![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Chemical physics
Recent advances from internationally recognized researchers Advances in Chemical Physics is the only series of volumes available to represent the cutting edge of research in the discipline. It creates a forum for critical, authoritative evaluations of advances in every area of the chemical physics field. Volume 128 continues to report recent developments with significant, up-to-date chapters by internationally recognized researchers. Volume 128 includes: "Nucleation in Polymer Crystallization," by M. Muthukumar; "Theory of Constrained Brownian Motion," by David C. Morse; "Superparamagnetism and Spin-glass Dynamics of Interacting Magnetic Nanoparticle Systems," by Petra E. Jönnson; "Wavepacket Theory of Photodissociation and Reactive Scattering," by Gabriel G. Balint-Kurti; and "The Momentum Density Perspective of the Electronic Structure of Atoms and Molecules," by Ajit J. Thakkar. Students and professionals in chemical physics and physical chemistry, as well as those working in the chemical, pharmaceutical, and polymer industries, will find Advances in Chemical Physics, Volume 128 to be an indispensable survey of the field.
This book provides an introduction to optical multidimensional coherent spectroscopy, a relatively new method of studying materials based on using ultrashort light pulses to perform spectroscopy. The technique has been developed and perfected over the last 25 years, resulting in multiple experimental approaches and applications to a broad array of systems ranging from atoms and molecules to solids and biological systems. Indeed, while this method is most often used by physical chemists, it is also relevant to materials of interest to physicists, which is the primary focus of this book. As well as an introduction to the method, the book also provides tutorials on the interpretation of the rather complex spectra that is broadly applicable across all subfields, and finishes with a survey of several emerging material systems and a discussion of future directions.
Over the past few decades, experimental excited state chemistry has moved into the femtochemistry era, where time resolution is short enough to resolve nuclear dynamics. Recently, the time resolution has moved into the attosecond domain, where electronic motion can be resolved as well. Theoretical chemistry is becoming an essential partner in such experimental investigations; not only for the interpretation of the results, but also to suggest new experiments. This book provides an integrated approach. The three main facets of excited-state theoretical chemistry; namely, mechanism, which focuses on the shape of the potential surface along the reaction path, multi-state electronic structure methods, and non-adiabatic dynamics, have been brought together into one volume. Theoretical Chemistry for Electronic Excited States is aimed at both theorists and experimentalists, involved in theoretical chemistry, in electronic structure computations and in molecular dynamics. The book will provide both with the knowledge and understanding to discover ways to work together more closely through its unified approach.
This series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. This stand-alone special topics volume reports recent advances in electron-transfer research with significant, up-to-date chapters by internationally recognized researchers.
The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. This volume explores the following topics: * Thermodynamic Perturbation Theory for Associating Molecules * Path Integrals and Effective Potentials in the Study of Monatomic Fluids at Equilibrium * Sponteneous Symmetry Breaking in Matter Induced by Degeneracies and Pseudogeneracies * Mean-Field Electrostatics Beyond the Point-Charge Description * First Passage Processes in Cellular Biology * Theoretical Modeling of Vibrational Spectra and Proton Tunneling in Hydroen-Bonded Systems
The theory of intermolecular forces has advanced very greatly in recent years. It has become possible to carry out accurate calculations of intermolecular forces for molecules of useful size, and to apply the results to important practical applications such as understanding protein structure and function, and predicting the structures of molecular crystals. The Theory of Intermolecular Forces sets out the mathematical techniques that are needed to describe and calculate intermolecular interactions and to handle the more elaborate mathematical models. It describes the methods that are used to calculate them, including recent developments in the use of density functional theory and symmetry-adapted perturbation theory. The use of higher-rank multipole moments to describe electrostatic interactions is explained in both Cartesian and spherical tensor formalism, and methods that avoid the multipole expansion are also discussed. Modern ab initio perturbation theory methods for the calculation of intermolecular interactions are discussed in detail, and methods for calculating properties of molecular clusters and condensed matter for comparison with experiment are surveyed.
Nanostructured oxide materials - ultra-thin films, nanoparticles and other nanometer-scale objects - play prominent roles in many aspects of our every-day life, in nature and in technological applications, among which is the all-oxide electronics of tomorrow. Due to their reduced dimensions and dimensionality, they strongly interact with their environment: gaseous atmosphere, water or support. Their novel physical and chemical properties are the subject of this book, from both a fundamental and an applied perspective. Oxide Thin Films and Nanostructures reviews and illustrates the various methodologies for their growth, fabrication, experimental and theoretical characterization. The role of key parameters such as film thickness, nanoparticle size and support interactions in driving their fundamental properties is underlined. At the ultimate thickness limit, two-dimensional oxide materials are generated, whose functionalities and potential applications are described. The emerging field of cation mixing is mentioned, which opens new avenues for engineering many oxide properties, as witnessed by natural oxide nanomaterials such as clay minerals, which, beyond their role at the Earth's surface, are now widely used in a whole range of human activities. Oxide nanomaterials are involved in many interdisciplinary fields of advanced nanotechnologies. Catalysis, photocatalysis, solar energy materials, fuel cells, corrosion protection, and biotechnological applications are amongst the areas where they are making an impact. The book outlines prototypical examples. A cautious glimpse into future developments of scientific activity is finally ventured to round off the presentation.
Time-dependent density-functional theory (TDDFT) describes the quantum dynamics of interacting electronic many-body systems formally exactly and in a practical and efficient manner. TDDFT has become the leading method for calculating excitation energies and optical properties of large molecules, with accuracies that rival traditional wave-function based methods, but at a fraction of the computational cost. This book is the first graduate-level text on the concepts and applications of TDDFT, including many examples and exercises, and extensive coverage of the literature. The book begins with a self-contained review of ground-state DFT, followed by a detailed and pedagogical treatment of the formal framework of TDDFT. It is explained how excitation energies can be calculated from linear-response TDDFT. Among the more advanced topics are time-dependent current-density-functional theory, orbital functionals, and many-body theory. Many applications are discussed, including molecular excitations, ultrafast and strong-field phenomena, excitons in solids, van der Waals interactions, nanoscale transport, and molecular dynamics.
The structural mechanics of proteins that fold into functional shapes, polymers that aggregate and form clusters, and organic macromolecules that bind to inorganic matter can only be understood through statistical physics and thermodynamics. This book reviews the statistical mechanics concepts and tools necessary for the study of structure formation processes in macromolecular systems that are essentially influenced by finite-size and surface effects. Readers are introduced to molecular modeling approaches, advanced Monte Carlo simulation techniques, and systematic statistical analyses of numerical data. Applications to folding, aggregation, and substrate adsorption processes of polymers and proteins are discussed in great detail. Particular emphasis is placed on the reduction of complexity by coarse-grained modeling, which allows for the efficient, systematic investigation of structural phases and transitions. Providing insight into modern research at this interface between physics, chemistry, biology, and nanotechnology, this book is an excellent reference for graduate students and researchers.
Reviews of previous volumes ..".continues the tradition of this series on high-quality authoritative chapters in a wide-range of chemical physics topics." Journal of the American Chemical Society. The newest volume in the prestigious Advances in Chemical Physics Series, edited by Nobel Prize winner, Ilya Prigogine and renowned authority Stuart A. Rice, provides general information about a wide variety of topics in chemical physics. Experts present comprehensive analyses of subjects of interest, and encourage the expression of individual points of view. This approach to presenting an overview of a subject will both stimulate new research and serve as a personalized learning text for beginners in the field.
Acids and bases are ubiquitous in chemistry. Our understanding of them, however, is dominated by their behaviour in water. Transfer to non-aqueous solvents leads to profound changes in acid-base strengths and to the rates and equilibria of many processes: for example, synthetic reactions involving acids, bases and nucleophiles; isolation of pharmaceutical actives through salt formation; formation of zwitter- ions in amino acids; and chromatographic separation of substrates. This book seeks to enhance our understanding of acids and bases by reviewing and analysing their behaviour in non-aqueous solvents. The behaviour is related where possible to that in water, but correlations and contrasts between solvents are also presented. Fundamental background material is provided in the initial chapters: quantitative aspects of acid-base equilibria, including definitions and relationships between solution pH and species distribution; the influence of molecular structure on acid strengths; and acidity in aqueous solution. Solvent properties are reviewed, along with the magnitude of the interaction energies of solvent molecules with (especially) ions; the ability of solvents to participate in hydrogen bonding and to accept or donate electron pairs is seen to be crucial. Experimental methods for determining dissociation constants are described in detail. In the remaining chapters, dissociation constants of a wide range of acids in three distinct classes of solvents are discussed: protic solvents, such as alcohols, which are strong hydrogen-bond donors; basic, polar aprotic solvents, such as dimethylformamide; and low-basicity and low polarity solvents, such as acetonitrile and tetrahydrofuran. Dissociation constants of individual acids vary over more than 20 orders of magnitude among the solvents, and there is a strong differentiation between the response of neutral and charged acids to solvent change. Ion-pairing and hydrogen-bonding equilibria, such as between phenol and phenoxide ions, play an increasingly important role as the solvent polarity decreases, and their influence on acid-base equilibria and salt formation is described.
In the modern world of ever smaller devices and nanotechnology, electron crystallography emerges as the most important method capable of determining the structure of minute objects down to the size of individual atoms. Crystals of only a few millionths of a millimetre are studied. This is the first textbook explaining how this is done. Great attention is given to symmetry in crystals and how it manifests itself in electron microscopy and electron diffraction, and how this symmetry can be determined and taken advantage of in achieving improved electron microscopy images and solving crystal structures from electron diffraction patterns. Theory and practice are combined; experimental images, diffraction patterns, formulae and numerical data are discussed in parallel, giving the reader a complete understanding of what goes on inside the "black boxes" of computer programs. This up-to-date textbook contains the newest techniques in electron crystallography, including detailed descriptions and explanations of the recent remarkable successes in determining the very complex structures of zeolites and intermetallics. The controversial issue of whether there is phase information present in electron micrsocopy images or not is also resolved once and for all. The extensive appendices include computer labs which have been used at various courses at Stockholm University and international schools in electron crystallography, with applications to the textbook. Students can download image processing programs and follow these lab instructions to get a hands-on experience of electron crystallography.
Selected Works of Ya. B. Zeldovich is a two-volume collection of over 100 articles spanning half a century of work by the late Soviet scientist Yakov Borisovich Zeldovich. The breadth and depth of Zeldovich's work is staggering. Author of over twenty books and more than 500 scientific articles, he made fundamental contributions in chemical catalysis and kinetics, combustion and the hydrodynamics of explosive phenomena, nuclear chain reactions and nuclear energy, the physics of elementary particles, and the large-scale structure of the universe and cosmology. The importance of this collection lies not only in its documentary value as a collection of key scientific works by a man whose genius was characterized by the Soviet physicist Andrei Sakharov as "probably unique." Zeldovich himself considered his most valuable role to be that of a teacher, to convey to young scientists the how of science. The author of several excellent textbooks on topics ranging from elementary mathematics to advanced methods of mathematical physics, he saw this collection of works, enlarged from the original Russian edition, as a contribution to that end. Here one can see the scientific method at work--and all the enthusiasm, the breakthroughs, and the mistakes associated with real scientific endeavor. Commentaries by the author and the editors are included with each paper serving to enhance both the historical and the pedagogical value of this edition. Originally published in 1992. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
The Advances in Chemical Physics series presents the cutting edge in every area of the discipline and provides the field with a forum for critical, authoritative evaluations of advances. It provides an editorial framework that makes each volume an excellent supplement to advanced graduate classes, with contributions from experts around the world and a handy glossary for easy reference on new terminology. This series is a wonderful guide for students and professionals in chemical physics and physical chemistry, from academia, government, and industries including chemicals, pharmaceuticals, and polymers.
Over the past several decades, a This book deals with the characterisation of the structure, the structure determination and the study of the physical properties, especially dynamical and electronic properties of aperiodic crystals. The treatment is based on a description in a space with more dimensions than three, the so-called superspace. This allows us to generalise the standard crystallography and to look differently at the dynamics. The three main classes of aperiodic crystals, modulated phases, incommensurate composites and quasicrystals are treated from a unified point of view, which stresses similarities of the various systems. The book assumes as a prerequisite a knowledge of the fundamental techniques of crystallography and the theory of condensed matter, and covers the literature at the forefront of the field. Since the first edition of this book in 2007, the field of aperiodic crystals has developed considerably, with the discovery of new materials and new structures. Progress has been made in structure determination, in the interpretation and understanding of the structural characteristics and in the calculation of electrons and phonons. This new edition reflects these new developments, and it includes discussions of natural quasicrystals, incommensurate magnetic and multiferroic structures, photonic and mesoscopic quasicrystals. The second edition also includes a number of new exercises that give the reader an opportunityt to check their understanding of the material.
Since their development in the 1990s, it has been discovered that diluted nitrides have intriguing properties that are not only distinct from those of conventional semiconductor materials, but also are conducive to various applications in optoelectronics and photonics. The book examines these applications and presents a broad and in-depth look at the basic electronic and optical properties of diluted nitrides. The aim of Physics and Applications of Diluted Nitrides is to provide graduate students, researchers and engineers with a comprehensive overview of the present knowledge and future perspectives of diluted nitrides. Co-authored by a group of leading scientists in the field, this book brings the reader up to speed on the development and current state of diluted nitride applications, as well as the technologies to be developed in the near future.
This book provides a practical guide to molecular dynamics and Monte Carlo simulation techniques used in the modelling of simple and complex liquids. Computer simulation is an essential tool in studying the chemistry and physics of condensed matter, complementing and reinforcing both experiment and theory. Simulations provide detailed information about structure and dynamics, essential to understand the many fluid systems that play a key role in our daily lives: polymers, gels, colloidal suspensions, liquid crystals, biological membranes, and glasses. The second edition of this pioneering book aims to explain how simulation programs work, how to use them, and how to interpret the results, with examples of the latest research in this rapidly evolving field. Accompanying programs in Fortran and Python provide practical, hands-on, illustrations of the ideas in the text.
Preface; Ozonation of Hydrocarbons; Synthesis & Investigation Properties of Epoxy Containing Compounds & Composite Materials on their Basis; Biodegradable Binary & Ternary Blends of Cellulose & Ethyl Cellulose with Synthetic & Natural Polymers; Hydrosilylation Reactions of Polymethylhydrosiloxane with Acrylates & Methacrylates & Solid Polymer Electrolyte Membranes on their Basis; Biodetoxication of Aromatic Hydrocarbons in Aqueous Media; Modern Immunochemical & Biosensor Technologies for Analysis of Environmental Ecotoxicants; Poly (3-Hydroxybutyrate) with Ethylene-Propylene Copolymer Blends: Structure & Calorimetry Properties; Adaptogens Decrease the Generation of Reactive Oxygen Species by Mitochondria; Quantum-Chemical Calculation of Some Molecules Aromatic Olefines by the Method MNDO; Formation of Ozonides & their Stability in the Process of Unsaturated Polymers In Latex; Structures (Monomer & Dimer) of Sodium & Potassium 2-(N-Methylamide)-2-(3',5'-Di-Tert.Butyl-4-Hydroxybenzyl)-Malonates & Biological Properties; Reaction of Ozone with Some Oxygen-Containing Organic Compounds; Enhanced Oil Recovery Using Binary Mixture (BM) Reaction Products as an Alternative to Increasing Reservoir Water Content; Assessment of the Potential of Enhanced Oil Recovery from Reservoirs with High Water Content Using the Heat of Nitrate Oxidation Reactions & In Situ Hydrocarbon Oxidation; Blends of Poly(3-Hydroxybutyrate) with an Ethylene-Propylene Copolymer; Kinetics of Photoinitiated Copolymerization of Bifunctional (Meth)Acrylates till High Conversion: Numerical Verification of Kinetic Model of the Process; Degradation of Films Based on Mixtures of Vinyl Alcohol with Vinyl Acetate Copolymers & Polyhydroxybutyrate under UV-Radiation; Nanofibrous Polyhydroxybutyrate-Based Biomaterials; Influence of Aminoalkoxy- & Glycidoxyalkoxysilanes on Adhesion Characteristics of Ethylene Copolymers; The Study of Influence of Dihydroquercetin & Cyclodextrin Inclusion Complex with the New Dihydroquercetin Derivative on Ozone Oxidation of Fibrinogen; Challenges & Development Perspectives on Nanopatterned Implants Loaded with Drugs; The Structural Analysis of Nanocomposites Polymer/Organoclay Flame-Resistance; The Regularity of Cracks Formation on Vulcanized Elastomers under Ozone Action: Polyisoprene; The Evaluation of Efficiency of Deposition of Dispersed Particles in Inertial Dust Separator; Comparative Evaluation of Viability of Cells of Probiotic Strains by Luminescence Microscopy & Flow Cytometry; The Interrelation Structure & Thermodynamic Properties in the Five-Membered O- & N-Heterocyclic Compounds; Thermodynamic Properties & Structure of Heteroatom Derivatives of Indene; Development of Thermoplastic Vulcanizates Based on Isotactic Polypropylene & Ethylene-Propylene-Diene Elastomer; Conclusion; Index.
This classic monograph provided the first comprehensive account of the physics and chemistry of ice, and remains authoritative and relevant today. Informed by research from physicists, chemists, glaciologists, meteorologists, geophysicists, and molecular biologists, the book places emphasis on the basic physical properties of ice (electrical, optical, mechanical, and thermal), the modes of nucleation and growth of ice, and the interpretation of these phenomena in terms of molecular structure. Applied aspects of ice physics are also discussed. The book should serve both as a reference on ice physics for research workers and as a unified survey of the subject for those new to the field.
This book consists of over 422 problems and their acceptable answers on structural inorganic chemistry at the senior undergraduate and beginning graduate level. The central theme running through these questions is symmetry, bonding and structure: molecular or crystalline. A wide variety of topics are covered, including Electronic States and Configurations of Atoms and Molecules, Introductory Quantum Chemistry, Atomic Orbitals, Hybrid Orbitals, Molecular Symmetry, Molecular Geometry and Bonding, Crystal Field Theory, Molecular Orbital Theory, Vibrational Spectroscopy, Crystal Structure, Transition Metal Chemistry, Metal Clusters: Bonding and Reactivity, and Bioinorganic Chemistry. The questions collected here originate from the examination papers and take-home assignments arising from the teaching of courses in Chemical Bonding, Elementary Quantum Chemistry, Advanced Inorganic Chemistry, and X-Ray Crystallography by the book's two senior authors over the past five decades. The questions have been tested by generations of students taking these courses. The questions in this volume cover essentially all the topics in a typical course in structural inorganic chemistry. The text may be used as a supplement for a variety of inorganic chemistry courses at the senior undergraduate level. It also serves as a problem text to accompany the book Advanced Structural Inorganic Chemistry, co-authored by W.-K. Li, G.-D. Zhou, and T. C. W. Mak (Oxford University Press, 2008).
This is the only series of volumes available that represents the
cutting edge of research relative to advances in chemical physics.?
Provides the chemical physics field with a forum for critical,
authoritative evaluations of advances in every area of the
discipline.
Die einzige fortlaufende Reihe, die sich ausschliesslich den Highlights auf dem Gebiet der chemischen Physik widmet! Der Herausgeber, Nobelpreistrager, I. Prigogine, garantiert fur die ausserordentliche Qualitat der wissenschaftlichen Beitrage. (11/00) |
You may like...
Handbook of Classical Conditioning
David G. Lavond, Joseph E. Steinmetz
Hardcover
R2,724
Discovery Miles 27 240
Hard White - The Mainstreaming of Racism…
Richard C. Fording, Sanford F. Schram
Hardcover
R2,442
Discovery Miles 24 420
|