![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
This volume includes contributions originating from a conference held at Chapman University during November 14-19, 2017. It presents original research by experts in signal processing, linear systems, operator theory, complex and hypercomplex analysis and related topics.
The relaxation method has enjoyed an intensive development during many decades and this new edition of this comprehensive text reflects in particular the main achievements in the past 20 years. Moreover, many further improvements and extensions are included, both in the direction of optimal control and optimal design as well as in numerics and applications in materials science, along with an updated treatment of the abstract parts of the theory.
This book presents the applications of fractional calculus, fractional operators of non-integer orders and fractional differential equations in describing economic dynamics with long memory. Generalizations of basic economic concepts, notions and methods for the economic processes with memory are suggested. New micro and macroeconomic models with continuous time are proposed to describe the fractional economic dynamics with long memory as well.
Presenting an overview of most aspects of modern Banach space theory and its applications, this handbook offers up-to-date surveys by a range of expert authors. The surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory and partial differential equations. It begins with a chapter on basic concepts in Banach space theory, which contains all the background needed for reading any other chapter. Each of the 21 articles after his is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods and open problems in its specific direction. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. The handbook should be useful to researchers in Banach theory, as well as graduate students and mathematicians who want to get an idea of the various developments in Banach space theory.
Fundamentals of Calculus for Teachers helps readers connect the dots between key calculus concepts and the mathematics content taught in the middle grades, namely fourth through eighth grade in the United States. The text prepares future instructors to fully understand the mathematical content taught in lower and higher grades, build upon the knowledge their students will bring to the classroom, and prepare students for study of more advanced topics. The book focuses on broad concepts rather than detailed techniques. Over the course of five targeted chapters, students are introduced to key calculus concepts that relate to limits, derivatives, and integrals. Each chapter begins with a description of prerequisite knowledge and brief warmup exercises to prepare the reader for forthcoming content. Students are guided through a set of exercises that demonstrate the concepts in action, with distinct opportunities for input from their instructor and the use of technology (graphing calculators, spreadsheets, etc.) to encourage practical application. Designed to help students sharpen their conceptual knowledge of calculus concepts, Fundamentals of Calculus for Teachers is an ideal resource for courses that prepare future instructors to teach classes in middle-grades mathematics.
Originating from the 42nd conference on Boundary Elements and other Mesh Reduction Methods (BEM/MRM), the research presented in this book consist of high quality papers that report on advances in techniques that reduce or eliminate the type of meshes associated with such methods as finite elements or finite differences. The maturity of BEM since 1978 has resulted in a substantial number of industrial applications which demonstrate the accuracy, robustness and easy use of the technique. Their range still needs to be widened, taking into account the potentialities of the Mesh Reduction techniques in general. As design, analysis and manufacture become more integrated the chances are that the users will be less aware of the capabilities of the analytical techniques that are at the core of the process. This reinforces the need to retain expertise in certain specialised areas of numerical methods, such as BEM/MRM, to ensure that all new tools perform satisfactorily in the integrated process. The papers in this volume help to expand the range of applications as well as the type of materials in response to industrial and professional requirements. Some of the topics include: Hybrid foundations; Meshless and mesh reduction methods; Structural mechanics; Solid mechanics; Heat and mass transfer; Electrical engineering and electromagnetics; Fluid flow modelling; Damage mechanics and fracture; Dynamics and vibrations analysis.
This book introduces the fundamental concepts, methods, and applications of Hausdorff calculus, with a focus on its applications in fractal systems. Topics such as the Hausdorff diffusion equation, Hausdorff radial basis function, Hausdorff derivative nonlinear systems, PDE modeling, statistics on fractals, etc. are discussed in detail. It is an essential reference for researchers in mathematics, physics, geomechanics, and mechanics.
The maturity of BEM over the last few decades has resulted in a substantial number of industrial applications of the method; this demonstrates its accuracy, robustness and ease of use. The range of applications still needs to be widened, taking into account the potentialities of the Mesh Reduction techniques in general. Theoretical developments and new formulations have been reported over the last few decades, helping to expand the range of boundary elements and other mesh reduction methods (BEM/MRM) applications as well as the type of modelled materials in response to the requirements of contemporary industrial and professional environments. As design, analysis and manufacture become more integrated, the chances are that software users will be less aware of the capabilities of the analytical techniques that are at the core of the process. This reinforces the need to retain expertise in certain specialised areas of numerical methods, such as BEM/MRM, to ensure that all new tools perform satisfactorily within the aforementioned integrated process. The papers included were presented at the 44th International Conference on Boundary Elements and other Mesh Reduction Methods and report advances in techniques that reduce or eliminate the type of meshes associated with finite elements or finite differences.
The book provides the reader with the different types of functional
equations that s/he can find in practice, showing, step by step,
how they can be solved.
This handbook is volume II in a series collecting mathematical
state-of-the-art surveys in the field of dynamical systems. Much of
this field has developed from
The geometry of power exponents includes the Newton polyhedron,
normal cones of its faces, power and logarithmic transformations.
On the basis of the geometry universal algorithms for
simplifications of systems of nonlinear equations (algebraic,
ordinary differential and partial differential) were developed.
Most mathematicians, engineers, and many other scientists are well-acquainted with theory and application of ordinary differential equations. This book seeks to present Volterra integral and functional differential equations in that same framwork, allowing the readers to parlay their knowledge of ordinary differential equations into theory and application of the more general problems. Thus, the presentation starts slowly with very familiar concepts and shows how these are generalized in a natural way to problems involving a memory. Liapunov's direct method is gently introduced and applied to many particular examples in ordinary differential equations, Volterra integro-differential equations, and functional differential equations.
This book is a self-contained account of the method based on Carleman estimates for inverse problems of determining spatially varying functions of differential equations of the hyperbolic type by non-overdetermining data of solutions. The formulation is different from that of Dirichlet-to-Neumann maps and can often prove the global uniqueness and Lipschitz stability even with a single measurement. These types of inverse problems include coefficient inverse problems of determining physical parameters in inhomogeneous media that appear in many applications related to electromagnetism, elasticity, and related phenomena. Although the methodology was created in 1981 by Bukhgeim and Klibanov, its comprehensive development has been accomplished only recently. In spite of the wide applicability of the method, there are few monographs focusing on combined accounts of Carleman estimates and applications to inverse problems. The aim in this book is to fill that gap. The basic tool is Carleman estimates, the theory of which has been established within a very general framework, so that the method using Carleman estimates for inverse problems is misunderstood as being very difficult. The main purpose of the book is to provide an accessible approach to the methodology. To accomplish that goal, the authors include a direct derivation of Carleman estimates, the derivation being based essentially on elementary calculus working flexibly for various equations. Because the inverse problem depends heavily on respective equations, too general and abstract an approach may not be balanced. Thus a direct and concrete means was chosen not only because it is friendly to readers but also is much more relevant. By practical necessity, there is surely a wide range of inverse problems and the method delineated here can solve them. The intention is for readers to learn that method and then apply it to solving new inverse problems.
This second extended edition of the classic reference on the extension problem of holomorphic functions in pluricomplex analysis contains a wealth of additional material, organized under the original chapter structure, and covers in a self-contained way all new and recent developments and theorems that appeared since the publication of the first edition about twenty years ago.
The authors give a systematic introduction to boundary value problems (BVPs) for ordinary differential equations. The book is a graduate level text and good to use for individual study. With the relaxed style of writing, the reader will find it to be an enticing invitation to join this important area of mathematical research. Starting with the basics of boundary value problems for ordinary differential equations, linear equations and the construction of Green's functions are presented clearly.A discussion of the important question of the existence of solutions to both linear and nonlinear problems plays a central role in this volume and this includes solution matching and the comparison of eigenvalues.The important and very active research area on existence and multiplicity of positive solutions is treated in detail. The last chapter is devoted to nodal solutions for BVPs with separated boundary conditions as well as for non-local problems.While this Volume II complements , it can be used as a stand-alone work.
Brunello Terreni (1953-2000) was a researcher and teacher with vision and dedication. The present volume is dedicated to the memory of Brunello Terreni. His mathematical interests are reflected in 20 expository articles written by distinguished mathematicians. The unifying theme of the articles is "evolution equations and functional analysis," which is presented in various and diverse forms: parabolic equations, semigroups, stochastic evolution, optimal control, existence, uniqueness and regularity of solutions, inverse problems as well as applications. Contributors: P. Acquistapace, V. Barbu, A. Briani, L. Boccardo, P. Colli Franzone, G. Da Prato, D. Donatelli, A. Favini, M. Fuhrmann, M. Grasselli, R. Illner, H. Koch, R. Labbas, H. Lange, I. Lasiecka, A. Lorenzi, A. Lunardi, P. Marcati, R. Nagel, G. Nickel, V. Pata, M. M. Porzio, B. Ruf, G. Savare, R. Schnaubelt, E. Sinestrari, H. Tanabe, H. Teismann, E. Terraneo, R. Triggiani, A. Yagi
This is the second of a two-volume series on sampling theory. The mathematical foundations were laid in the first volume, and this book surveys the many applications of sampling theory both within mathematics and in other areas of science. Many of the topics covered here are not found in other books, and all are given an up to date treatment bringing the reader's knowledge up to research level. This book consists of ten chapters, written by ten different teams of authors, and the contents range over a wide variety of topics including combinatorial analysis, number theory, neural networks, derivative sampling, wavelets, stochastic signals, random fields, and abstract harmonic analysis. There is a comprehensive, up to date bibliography.
"Difference Equations, Second Edition," presents a practical introduction to this important field of solutions for engineering and the physical sciences. Topic coverage includes numerical analysis, numerical methods, differential equations, combinatorics and discrete modeling. A hallmark of this revision is the diverse application to many subfields of mathematics. * Phase plane analysis for systems of two linear equations
This book presents 29 invited articles written by participants of the International Workshop on Operator Theory and its Applications held in Chemnitz in 2017. The contributions include both expository essays and original research papers illustrating the diversity and beauty of insights gained by applying operator theory to concrete problems. The topics range from control theory, frame theory, Toeplitz and singular integral operators, Schroedinger, Dirac, and Kortweg-de Vries operators, Fourier integral operator zeta-functions, C*-algebras and Hilbert C*-modules to questions from harmonic analysis, Monte Carlo integration, Fibonacci Hamiltonians, and many more. The book offers researchers in operator theory open problems from applications that might stimulate their work and shows those from various applied fields, such as physics, engineering, or numerical mathematics how to use the potential of operator theory to tackle interesting practical problems.
This book features a selection of articles based on the XXXV Bialowieza Workshop on Geometric Methods in Physics, 2016. The series of Bialowieza workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. The works in this book, based on presentations given at the workshop, are previously unpublished, at the cutting edge of current research, typically grounded in geometry and analysis, and with applications to classical and quantum physics. In 2016 the special session "Integrability and Geometry" in particular attracted pioneers and leading specialists in the field. Traditionally, the Bialowieza Workshop is followed by a School on Geometry and Physics, for advanced graduate students and early-career researchers, and the book also includes extended abstracts of the lecture series.
This volume contains the proceedings of the Kovalevsky symposium held in Stockholm 2000. The first part is devoted to the life of S. Kovalevsky, the first female professor of mathematics, who influenced the development of European science during the last century. Historical notes by G. Mittag-Leffler and copies of official documents related to her life as well as several articles on her life and mathematics are presented. The main articles by J.-E. BjArk describe her life and professorship at Stockholm University. Part two of the volume contains 23 contributions in pure and applied mathematics, and in mathematical physics resulting from the lectures delivered within the program of the symposium.
This book brings together carefully selected, peer-reviewed works on mathematical biology presented at the BIOMAT International Symposium on Mathematical and Computational Biology, which was held at the Institute of Numerical Mathematics, Russian Academy of Sciences, in October 2017, in Moscow. Topics covered include, but are not limited to, the evolution of spatial patterns on metapopulations, problems related to cardiovascular diseases and modeled by boundary control techniques in hemodynamics, algebraic modeling of the genetic code, and multi-step biochemical pathways. Also, new results are presented on topics like pattern recognition of probability distribution of amino acids, somitogenesis through reaction-diffusion models, mathematical modeling of infectious diseases, and many others. Experts, scientific practitioners, graduate students and professionals working in various interdisciplinary fields will find this book a rich resource for research and applications alike.
The focus of this book is on the Schatten-von Neumann properties and the product formulas of localization operators defined in terms of infinite-dimensional and square-integrable representations of locally compact and Hausdorff groups. Wavelet transforms, which are the building blocks of localization operators, are also studied in their own right. Daubechies operators on the Weyl-Heisenberg group, localization operators on the affine group, and wavelet multipliers on the Euclidean space are investigated in detail. The study is carried out in the perspective of pseudo-differential operators, quantization and signal analysis. Although the emphasis is put on locally compact and Hausdorff groups, results in the context of homogeneous spaces are given in order to unify the various localization operators into a single theory. Several new spectral results on pseudo-differential operators in the setting of localization operators are presented for the first time. The book is accessible to graduate students and mathematicians who have a basic knowledge of measure theory and functional analysis and wish to have a fast track to the frontier of research at the interface of pseudo-differential operators, quantization and signal analysis. |
You may like...
Calculus - A Complete Course
Robert Adams, Christopher Essex
Hardcover
R1,999
Discovery Miles 19 990
Calculus, Metric Edition
James Stewart, Saleem Watson, …
Hardcover
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
Precalculus: Mathematics for Calculus…
Lothar Redlin, Saleem Watson, …
Paperback
Finite Mathematics and Applied Calculus
Stefan Waner, Steven Costenoble
Paperback
R849
Discovery Miles 8 490
Nonlinear Differential Problems with…
Dumitru Motreanu
Paperback
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
(1)
|