![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics > Chemical physics
The aim of this book is to relate fluid flows to chemical reactions. It focuses on the establishment of consistent systems of equations with their boundary conditions and interfaces, which allow us to model and deal with complex situations.Chapter 1 is devoted to simple fluids, i.e. to a single chemical constituent. The basic principles of incompressible and compressible fluid mechanics, are presented in the most concise and educational manner possible, for perfect or dissipative fluids. Chapter 2 relates to the flows of fluid mixtures in the presence of chemical reactions. Chapter 3 is concerned with interfaces and lines. Interfaces have been the subject of numerous publications and books for nearly half a century. Lines and curvilinear media are less known Several appendices on mathematical notation, thermodynamics and mechanics methods are grouped together in Chapter 4.This summary presentation of the basic equations of simple fluids, with exercises and their solutions, as well as those of chemically reacting flows, and interfaces and lines will be very useful for graduate students, engineers, teachers and scientific researchers in many domains of science and industry who wish to investigate problems of reactive flows. Portions of the text may be used in courses or seminars on fluid mechanics.
The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. This volume explores the following topics: * Thermodynamic Perturbation Theory for Associating Molecules * Path Integrals and Effective Potentials in the Study of Monatomic Fluids at Equilibrium * Sponteneous Symmetry Breaking in Matter Induced by Degeneracies and Pseudogeneracies * Mean-Field Electrostatics Beyond the Point-Charge Description * First Passage Processes in Cellular Biology * Theoretical Modeling of Vibrational Spectra and Proton Tunneling in Hydroen-Bonded Systems
Reviews of previous volumes ..".continues the tradition of this series on high-quality authoritative chapters in a wide-range of chemical physics topics." Journal of the American Chemical Society. The newest volume in the prestigious Advances in Chemical Physics Series, edited by Nobel Prize winner, Ilya Prigogine and renowned authority Stuart A. Rice, provides general information about a wide variety of topics in chemical physics. Experts present comprehensive analyses of subjects of interest, and encourage the expression of individual points of view. This approach to presenting an overview of a subject will both stimulate new research and serve as a personalized learning text for beginners in the field.
Selected Works of Ya. B. Zeldovich is a two-volume collection of over 100 articles spanning half a century of work by the late Soviet scientist Yakov Borisovich Zeldovich. The breadth and depth of Zeldovich's work is staggering. Author of over twenty books and more than 500 scientific articles, he made fundamental contributions in chemical catalysis and kinetics, combustion and the hydrodynamics of explosive phenomena, nuclear chain reactions and nuclear energy, the physics of elementary particles, and the large-scale structure of the universe and cosmology. The importance of this collection lies not only in its documentary value as a collection of key scientific works by a man whose genius was characterized by the Soviet physicist Andrei Sakharov as "probably unique." Zeldovich himself considered his most valuable role to be that of a teacher, to convey to young scientists the how of science. The author of several excellent textbooks on topics ranging from elementary mathematics to advanced methods of mathematical physics, he saw this collection of works, enlarged from the original Russian edition, as a contribution to that end. Here one can see the scientific method at work--and all the enthusiasm, the breakthroughs, and the mistakes associated with real scientific endeavor. Commentaries by the author and the editors are included with each paper serving to enhance both the historical and the pedagogical value of this edition. Originally published in 1992. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
This text deals with the advantages of rare earth activated phosphors for the development of solid state lighting technology and in enhancing the light conversion efficiency of Si solar cells. The book initiates with a short overview of the atomic and semiconductor theory followed by introduction to phosphor, its working mechanism, role of rare earth ions in the lighting and PV devices and host materials being used. Further, it introduces the applications of inorganic phosphor for the development of green energy and technology including advantages of UP/DC conversion phosphor layers in the enhancing the cell response of PV devices. Key Features: Focuses on discussion of phosphors for both solid state lighting and photovoltaics applications Provides introduction for practical applications including synthesis and characterization of phosphor materials Includes broad, in-depth introduction of semiconductors and related theory Enhances the basic understanding of optical properties for rare earth phosphors Covers up-conversion and down-conversion phosphor for energy harvesting applications
This book is dedicated to the field of conductive polymers, focusing on electrical interactions with biological systems. It addresses the use of conductive polymers as the conducting interface for electrical communications with the biological system, both in vitro and in vivo. It provides an overview on the chemistry and physics of conductive polymers, their useful characteristics as well as limitations, and technologies that apply conductive polymers for medical purposes. This groundbreaking resource addresses cytotoxicity and tissue compatibility of conductive polymers, the basics on electromagnetic fields, and commonly used experimental methods. Readers will also learn how cells are cultured in vitro with conductive polymers, and how conductive polymers and living tissues interact electrically. Throughout the contents, chapter authors emphasize the importance of conductive polymers in biomedical engineering and their potential applications in medicine.
The Advances in Chemical Physics series presents the cutting edge in every area of the discipline and provides the field with a forum for critical, authoritative evaluations of advances. It provides an editorial framework that makes each volume an excellent supplement to advanced graduate classes, with contributions from experts around the world and a handy glossary for easy reference on new terminology. This series is a wonderful guide for students and professionals in chemical physics and physical chemistry, from academia, government, and industries including chemicals, pharmaceuticals, and polymers.
This book consists of over 422 problems and their acceptable answers on structural inorganic chemistry at the senior undergraduate and beginning graduate level. The central theme running through these questions is symmetry, bonding and structure: molecular or crystalline. A wide variety of topics are covered, including Electronic States and Configurations of Atoms and Molecules, Introductory Quantum Chemistry, Atomic Orbitals, Hybrid Orbitals, Molecular Symmetry, Molecular Geometry and Bonding, Crystal Field Theory, Molecular Orbital Theory, Vibrational Spectroscopy, Crystal Structure, Transition Metal Chemistry, Metal Clusters: Bonding and Reactivity, and Bioinorganic Chemistry. The questions collected here originate from the examination papers and take-home assignments arising from the teaching of courses in Chemical Bonding, Elementary Quantum Chemistry, Advanced Inorganic Chemistry, and X-Ray Crystallography by the book's two senior authors over the past five decades. The questions have been tested by generations of students taking these courses. The questions in this volume cover essentially all the topics in a typical course in structural inorganic chemistry. The text may be used as a supplement for a variety of inorganic chemistry courses at the senior undergraduate level. It also serves as a problem text to accompany the book Advanced Structural Inorganic Chemistry, co-authored by W.-K. Li, G.-D. Zhou, and T. C. W. Mak (Oxford University Press, 2008).
Since their development in the 1990s, it has been discovered that diluted nitrides have intriguing properties that are not only distinct from those of conventional semiconductor materials, but also are conducive to various applications in optoelectronics and photonics. The book examines these applications and presents a broad and in-depth look at the basic electronic and optical properties of diluted nitrides. The aim of Physics and Applications of Diluted Nitrides is to provide graduate students, researchers and engineers with a comprehensive overview of the present knowledge and future perspectives of diluted nitrides. Co-authored by a group of leading scientists in the field, this book brings the reader up to speed on the development and current state of diluted nitride applications, as well as the technologies to be developed in the near future.
Kinetic Theory of Granular Gases provides an introduction to the
rapidly developing theory of dissipative gas dynamics - a theory
which has mainly evolved over the last decade. The book is aimed at
readers from the advanced undergraduate level upwards and leads on
to the present state of research. Throughout, special emphasis is
put on a microscopically consistent description of pairwise
particle collisions which leads to an impact-velocity-dependent
coefficient of restitution. The description of the many-particle
system, based on the Boltzmann equation, starts with the derivation
of the velocity distribution function, followed by the
investigation of self-diffusion and Brownian motion. Using
hydrodynamical methods, transport processes and self-organized
structure formation are studied.
This book addresses the issue of non-linear problems that have dominated the forefront of physics. To analyse these problems, it is necessary to develop mathematical methods to match new concepts. In this connection, for the first time in a long time, the same key notions have attracted the attention of physicists and mathematicians. This book discusses how the role of such excitations in essentially non-linear systems is similar to that of harmonic oscillations and waves in linear physical models.
This book presents significant research on antioxidants for chemistry and biology, kinetics and mechanisms of molecular, radical and ion reactions in chemistry and biochemistry, chemistry of ozone (reactions of ozone with organic and inorganic compounds, action of antiozonants), application of electron magnetic resonance and nuclear magnetic resonance in chemistry and biology, investigations of the structure and properties of nanocomposites (nanotubes, particularly), investigations on the structure and properties of nanocomposites (nanotubes, particularly), investigations of heterogeneous-heterophases mechanisms of reaction in polymer matrix, preparation and using of organic papanagnets for investigation of radical reactions in chemistry and biology, investigation of kinetic parameters in biochemical reactions, new designs for processing, mechanisms of oxidation and stabilisation of organic compounds (including polymers), polymer blends, composites and filled polymers (preparation, properties and application), and information about genetic construction, reactions with participants of enzymes.
This is the only series of volumes available that represents the
cutting edge of research relative to advances in chemical physics.?
Provides the chemical physics field with a forum for critical,
authoritative evaluations of advances in every area of the
discipline.
Die einzige fortlaufende Reihe, die sich ausschliesslich den Highlights auf dem Gebiet der chemischen Physik widmet! Der Herausgeber, Nobelpreistrager, I. Prigogine, garantiert fur die ausserordentliche Qualitat der wissenschaftlichen Beitrage. (11/00)
If the text you're using for general chemistry seems to lack sufficient mathematics and physics in its presentation of classical mechanics, molecular structure, and statistics, this complementary science series title may be just what you're looking for. Written for the advanced lower-division undergraduate chemistry course, "The Physical Basis of Chemistry, Second Edition," offers students an opportunity to understand and enrich the understanding of physical chemistry with some quantum mechanics, the Boltzmann distribution, and spectroscopy. Posed and answered are questions concerning everyday phenomena. Unlike other texts on this subject, however, Dr. Warren deals directly with the substance of the questions, avoiding the use of predigested material more appropriate for memorization exercises than for actual concrete learning. The only prerequisite is first-semester calculus or familiarity with one-variable derivatives. In this new edition, the entire text has been rewritten and keyed with an accompanying website, which contains instructive QuickTime movies on topics presented in the text to enhance student learning and participation.
This volume in the prestigious Advances in Chemical Physics series, edited by Nobel Prize-winner Ilya Prigogine and renowned authority Stuart A. Rice, provides general information about a wide variety of topics in chemical physics. Experts present comprehensive analyses of subjects of interest and encourage the expression of individual points of view. This approach to presenting an overview of a subject will both stimulate new research and serve as a personalized learning text for beginners in the field.
The study of surfaces has experienced dramatic growth over the past
decade. Now, the editors of the internationally celebrated series
Advances in Chemical Physics have brought together in this
self-contained, special topic volume contributions from leading
researchers in the field treating some of the most crucial aspects
of the experimental and theoretical study of surfaces. This work
delves into such core issues as:
In Resonances, Instability, and Irreversibility: The Liouville Space Extension of Quantum Mechanics T. Petrosky and I. Prigogine Unstable Systems in Generalized Quantum Theory E. C. G. Sudarshan, Charles B. Chiu, and G. Bhamathi Resonances and Dilatation Analyticity in Liouville Space Erkki J. BrAndas Time, Irreversibility, and Unstable Systems in Quantum Physics E. Eisenberg and L. P. Horwitz Quantum Systems with Diagonal Singularity I. Antoniou and Z. Suchanecki Nonadiabatic Crossing of Decaying Levels V. V. and Vl. V. Kocharovsky and S. Tasaki Can We Observe Microscopic Chaos in the Laboratory? Pierre Gaspard Proton Nonlocality and Decoherence in Condensed Matter -- Predictions and Experimental Results C. A. Chatzidimitriou-Dreismann "We are at a most interesting moment in the history of science. Classical science emphasized equilibrium, stability, and time reversibility. Now we see instabilities, fluctuations, evolution on all levels of observations. This change of perspective requires new tools, new concepts. This volume invites the reader not to an enumeration of final achievements of contemporary science, but to an excursion to science in the making." --from the Foreword by I. Prigogine What are the dynamical roots of irreversibility? How can past and future be distinguished on the fundamental level of description? Are human beings the children of time --or its progenitors? In recent years, a growing number of chemists and physicists have agreed that the solution to the problem of irreversibility requires an extension of classical and quantum mechanics. There is, however, no consensus on which direction this extension should taketo include the dynamical description of irreversible processes. Resonances, Instability, and Irreversibility surveys recent attempts --both direct and indirect --to address the problem of irreversibility. Internationally recognized researchers report on their recent studies, which run the gamut from experimental to highly mathematical. The subject matter of these papers falls into three categories: classical systems with emphasis on chaos and dynamical instability, resonances and unstable quantum systems, and the general problem of irreversibility. Presenting the cutting edge of research into some of the most compelling questions that face contemporary chemical physics, Resonances, Instability, and Irreversibility is fascinating reading for professionals and students in every area of the discipline.
The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.
This innovative text offers basic understanding of the electronic structure of covalent and ionic solids, simple metals, transition metals and their compounds. It also explains how to calculate dielectric, conducting and bonding properties for each. With a useful "Solid State Table of the Elements."
Time-dependent density-functional theory (TDDFT) describes the quantum dynamics of interacting electronic many-body systems formally exactly and in a practical and efficient manner. TDDFT has become the leading method for calculating excitation energies and optical properties of large molecules, with accuracies that rival traditional wave-function based methods, but at a fraction of the computational cost. This book is the first graduate-level text on the concepts and applications of TDDFT, including many examples and exercises, and extensive coverage of the literature. The book begins with a self-contained review of ground-state DFT, followed by a detailed and pedagogical treatment of the formal framework of TDDFT. It is explained how excitation energies can be calculated from linear-response TDDFT. Among the more advanced topics are time-dependent current-density-functional theory, orbital functionals, and many-body theory. Many applications are discussed, including molecular excitations, ultrafast and strong-field phenomena, excitons in solids, van der Waals interactions, nanoscale transport, and molecular dynamics.
Chemical Modeling equips the reader with the knowledge to understand the behaviour of solids, gases and liquids in terms of the basic properties of their atoms, molecules, and polymer chains. In particular the interactions between these fundamental building blocks and the intermolecular and intramolecular potentials are examined. Carefully structured, the book starts by the discussion of classical, quantum and statistical mechanics which then leads on to a discussion of modeling techniques applied to solids, gases and liquids. The subject is brought to life through many real life examples and practical illustrations. Features
|
![]() ![]() You may like...
How To Identify Trees In South Africa
Braam van Wyk, Piet Van Wyk
Paperback
|