to the general theory of operators on Hilbert space, followed by a detailed exposition of the various forms the spectral theorem may take; from Gelfand theory, via spectral measures, to maximal commutative von Neumann algebras. The book concludes with two supplementary chapters: a concise account of unbounded operators and their spectral theory, and a complete course in measure and integration theory from an advanced point of view.
This monograph explores nonoscillation and existence of positive solutions for functional differential equations and describes their applications to maximum principles, boundary value problems and stability of these equations. In view of this objective the volume considers a wide class of equations including, scalar equations and systems of different types, equations with variable types of delays and equations with variable deviations of the argument. Each chapter includes an introduction and preliminaries, thus making it complete. Appendices at the end of the book cover reference material. Nonoscillation Theory of Functional Differential Equations with Applications is addressed to a wide audience of researchers in mathematics and practitioners. |
You may like...
|