![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
In this book the author sets out to answer two important questions: 1. Which numerical methods may be combined together? 2. How can different numerical methods be matched together? In doing so the author presents a number of useful combinations, for instance, the combination of various FEMs, the combinations of FEM-FDM, REM-FEM, RGM-FDM, etc. The combined methods have many advantages over single methods: high accuracy of solutions, less CPU time, less computer storage, easy coupling with singularities as well as the complicated boundary conditions. Since coupling techniques are essential to combinations, various matching strategies among different methods are carefully discussed. The author provides the matching rules so that optimal convergence, even superconvergence, and optimal stability can be achieved, and also warns of the matching pitfalls to avoid. Audience: The book is intended for both mathematicians and engineers and may be used as text for advanced students.
The book contains the methods and bases of functional analysis that are directly adjacent to the problems of numerical mathematics and its applications; they are what one needs for the understand ing from a general viewpoint of ideas and methods of computational mathematics and of optimization problems for numerical algorithms. Functional analysis in mathematics is now just the small visible part of the iceberg. Its relief and summit were formed under the influence of this author's personal experience and tastes. This edition in English contains some additions and changes as compared to the second edition in Russian; discovered errors and misprints had been corrected again here; to the author's distress, they jump incomprehensibly from one edition to another as fleas. The list of literature is far from being complete; just a number of textbooks and monographs published in Russian have been included. The author is grateful to S. Gerasimova for her help and patience in the complex process of typing the mathematical manuscript while the author corrected, rearranged, supplemented, simplified, general ized, and improved as it seemed to him the book's contents. The author thanks G. Kontarev for the difficult job of translation and V. Klyachin for the excellent figures."
On the 8th of August 1900 outstanding German mathematician David Hilbert delivered a talk "Mathematical problems" at the Second Interna tional Congress of Mathematicians in Paris. The talk covered practically all directions of mathematical thought of that time and contained a list of 23 problems which determined the further development of mathema tics in many respects (1, 119]. Hilbert's Sixteenth Problem (the second part) was stated as follows: Problem. To find the maximum number and to determine the relative position of limit cycles of the equation dy Qn(X, y) -= dx Pn(x, y)' where Pn and Qn are polynomials of real variables x, y with real coeffi cients and not greater than n degree. The study of limit cycles is an interesting and very difficult problem of the qualitative theory of differential equations. This theory was origi nated at the end of the nineteenth century in the works of two geniuses of the world science: of the Russian mathematician A. M. Lyapunov and of the French mathematician Henri Poincare. A. M. Lyapunov set forth and solved completely in the very wide class of cases a special problem of the qualitative theory: the problem of motion stability (154]. In turn, H. Poincare stated a general problem of the qualitative analysis which was formulated as follows: not integrating the differential equation and using only the properties of its right-hand sides, to give as more as possi ble complete information on the qualitative behaviour of integral curves defined by this equation (176]."
This volume of the Encyclopaedia is a survey of stochastic calculus, an increasingly important part of probability, authored by well-known experts in the field. The book addresses graduate students and researchers in probability theory and mathematical statistics, as well as physicists and engineers who need to apply stochastic methods.
The main theme of this book is the homotopy principle for holomorphic mappings from Stein manifolds to the newly introduced class of Oka manifolds. The book contains the first complete account of Oka-Grauert theory and its modern extensions, initiated by Mikhail Gromov and developed in the last decade by the author and his collaborators. Included is the first systematic presentation of the theory of holomorphic automorphisms of complex Euclidean spaces, a survey on Stein neighborhoods, connections between the geometry of Stein surfaces and Seiberg-Witten theory, and a wide variety of applications ranging from classical to contemporary."
The approximation of functions by linear positive operators is an important research topic in general mathematics and it also provides powerful tools to application areas suchas computer-aided geometric design, numerical analysis, and solutions of differential equations. q-Calculus is a generalization of many subjects, such as hypergeometric series, complex analysis, and particle physics. This monograph is an introduction to combining approximation theory and q-Calculus with applications, by usingwell- known operators. The presentation is systematic and the authors include a brief summary of the notations and basicdefinitions ofq-calculus before delving into more advanced material. Themany applications of q-calculus in the theory of approximation, especially onvariousoperators, which includes convergence of operators to functions in real and complex domain forms the gist of the book. This book is suitable for researchers andstudents in mathematics, physics andengineering, and forprofessionals who would enjoy exploring the host of mathematicaltechniques and ideas that are collected and discussedin thebook."
With contributions by specialists in optimization and practitioners in the fields of aerospace engineering, chemical engineering, and fluid and solid mechanics, the major themes include an assessment of the state of the art in optimization algorithms as well as challenging applications in design and control, in the areas of process engineering and systems with partial differential equation models.
Many special functions occuring in physics and partial differential equations can be represented by integral transformatIons: the fundamental solutions of many PDE's, Newton-Coulomb potentials, hypergeometric functions, Feynman integrals, initial data of (inverse) tomography problems, etc. The general picture of such transfor- mations is as follows. There is an analytic fibre bundle E --+ T, a differential form w on E, whose restrictions on the fibres are closed, and a family of cycles in these fibres, parametrized by the points of T and depending continuously on these points. Then the integral of the form w along these cycles is a function on the base. The analytic properties of such functions depend on the monodromy action, i.e., on the natural action of the fundamental group of the base in the homology of the fibre: this action on the integration cycles defines the ramification of the analytic continuation of our function. The study of this action (which is a purely topological problem) can answer questions about the analytic behaviour of the integral function, for instance, is this function single-valued or at least algebraic, what are the singular points of this function, and what is its asymptotics close to these points. In this book, we study such analytic properties of three famous classes of func- tions: the volume functions, which appear in the Archimedes-Newton problem on in- tegrable bodies; the Newton-Coulomb potentials, and the Green functions of hyperbolic equations (studied, in particular, in the Hada- mard-Petrovskii-Atiyah-Bott-Garding lacuna theory).
Hysteresis effects occur in science and engineering: plasticity,
ferromagnetism, ferroelectricity are well-known examples. Modelling
and mathematical analysis of hysteresis phenomena have been
addressed by mathematicians only recently, but are now in full
development.
This book presents some of the latest research in critical point theory, describing methods and presenting the newest applications. Coverage includes extrema, even valued functionals, weak and double linking, sign changing solutions, Morse inequalities, and cohomology groups. Applications described include Hamiltonian systems, Schrodinger equations and systems, jumping nonlinearities, elliptic equations and systems, superlinear problems and beam equations. "
Boundary problems constitute an essential field of common mathematical interest. The intention of this volume is to highlight several analytic and geometric aspects of boundary problems with special emphasis on their interplay. It includes surveys on classical topics presented from a modern perspective as well as reports on current research. The collection splits into two related groups: - analysis and geometry of geometric operators and their index theory - elliptic theory of boundary value problems and the Shapiro-Lopatinsky condition
Operational methods have been used for over a century to solve problems such as ordinary and partial differential equations. When solving such problems, in many cases it is fairly easy to obtain the Laplace transform, while it is very demanding to determine the inverse Laplace transform which is the solution of a given problem. Sometimes, after some difficult contour integration we may find that a series solution results, but this may be quite difficult to evaluate in order to get an answer at a particular time value. The advent of computers has given an impetus to developing numerical methods for the determination of the inverse Laplace transform. This book gives background material on the theory of Laplace transforms, together with a fairly comprehensive list of methods which are available at the current time. Computer programs are included for those methods which perform consistently well on a wide range of Laplace transforms.
This corrected third printing retains the authors'main emphasis on ordinary differential equations. It is most appropriate for upper level undergraduate and graduate students in the fields of mathematics, engineering, and applied mathematics, as well as the life sciences, physics and economics. The authors have taken the view that a differential equations theory defines functions; the object of the theory is to understand the behaviour of these functions. The tools the authors use include qualitative and numerical methods besides the traditional analytic methods, and the companion software, MacMath, is designed to bring these notions to life.
Congestion Control in Data Transmission Networks details the
modeling and control of data traffic in communication networks. It
shows how various networking phenomena can be represented in a
consistent mathematical framework suitable for rigorous formal
analysis. The monograph differentiates between fluid-flow
continuous-time traffic models, discrete-time processes with
constant sampling rates, and sampled-data systems with variable
discretization periods.
This book is the first monograph on a new powerful method discovered by the author for the study of nonlinear dynamical systems relying on reduction of nonlinear differential equations to the linear abstract Schroedinger-like equation in Hilbert space. Besides the possibility of unification of many apparently completely different techniques, the "quantal" Hilbert space formalism introduced enables new original methods to be discovered for solving nonlinear problems arising in investigation of ordinary and partial differential equations as well as difference equations. Applications covered in the book include symmetries and first integrals, linearization transformations, Backlund transformations, stroboscopic maps, functional equations involving the case of Feigenbaum-Cvitanovic renormalization equations and chaos.
In 1961 Robinson introduced an entirely new version of the theory of infinitesimals, which he called Nonstandard analysis'. Nonstandard' here refers to the nature of new fields of numbers as defined by nonstandard models of the first-order theory of the reals. This system of numbers was closely related to the ring of Schmieden and Laugwitz, developed independently a few years earlier. During the last thirty years the use of nonstandard models in mathematics has taken its rightful place among the various methods employed by mathematicians. The contributions in this volume have been selected to present a panoramic view of the various directions in which nonstandard analysis is advancing, thus serving as a source of inspiration for future research. Papers have been grouped in sections dealing with analysis, topology and topological groups; probability theory; and mathematical physics. This volume can be used as a complementary text to courses in nonstandard analysis, and will be of interest to graduate students and researchers in both pure and applied mathematics and physics.
In some domains of mechanics, physics and control theory boundary value problems arise for nonlinear first order PDEs. A well-known classical result states a sufficiency condition for local existence and uniqueness of twice differentiable solution. This result is based on the method of characteristics (MC). Very often, and as a rule in control theory, the continuous nonsmooth (non-differentiable) functions have to be treated as a solutions to the PDE. At the points of smoothness such solutions satisfy the equation in classical sense. But if a function satisfies this condition only, with no requirements at the points of nonsmoothness, the PDE may have nonunique solutions. The uniqueness takes place if an appropriate matching principle for smooth solution branches defined in neighboring domains is applied or, in other words, the notion of generalized solution is considered. In each field an appropriate matching principle are used. In Optimal Control and Differential Games this principle is the optimality of the cost function. In physics and mechanics certain laws must be fulfilled for correct matching. A purely mathematical approach also can be used, when the generalized solution is introduced to obtain the existence and uniqueness of the solution, without being aimed to describe (to model) some particular physical phenomenon. Some formulations of the generalized solution may meet the modelling of a given phenomenon, the others may not.
This new edition of Lax, Burstein, and Lax's Calculus with Applications and Computing offers meaningful explanations of the important theorems of single variable calculus. Written with students in mathematics, the physical sciences, and engineering in mind, and revised with their help, it shows that the themes of calculation, approximation, and modeling are central to mathematics and the main ideas of single variable calculus. This edition brings the innovation of the first edition to a new generation of students. New sections in this book use simple, elementary examples to show that when applying calculus concepts to approximations of functions, uniform convergence is more natural and easier to use than point-wise convergence. As in the original, this edition includes material that is essential for students in science and engineering, including an elementary introduction to complex numbers and complex-valued functions, applications of calculus to modeling vibrations and population dynamics, and an introduction to probability and information theory."
The book contains some of the most important results on the analysis of polynomials and their derivatives. Besides the fundamental results which are treated with their proofs, the book also provides an account of the most recent developments concerning extremal properties of polynomials and their derivatives in various metrics with an extensive analysis of inequalities for trigonometric sums and algebraic polynomials, as well as their zeros. The final chapter provides some selected applications of polynomials in approximation theory and computer aided geometric design (CAGD). One can also find in this book several new research problems and conjectures with sufficient information concerning the results obtained to date towards the investigation of their solution.
For several decades developments in porous media have taken place in almost independent areas. In civilengineering, many papers were publisheddealing with the foundations offlow and transport through porous media. The method used in most cases is called averaging, and the notion ofa representative elementary vol- ume(REV)playsanimportantrole. Inchemicalengineering,papersonconceptual models were written on the theory ofmixtures. Intheoretical physics and stochas- tic analysis, percolation theory has emerged, providing probabilistic models for systems where theconnectedness propertiesofsomecomponentdominatethebe- havior. In mathematics, atheoryhasbeendevelopedcalled homogenizationwhich deals with partial differential equations having rapidly oscillating coefficients. Early work in these and related areas was - among others - done by the fol- lowing scientists: Maxwell [Max81] and Rayleigh [Ray92] studied the effective conductivity of media with small concentrations of randomly and periodically, respectively, arranged inclusions. Einstein [Ein06] investigated the effective vis- cosityofsuspensions with hard spherical particles in compressible viscous fluids. Marchenko and Khrouslov [MK64] looked at the asymptotic nature of homog- enization; they introduced a general approach of averaging based on asymptotic tools which can handle a variety ofdifferent physical problems. Unfortunately, up to now, little efforthas been made to bridge the gap between these different fields of research. Consequently, many results were and are dis- covered independently, and scientists are almost unable to understand each other because the respective languages have been developing in different directions.
Research in the theory of trigonometric series has been carried out for over two centuries. The results obtained have greatly influenced various fields of mathematics, mechanics, and physics. Nowadays, the theory of simple trigonometric series has been developed fully enough (we will only mention the monographs by Zygmund [15, 16] and Bari [2]). The achievements in the theory of multiple trigonometric series look rather modest as compared to those in the one-dimensional case though multiple trigonometric series seem to be a natural, interesting and promising object of investigation. We should say, however, that the past few decades have seen a more intensive development of the theory in this field. To form an idea about the theory of multiple trigonometric series, the reader can refer to the surveys by Shapiro [1], Zhizhiashvili [16], [46], Golubov [1], D'yachenko [3]. As to monographs on this topic, only that ofYanushauskas [1] is known to me. This book covers several aspects of the theory of multiple trigonometric Fourier series: the existence and properties of the conjugates and Hilbert transforms of integrable functions; convergence (pointwise and in the LP-norm, p > 0) of Fourier series and their conjugates, as well as their summability by the Cesaro (C,a), a> -1, and Abel-Poisson methods; approximating properties of Cesaro means of Fourier series and their conjugates.
This book presents current research on Ulam stability for functional equations and inequalities. Contributions from renowned scientists emphasize fundamental and new results, methods and techniques. Detailed examples are given to theories to further understanding at the graduate level for students in mathematics, physics, and engineering. Key topics covered in this book include: Quasi means Approximate isometries Functional equations in hypergroups Stability of functional equations Fischer-Muszely equation Haar meager sets and Haar null sets Dynamical systems Functional equations in probability theory Stochastic convex ordering Dhombres functional equation Nonstandard analysis and Ulam stability This book is dedicated in memory of Stanilsaw Marcin Ulam, who posed the fundamental problem concerning approximate homomorphisms of groups in 1940; which has provided the stimulus for studies in the stability of functional equations and inequalities.
Stochastic Filtering Theory uses probability tools to estimate
unobservable stochastic processes that arise in many applied fields
including communication, target-tracking, and mathematical
finance.
The theory of difference equations is now enjoying a period of Renaissance. Witness the large number of papers in which problems, having at first sight no common features, are reduced to the investigation of subsequent iterations of the maps f* IR. m ~ IR. m, m > 0, or (which is, in fact, the same) to difference equations The world of difference equations, which has been almost hidden up to now, begins to open in all its richness. Those experts, who usually use differential equations and, in fact, believe in their universality, are now discovering a completely new approach which re sembles the theory of ordinary differential equations only slightly. Difference equations, which reflect one of the essential properties of the real world-its discreteness-rightful ly occupy a worthy place in mathematics and its applications. The aim of the present book is to acquaint the reader with some recently discovered and (at first sight) unusual properties of solutions for nonlinear difference equations. These properties enable us to use difference equations in order to model complicated os cillating processes (this can often be done in those cases when it is difficult to apply ordinary differential equations). Difference equations are also a useful tool of syn ergetics- an emerging science concerned with the study of ordered structures. The application of these equations opens up new approaches in solving one of the central problems of modern science-the problem of turbulence.
An approach to complexity theory which offers a means of analysing algorithms in terms of their tractability. The authors consider the problem in terms of parameterized languages and taking "k-slices" of the language, thus introducing readers to new classes of algorithms which may be analysed more precisely than was the case until now. The book is as self-contained as possible and includes a great deal of background material. As a result, computer scientists, mathematicians, and graduate students interested in the design and analysis of algorithms will find much of interest. |
You may like...
Calculus, Metric Edition
James Stewart, Saleem Watson, …
Hardcover
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
Calculus - A Complete Course
Robert Adams, Christopher Essex
Hardcover
R1,999
Discovery Miles 19 990
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
Nonlinear Differential Problems with…
Dumitru Motreanu
Paperback
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,869
Discovery Miles 28 690
Singular Elliptic Problems - Bifurcation…
Marius Ghergu, Vicentiu Radulescu
Hardcover
R2,808
Discovery Miles 28 080
|