![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis
This book presents a systematic treatment of the Rademacher system, one of the most important unifying concepts in mathematics, and includes a number of recent important and beautiful results related to the Rademacher functions. The book discusses the relationship between the properties of the Rademacher system and geometry of some function spaces. It consists of three parts, in which this system is considered respectively in Lp-spaces, in general symmetric spaces and in certain classes of non-symmetric spaces (BMO, Paley, Cesaro, Morrey). The presentation is clear and transparent, providing all main results with detailed proofs. Moreover, literary and historical comments are given at the end of each chapter. This book will be suitable for graduate students and researchers interested in functional analysis, theory of functions and geometry of Banach spaces.
Considering that the motion of strings with finitely many masses on them is described by difference equations, this book presents the spectral theory of such problems on finite graphs of strings. The direct problem of finding the eigenvalues as well as the inverse problem of finding strings with a prescribed spectrum are considered. This monograph gives a comprehensive and self-contained account on the subject, thereby also generalizing known results. The interplay between the representation of rational functions and their zeros and poles is at the center of the methods used. The book also unravels connections between finite dimensional and infinite dimensional spectral problems on graphs, and between self-adjoint and non-self-adjoint finite-dimensional problems. This book is addressed to researchers in spectral theory of differential and difference equations as well as physicists and engineers who may apply the presented results and methods to their research.
This book provides the main results and ideas in the theories of completely bounded maps, operator spaces, and operator algebras, along with some of their main applications. It requires only a basic background in functional analysis to read through the book. The descriptions and discussions of the topics are self-explained. It is appropriate for graduate students new to the subject and the field. The book starts with the basic representation theorems for abstract operator spaces and their mappings, followed by a discussion of tensor products and the analogue of Grothendieck's approximation property. Next, the operator space analogues of the nuclear, integral, and absolutely summing mappings are discussed. In what is perhaps the deepest part of the book, the authors present the remarkable ""non-classical"" phenomena that occur when one considers local reflexivity and exactness for operator spaces. This is an area of great beauty and depth, and it represents one of the triumphs of the subject. In the final part of the book, the authors consider applications to non-commutative harmonic analysis and non-self-adjoint operator algebra theory. Operator space theory provides a synthesis of Banach space theory with the non-commuting variables of operator algebra theory, and it has led to exciting new approaches in both disciplines. This book is an indispensable introduction to the theory of operator spaces.
Handbook of Differential Equations: Evolutionary Equations is the last text of a five-volume reference in mathematics and methodology. This volume follows the format set by the preceding volumes, presenting numerous contributions that reflect the nature of the area of evolutionary partial differential equations. The book is comprised of five chapters that feature the following: A thorough discussion of the shallow-equations theory, which is used as a model for water waves in rivers, lakes and oceans. It covers the issues of modeling, analysis and applications * Evaluation of the singular limits of reaction-diffusion systems, where the reaction is fast compared to the other processes; and applications that range from the theory of the evolution of certain biological processes to the phenomena of Turing and cross-diffusion instability Detailed discussion of numerous problems arising from nonlinear optics, at the high-frequency and high-intensity regime * Geometric and diffractive optics, including wave interactions Presentation of the issues of existence, blow-up and asymptotic stability of solutions, from the equations of solutions to the equations of linear and non-linear thermoelasticity Answers to questions about unique space, such as continuation and backward uniqueness for linear second-order parabolic equations. Research mathematicians, mathematics lecturers and instructors, and academic students will find this book invaluable
This book is the proceeding of the International Workshop on Operator Theory and Applications (IWOTA) held in July 2018 in Shanghai, China. It consists of original papers, surveys and expository articles in the broad areas of operator theory, operator algebras and noncommutative topology. Its goal is to give graduate students and researchers a relatively comprehensive overview of the current status of research in the relevant fields. The book is also a special volume dedicated to the memory of Ronald G. Douglas who passed away on February 27, 2018 at the age of 79. Many of the contributors are Douglas' students and past collaborators. Their articles attest and commemorate his life-long contribution and influence to these fields.
This book addresses the global study of finite and infinite singularities of planar polynomial differential systems, with special emphasis on quadratic systems. While results covering the degenerate cases of singularities of quadratic systems have been published elsewhere, the proofs for the remaining harder cases were lengthier. This book covers all cases, with half of the content focusing on the last non-degenerate ones. The book contains the complete bifurcation diagram, in the 12-parameter space, of global geometrical configurations of singularities of quadratic systems. The authors' results provide - for the first time - global information on all singularities of quadratic systems in invariant form and their bifurcations. In addition, a link to a very helpful software package is included. With the help of this software, the study of the algebraic bifurcations becomes much more efficient and less time-consuming. Given its scope, the book will appeal to specialists on polynomial differential systems, pure and applied mathematicians who need to study bifurcation diagrams of families of such systems, Ph.D. students, and postdoctoral fellows.
This book discusses the numerical treatment of delay differential equations and their applications in bioscience. A wide range of delay differential equations are discussed with integer and fractional-order derivatives to demonstrate their richer mathematical framework compared to differential equations without memory for the analysis of dynamical systems. The book also provides interesting applications of delay differential equations in infectious diseases, including COVID-19. It will be valuable to mathematicians and specialists associated with mathematical biology, mathematical modelling, life sciences, immunology and infectious diseases.
The objective of this book is to construct a rigorous mathematical approach to linear hereditary problems of wave propagation theory and demonstrate the efficiency of mathematical theorems in hereditary mechanics. By using both real end complex Tauberian techniques for the Laplace transform, a classification of near-front asymptotics of solutions to considered equations is given-depending on the singularity character of the memory function. The book goes on to derive the description of the behavior of these solutions and demonstrates the importance of nonlinear Laplace transform in linear hereditary elasticity. This book is of undeniable value to researchers working in areas of mathematical physics and related fields.
This edited volume aims at giving an overview of recent advances in the theory and applications of Partial Differential Equations and energy functionals related to the fractional Laplacian operator as well as to more general integro-differential operators with singular kernel of fractional differentiability. After being investigated firstly in Potential Theory and Harmonic Analysis, fractional operators defined via singular integral are nowadays riveting great attention in different research fields related to Partial Differential Equations with nonlocal terms, since they naturally arise in many different contexts, as for instance, dislocations in crystals, nonlocal minimal surfaces, the obstacle problem, the fractional Yamabe problem, and many others. Much progress has been made during the last years, and this edited volume presents a valuable update to a wide community interested in these topics. List of contributors Claudia Bucur, Zhen-Qing Chen, Francesca Da Lio, Donatella Danielli, Serena Dipierro, Rupert L. Frank, Maria del Mar Gonzalez, Moritz Kassmann, Tuomo Kuusi, Giuseppe Mingione, Giovanni Molica Bisci, Stefania Patrizi, Xavier Ros-Oton, Sandro Salsa, Yannick Sire, Enrico Valdinoci, Xicheng Zhang.
This book provides a timely and comprehensive overview of current theories and methods in fuzzy logic, as well as relevant applications in a variety of fields of science and technology. Dedicated to Lotfi A. Zadeh on his one year death anniversary, the book goes beyond a pure commemorative text. Yet, it offers a fresh perspective on a number of relevant topics, such as computing with words, theory of perceptions, possibility theory, and decision-making in a fuzzy environment. Written by Zadeh's closest colleagues and friends, the different chapters are intended both as a timely reference guide and a source of inspiration for scientists, developers and researchers who have been dealing with fuzzy sets or would like to learn more about their potential for their future research.
Nonlinear Approaches in Engineering Applications 2 focuses on the application of nonlinear approaches to different engineering and science problems. The selection of the topics for this book is based on the best papers presented in the ASME 2010 and 2011 in the tracks of Dynamic Systems and Control, Optimal Approaches in Nonlinear Dynamics and Acoustics, both of which were organized by the editors. For each selected topic, detailed concept development, derivations and relevant knowledge are provided for the convenience of the readers. The topics that have been selected are of great interest in the fields of engineering and physics and this book is designed to appeal to engineers and researchers working in a broad range of practical topics and approaches.
An infinite-dimensional manifold is a topological manifold modeled on some infinite-dimensional homogeneous space called a model space. In this book, the following spaces are considered model spaces: Hilbert space (or non-separable Hilbert spaces), the Hilbert cube, dense subspaces of Hilbert spaces being universal spaces for absolute Borel spaces, the direct limit of Euclidean spaces, and the direct limit of Hilbert cubes (which is homeomorphic to the dual of a separable infinite-dimensional Banach space with bounded weak-star topology). This book is designed for graduate students to acquire knowledge of fundamental results on infinite-dimensional manifolds and their characterizations. To read and understand this book, some background is required even for senior graduate students in topology, but that background knowledge is minimized and is listed in the first chapter so that references can easily be found. Almost all necessary background information is found in Geometric Aspects of General Topology, the author's first book. Many kinds of hyperspaces and function spaces are investigated in various branches of mathematics, which are mostly infinite-dimensional. Among them, many examples of infinite-dimensional manifolds have been found. For researchers studying such objects, this book will be very helpful. As outstanding applications of Hilbert cube manifolds, the book contains proofs of the topological invariance of Whitehead torsion and Borsuk's conjecture on the homotopy type of compact ANRs. This is also the first book that presents combinatorial -manifolds, the infinite-dimensional version of combinatorial n-manifolds, and proofs of two remarkable results, that is, any triangulation of each manifold modeled on the direct limit of Euclidean spaces is a combinatorial -manifold and the Hauptvermutung for them is true.
Progress in mathematics is based on a thorough understanding of the mathematical objects under consideration, and yet many textbooks and monographs proceed to discuss general statements and assume that the reader can and will provide the mathematical infrastructure of examples and counterexamples. This book makes a deliberate effort to correct this situation: it is a collection of examples. The following table of contents describes its breadth and reveals the underlying motivation--differential geometry--in its many facets: Riemannian, symplectic, K*adahler, hyperK*adahler, as well as complex and quaternionic.
This handbook is the fourth volume in a series of volumes devoted
to self-contained and up-to-date surveys in the theory of ordinary
differential equations, with an additional effort to achieve
readability for mathematicians and scientists from other related
fields so that the chapters have been made accessible to a wider
audience.
This handbook is the sixth and last volume in the series devoted to
stationary partial differential equations. The topics covered by
this volume include in particular domain perturbations for boundary
value problems, singular solutions of semilinear elliptic problems,
positive solutions to elliptic equations on unbounded domains,
symmetry of solutions, stationary compressible Navier-Stokes
equation, Lotka-Volterra systems with cross-diffusion, and fixed
point theory for elliptic boundary value problems.
This contributed volume showcases research and survey papers devoted to a broad range of topics on functional equations, ordinary differential equations, partial differential equations, stochastic differential equations, optimization theory, network games, generalized Nash equilibria, critical point theory, calculus of variations, nonlinear functional analysis, convex analysis, variational inequalities, topology, global differential geometry, curvature flows, perturbation theory, numerical analysis, mathematical finance and a variety of applications in interdisciplinary topics. Chapters in this volume investigate compound superquadratic functions, the Hyers-Ulam Stability of functional equations, edge degenerate pseudo-hyperbolic equations, Kirchhoff wave equation, BMO norms of operators on differential forms, equilibrium points of the perturbed R3BP, complex zeros of solutions to second order differential equations, a higher-order Ginzburg-Landau-type equation, multi-symplectic numerical schemes for differential equations, the Erdos-Renyi network model, strongly m-convex functions, higher order strongly generalized convex functions, factorization and solution of second order differential equations, generalized topologically open sets in relator spaces, graphical mean curvature flow, critical point theory in infinite dimensional spaces using the Leray-Schauder index, non-radial solutions of a supercritical equation in expanding domains, the semi-discrete method for the approximation of the solution of stochastic differential equations, homotopic metric-interval L-contractions in gauge spaces, Rhoades contractions theory, network centrality measures, the Radon transform in three space dimensions via plane integration and applications in positron emission tomography boundary perturbations on medical monitoring and imaging techniques, the KdV-B equation and biomedical applications.
This book emphasizes those topological methods (of dynamical systems) and theories that are useful in the study of different classes of nonautonomous evolutionary equations. The content is developed over six chapters, providing a thorough introduction to the techniques used in the Chapters III-VI described by Chapter I-II. The author gives a systematic treatment of the basic mathematical theory and constructive methods for Nonautonomous Dynamics. They show how these diverse topics are connected to other important parts of mathematics, including Topology, Functional Analysis and Qualitative Theory of Differential/Difference Equations. Throughout the book a nice balance is maintained between rigorous mathematics and applications (ordinary differential/difference equations, functional differential equations and partial difference equations). The primary readership includes graduate and PhD students and researchers in in the field of dynamical systems and their applications (control theory, economic dynamics, mathematical theory of climate, population dynamics, oscillation theory etc).
A collection of self contained state-of-the art surveys. The
authors have made an effort to achieve readability for
mathematicians and scientists from other fields, for this series of
handbooks to be a new reference for research, learning and
teaching.
This study aid on numerical optimization techniques is intended for university undergraduate and postgraduate mechanical engineering students. Optimization procedures are becoming more and more important for lightweight design, where weight reduction can, for example in the case of automotive or aerospace industry, lead to lower fuel consumption and a corresponding reduction in operational costs as well as beneficial effects on the environment. Based on the free computer algebra system Maxima, the authors present procedures for numerically solving problems in engineering mathematics as well as applications taken from traditional courses on the strength of materials. The mechanical theories focus on the typical one-dimensional structural elements, i.e., springs, bars, and Euler-Bernoulli beams, in order to reduce the complexity of the numerical framework and limit the resulting design to a low number of variables. The use of a computer algebra system and the incorporated functions, e.g., for derivatives or equation solving, allows a greater focus on the methodology of the optimization methods and not on standard procedures. The book also provides numerous examples, including some that can be solved using a graphical approach to help readers gain a better understanding of the computer implementation.
The book has been made more illustrative and self-contained so as to cater to the need of students and teachers at graduate and postgraduate level. It is also meant for engineering students and other professionals as well as competitive examinations. To reinforce and solidify the understanding, some of the chapters have been rearranged and several new exercises and solved examples have been incorporated. The section on limits inferior and superior of sequences is introduced and discussed in detail. Every care has been taken to explain and elucidate the different concepts so as to provide conceptual clarity to the readers.
The spectral geometry of infinite graphs deals with three major themes and their interplay: the spectral theory of the Laplacian, the geometry of the underlying graph, and the heat flow with its probabilistic aspects. In this book, all three themes are brought together coherently under the perspective of Dirichlet forms, providing a powerful and unified approach. The book gives a complete account of key topics of infinite graphs, such as essential self-adjointness, Markov uniqueness, spectral estimates, recurrence, and stochastic completeness. A major feature of the book is the use of intrinsic metrics to capture the geometry of graphs. As for manifolds, Dirichlet forms in the graph setting offer a structural understanding of the interaction between spectral theory, geometry and probability. For graphs, however, the presentation is much more accessible and inviting thanks to the discreteness of the underlying space, laying bare the main concepts while preserving the deep insights of the manifold case. Graphs and Discrete Dirichlet Spaces offers a comprehensive treatment of the spectral geometry of graphs, from the very basics to deep and thorough explorations of advanced topics. With modest prerequisites, the book can serve as a basis for a number of topics courses, starting at the undergraduate level.
This volume collects the edited and reviewed contributions presented in the 8th iTi Conference on Turbulence, held in Bertinoro, Italy, in September 2018. In keeping with the spirit of the conference, the book was produced afterwards, so that the authors had the opportunity to incorporate comments and discussions raised during the event. The respective contributions, which address both fundamental and applied aspects of turbulence, have been structured according to the following main topics: I TheoryII Wall-bounded flowsIII Simulations and modellingIV ExperimentsV Miscellaneous topicsVI Wind energy
This two-volume set presents combinatorial functional equations using an algebraic approach, and illustrates their applications in combinatorial maps, graphs, networks, etc. The first volume mainly presents basic concepts and the theoretical background. Differential (ordinary and partial) equations and relevant topics are discussed in detail. |
![]() ![]() You may like...
Student Solutions Manual for Calculus…
Robert Adams, Christopher Essex
Paperback
Calculus - A Complete Course
Robert Adams, Christopher Essex
Hardcover
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
Calculus, Metric Edition
James Stewart, Saleem Watson, …
Hardcover
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,968
Discovery Miles 29 680
|