![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Chemical physics
Chemical Thermodynamics: Principles and Applications presents a
thorough development of the principles of thermodynamics--an
old
These proceedings contain the reviewed papers presented at the
Symposium J on "Ion Implantation into Semiconductors, Oxides and
Ceramics," which was held at the Spring Meeting of the European
Materials Research Society in Strasbourg, France, 16-19, June 1998.
The symposium attracted 110 contributions, with authors from 31
nations in 5 continents. It was thereby the largest in a series of
E-MRS ion beam symposia, documenting the importance of ion beam
techniques and research in this area.
Dalton's theory of the atom is generally considered to be what made
the atom a scientifically fruitful concept in chemistry. To be
sure, by Dalton's time the atom had already had a two-millenium
history as a philosophical idea, and corpuscular thought had long
been viable in natural philosophy (that is, in what we would today
call physics).
This introduction to quantum field theory (QFT) is written by a physical chemist for physical chemists, chemical physicists, and other non-physicists with knowledge of quantum theory but who want to explore ways in which they might use the power of QFT in their investigations. This book starts where many graduate courses in quantum theory that are offered to chemistry students leave off and first develops some of the necessary tools, such as Fock algebra, which is applied to solving the quantum oscillator problem. Then it is used to develop the theory of coherent states, time-dependent perturbation theory, and the treatment of bosons and fermions. With this background, the QFT of a perfect gas is derived and a connection to thermodynamics is demonstrated. Application to imperfect gases provides a new approach to modelling gas-liquid phase transitions. The book concludes with photons and their interaction with molecular ensembles, and brings us to full circle by deriving the blackbody radiation law, which started it all. The power of the QFT methodology and the breadth of its applications should fascinate the reader as it has the author.
This monograph presents recent advances in neural network (NN)
approaches and applications to chemical reaction dynamics. Topics
covered include: (i) the development of ab initio potential-energy
surfaces (PES) for complex multichannel systems using modified
novelty sampling and feedforward NNs; (ii) methods for sampling the
configuration space of critical importance, such as trajectory and
novelty sampling methods and gradient fitting methods; (iii)
parametrization of interatomic potential functions using a genetic
algorithm accelerated with a NN; (iv) parametrization of analytic
interatomic potential functions using NNs; (v) self-starting
methods for obtaining analytic PES from ab inito electronic
structure calculations using direct dynamics; (vi) development of a
novel method, namely, combined function derivative approximation
(CFDA) for simultaneous fitting of a PES and its corresponding
force fields using feedforward neural networks; (vii) development
of generalized PES using many-body expansions, NNs, and moiety
energy approximations; (viii) NN methods for data analysis,
reaction probabilities, and statistical error reduction in chemical
reaction dynamics; (ix) accurate prediction of higher-level
electronic structure energies (e.g. MP4 or higher) for large
databases using NNs, lower-level (Hartree-Fock) energies, and small
subsets of the higher-energy database; and finally (x) illustrative
examples of NN applications to chemical reaction dynamics of
increasing complexity starting from simple near equilibrium
structures (vibrational state studies) to more complex
non-adiabatic reactions.
an integrated approach to electron transfer phenomena
an integrated approach to electron transfer phenomena
The first unified treatment of experimental and theoretical
advances in low-temperature chemistry Chemical Dynamics at Low
Temperatures is a landmark publication. For the first time, the
cumulative results of twenty years of experimental and theoretical
research into low-temperature chemistry have been collected and
presented in a unified treatment. The result is a text/reference
that both offers an overview of the subject and contains sufficient
detail to guide practicing researchers toward fertile ground for
future research. Topics covered include:
Providing the chemical physics field with a forum for critical,
authoritative evaluations in every area of the discipline, the
latest volume of Advances in Chemical Physics continues to provide
significant, up-to-date chapters written by internationally
recognized researchers.
This book is aimed at advanced undergraduates, graduate students and other researchers who possess an introductory background in materials physics and/or chemistry, and an interest in the physical and chemical properties of novel materials, especially transition metal oxides. New materials often exhibit novel phenomena of great fundamental and technological importance. Contributing authors review the structural, physical and chemical properties of notable 4d- and 5d-transition metal oxides discovered over the last 10 years. These materials exhibit extraordinary physical properties that differ significantly from those of the heavily studied 3d-transition metal oxides, mainly due to the relatively strong influence of the spin- orbit interaction and orbital order in 4d- and 5d materials. The immense growth in publications addressing the physical properties of these novel materials underlines the need to document recent advances and the current state of this field. This book includes overviews of the current experimental situation concerning these materials.
Radiation from spectral lines can be absorbed and re- emitted many times in atomic vapours before it reaches the boundaries of the container encasing the vapour. This effect is known as radiation trapping. It plays an important role practically everywhere where atomic vapours occur, e.g. in spectroscopy, in gas lasers, in atomic line filters, in the determination of atomic lifetimes, in measurements of atomic interaction potentials, and in electric discharge lamps. This book for the first time assembles all the information necessary for a treatment of practical problems, emphasizing both physical insights and mathematical methods. After an introduction that reviews resonance radiation and collisional processes in atomic vapours, physical effects and mathematical methods for various types of problems (e.g. with or without saturation, particle diffusion, reflecting cell walls, etc.) are explained in detail. The last part of the book describes the applications of these methods to a variety of practical problems like cross-section measurements or the design of discharge lamps.
Volume 37 is concerned with the use and role of modelling in
chemical kinetics and seeks to show the interplay of theory or
simulation with experiment in a diversity of physico-chemical areas
in which kinetics measurements provide significant physical
insight. Areas of application covered within the volume include
electro- and interfacial chemistry, physiology, biochemistry, solid
state chemistry and chemical engineering.
Over the course of nearly half a century, Sam Edwards has led the field of condensed matter physics into new directions, ranging from the electronic and statistical properties of disordered materials to the mechanical properties of granular materials. Along the way, he has provided seminal contributions to fluid mechanics, polymer science, surface science and statistical mechanics. This volume celebrates the immense scope of his influence by presenting a collection of original articles by recognized leaders in theoretical physics, including two Nobel Laureates and a Fields Medalist, which describe the genesis, evolution and future prospects of the various sub-fields of condensed matter theory, along with reprints of a selection of Edwards' seminal papers that helped give birth to the subject. 'Stealing the Gold', Edwards' favourite caricature of the relationship between theoretical physicists and Nature, will be of singular interest to graduate students looking for an overview of some of the most exciting areas of theoretical physics, as well as to researchers in condensed matter physics looking for a comprehensive, broad and uniquely incisive snapshot of their subject at the dawn of the 21st century.
The Spectroscopy of H3+ (I. McNab). Supercooled Liquids (U. Mohanty). Ternary Systems Containing Surfactants (M. Laradji, et al.). Colored Noise in Dynamical Systems (P. Hänggi & P. Jung). Formulation of Oscillatory Reaction Mechanisms by Deduction from Experiments (J. Stemwedel, et al.). Indexes.
Description
Silicon, the basic material for a multibillion-dollar industry, is the most widely researched and applied semiconductor, and its surfaces are the most thoroughly studied of all semiconductor surfaces. Silicon Surfaces and Formation of Interfaces may be used as an introduction to graduate-level physics and chemical physics. Moreover, it gives a specialized and comprehensive description of the most common faces of silicon crystals as well as their interaction with adsorbates and overlayers. This knowledge is presented in a systematic and easy-to-follow way. Discussion of each system is preceded by a brief overview which categorizes the features and physical mechanisms before the details are presented. The literature is easily available, and the references am numerous and organized in tables, allowing a search without the need to browse through the text. Though this volume focuses on a scientific understanding of physics on the atomistic and mesoscopic levels, it also highlights existing and potential links between basic research in surface science and applications in the silicon industry. It will be valuable to anyone writing a paper, thesis, or proposal in the field of silicon surfaces.
Kinetic Theory of granular Gases provides an introduction to the rapidly developing theory of dissipative gas dynamics as it has been developed mainly during the past decade. The book is aimed at readers from the advanced undergraduate level onwards and leads up to the present state of research. The text is self-contained, in the sense that no mathematical or physical knowledge is required that goes beyond standard undergraduate physics courses. The material is adequate for a one-semester course and contains chapter summaries as well as exercises with detailed solutions. Special emphasis is put on a microscopically consistent description of pairwise particle collisions which leads to an impact-velocity dependent coefficient of restitution. The description of the many-particle system, based on the Boltzmann equation, starts with the derivation of the velocity distribution function, followed by the investigation of self-diffusion and Brownian motion. Using hydrodynamical methods, transport processes and self-organized structure formulation are studies. An appendix gives a brief introduction to event-driven molecular dynamics. A second appendix describes a novel mathematical technique for the derivation of the kinetic properties which allows for the application of computer algebra. The book is accompanied by a web page where the molecular dynamics program as well as the computer-algebra programs are provided.
This volume contains the collected works of the eminent chemist and physicist Lars Onsager, one of the most influential scientists of the 20th Century. The volume includes Onsager's previously unpublished PhD thesis, a biography by H C Longuet-Higgins and M E Fisher, an autobiographical commentary, selected photographs, and a list of Onsager discussion remarks in print. Onsager's scientific achievements were characterized by deep insights into the natural sciences. His two best-known accomplishments are his reciprocal relations for irreversible processes, for which he received the 1968 Nobel Prize in Chemistry, and his explicit solution of the two-dimensional Ising model, a mathematical tour de force that created a sensation when it appeared. In addition, he made significant theoretical contributions to other fields, including electrolytes, colloids, superconductivity, turbulence, ice, electrons in metals, and dielectrics. In this volume, Onsager's contributions are divided into the following fields: irreversible processes; the Ising model; electrolytes; colloids; helium II and vortex quantization; off-diagonal long-range order and flux quantization; electrons in metal; turbulence; ion recombination; fluctuation theory; dielectrics; ice and water; biology; Mathieu functions. The different fields are evaluated by leading experts. The commentators are P W Anderson, R Askey, A Chorin, C Domb, R J Donnelly, W Ebeling, J-C Justice, H N W Lekkerkerker, P Mazur, H P McKean, J F Nagle, T Odijk, A B Pippard, G Stell, G H Weiss, and C N Yang.
This book provides a practical guide to molecular dynamics and Monte Carlo simulation techniques used in the modelling of simple and complex liquids. Computer simulation is an essential tool in studying the chemistry and physics of condensed matter, complementing and reinforcing both experiment and theory. Simulations provide detailed information about structure and dynamics, essential to understand the many fluid systems that play a key role in our daily lives: polymers, gels, colloidal suspensions, liquid crystals, biological membranes, and glasses. The second edition of this pioneering book aims to explain how simulation programs work, how to use them, and how to interpret the results, with examples of the latest research in this rapidly evolving field. Accompanying programs in Fortran and Python provide practical, hands-on, illustrations of the ideas in the text.
Polarization Spectroscopy of Ionized Gases describes the physical principles of the technique and its applications to remote sensing. Transport phenomena and local anisotropies can be studied. The theoretical part of the book considers the basic phenomena of the ordering of the velocities of fast exciting charged particles. The polarization of the outer electron shells of excited atoms or molecules is described, and a variety of effects are examined in detail. An integral equation is derived which gives the intensity and polarization of emitted lines. Methods for solving the equation are analyzed. Universal spectropolarimetric remote sensing has been applied to low pressure gas discharges in the laboratory and to non-thermal processes in the solar atmosphere. For researchers interested in the remote sensing of ionized gases.
The book introduces the fundamental aspects of digital imaging and covers four main themes: Ultrasound techniques and imaging applications, Magnetic resonance and MPJ in hospital, Digital imaging with X-rays, Emission tomography (PET and SPECT). Each of these topics is developed by analysing the underlying physics principles and their implementation, quality and safety aspects, clinical performance and recent advancements in the field. Some issues specific to the individual techniques are also treated, e.g. choice of radioisotopes or contrast agents, optimisation of data acquisition and storage, readout electronics, modelling and computer algorithms for imaging and measurement in ultrasounds and tomography applications.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. |
You may like...
Central Banks in the Age of the Euro…
Kenneth Dyson, Martin Marcussen
Hardcover
R4,135
Discovery Miles 41 350
Elliptic Integrals, Elliptic Functions…
Johannes Blumlein, Carsten Schneider, …
Hardcover
R5,911
Discovery Miles 59 110
Understanding Abnormal Behavior
Derald Wing Sue, David Sue, …
Hardcover
(3)
|