![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Chemical physics
If the text you're using for general chemistry seems to lack sufficient mathematics and physics in its presentation of classical mechanics, molecular structure, and statistics, this complementary science series title may be just what you're looking for. Written for the advanced lower-division undergraduate chemistry course, "The Physical Basis of Chemistry, Second Edition," offers students an opportunity to understand and enrich the understanding of physical chemistry with some quantum mechanics, the Boltzmann distribution, and spectroscopy. Posed and answered are questions concerning everyday phenomena. Unlike other texts on this subject, however, Dr. Warren deals directly with the substance of the questions, avoiding the use of predigested material more appropriate for memorization exercises than for actual concrete learning. The only prerequisite is first-semester calculus or familiarity with one-variable derivatives. In this new edition, the entire text has been rewritten and keyed with an accompanying website, which contains instructive QuickTime movies on topics presented in the text to enhance student learning and participation.
This volume in the prestigious Advances in Chemical Physics series, edited by Nobel Prize-winner Ilya Prigogine and renowned authority Stuart A. Rice, provides general information about a wide variety of topics in chemical physics. Experts present comprehensive analyses of subjects of interest and encourage the expression of individual points of view. This approach to presenting an overview of a subject will both stimulate new research and serve as a personalized learning text for beginners in the field.
The study of surfaces has experienced dramatic growth over the past
decade. Now, the editors of the internationally celebrated series
Advances in Chemical Physics have brought together in this
self-contained, special topic volume contributions from leading
researchers in the field treating some of the most crucial aspects
of the experimental and theoretical study of surfaces. This work
delves into such core issues as:
In Resonances, Instability, and Irreversibility: The Liouville Space Extension of Quantum Mechanics T. Petrosky and I. Prigogine Unstable Systems in Generalized Quantum Theory E. C. G. Sudarshan, Charles B. Chiu, and G. Bhamathi Resonances and Dilatation Analyticity in Liouville Space Erkki J. BrAndas Time, Irreversibility, and Unstable Systems in Quantum Physics E. Eisenberg and L. P. Horwitz Quantum Systems with Diagonal Singularity I. Antoniou and Z. Suchanecki Nonadiabatic Crossing of Decaying Levels V. V. and Vl. V. Kocharovsky and S. Tasaki Can We Observe Microscopic Chaos in the Laboratory? Pierre Gaspard Proton Nonlocality and Decoherence in Condensed Matter -- Predictions and Experimental Results C. A. Chatzidimitriou-Dreismann "We are at a most interesting moment in the history of science. Classical science emphasized equilibrium, stability, and time reversibility. Now we see instabilities, fluctuations, evolution on all levels of observations. This change of perspective requires new tools, new concepts. This volume invites the reader not to an enumeration of final achievements of contemporary science, but to an excursion to science in the making." --from the Foreword by I. Prigogine What are the dynamical roots of irreversibility? How can past and future be distinguished on the fundamental level of description? Are human beings the children of time --or its progenitors? In recent years, a growing number of chemists and physicists have agreed that the solution to the problem of irreversibility requires an extension of classical and quantum mechanics. There is, however, no consensus on which direction this extension should taketo include the dynamical description of irreversible processes. Resonances, Instability, and Irreversibility surveys recent attempts --both direct and indirect --to address the problem of irreversibility. Internationally recognized researchers report on their recent studies, which run the gamut from experimental to highly mathematical. The subject matter of these papers falls into three categories: classical systems with emphasis on chaos and dynamical instability, resonances and unstable quantum systems, and the general problem of irreversibility. Presenting the cutting edge of research into some of the most compelling questions that face contemporary chemical physics, Resonances, Instability, and Irreversibility is fascinating reading for professionals and students in every area of the discipline.
The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.
This innovative text offers basic understanding of the electronic structure of covalent and ionic solids, simple metals, transition metals and their compounds. It also explains how to calculate dielectric, conducting and bonding properties for each. With a useful "Solid State Table of the Elements."
This book presents recent research in chemical and biochemical physics. Chemical physics addresses a large range of problems. An effective chemical physicist is a "jack-of-all-trades", able to apply the principles and techniques of the field to everything from high-tech materials to biology. Just as the fields of chemistry and physics have expanded, so have chemical physics subject areas, which include polymers, materials, surfaces/interfaces, and biological macromolecules, along with the traditional small molecule and condensed phase systems. Biochemical physics is a science that joins the three natural sciences (biology, chemistry and physics) into one comprehensive study. N.M. Emanuel pioneered this science over fifty years ago. This book brings together papers written by Emanuel's students, which reveal recent developments in this interesting field.
Recent years have seen tremendous progress in research on cold and controlled molecular collisions, both in theory and in experiment. The advent of techniques to prepare cold and ultracold molecules and ions, to store them in optical lattices or in charged quasicristalline structures, and to use them in crossed or merged beam experiments have opened many new possibilities to study the most fundamental aspects of molecular interactions. At the same time, theoretical work has made progress in tackling these problems and accurately describing quantum effects in complex systems, and in proposing viable options to control chemical reactions at ultralow energies. Through tutorials on both the theoretical and experimental aspects of research in cold and ultracold molecular collisions, this book provides advanced undergraduate students, graduate students and researchers with the foundations needed to understand this exciting field.
A comprehensive and up-to-date text in the field of electron scattering and ionization, covering fundamentals, experimental background, quantum scattering theories and applications. Electron impact ionization of atoms and molecules in ground/metastable states is discussed comprehensively. The text covers electron scattering phenomena for diatomic and common molecules, polyatomic molecules and radicals including hydro-carbons, fluoro-carbons and other larger molecules together with relevant radical species in detail. Applications of electron impact ionization and excitation in gaseous or plasma and condensed matter is discussed in a separate chapter. Recent advances in the field of electron molecule scattering and ionization for polyatomic molecules is covered extensively.
This book presents and discusses recent research developments in the field of chemical physics. Topics discussed herein include quantum dynamics in base pair DNA systems; chemical physical properties of bioprotectant-biomolecule systems; chemical physics of phonons; optimisation of polar solar cells; computer molecular modelling; wood pyrolysis; and phonon dynamics of fe-based glassy alloys.
This book presents recent research in Chemical and Biochemical physics. Chemical physics addresses a large range of problems. An effective chemical physicist is a "jack-of-all-trades", able to apply the principles and techniques of the field to everything from high-tech materials to biology. Just as the fields of chemistry and physics have expanded, so have chemical physics subject areas, which include polymers, materials, surfaces/interfaces, and biological macromolecules, along with the traditional small molecule and condensed phase systems. Biochemical Physics is a science that joins the three natural sciences biology, chemistry and physics into one comprehensive study. N.M. Emanuel pioneered this science over fifty years ago. This book presents papers, written by Emanuel's students, that reveal recent developments in this interesting field.
Chemical Physics of Pyrolysis, Combustion & Oxidation
The latest edition of the leading forum in chemical physics Edited by Nobel Prize winner Ilya Prigogine and renowned authority Stuart A. Rice, the Advances in Chemical Physics series provides a forum for critical, authoritative evaluations in every area of the discipline. In a format that encourages the expression of individual points of view, experts in the field present comprehensive analyses of subjects of interest. Volume 125 covers a wide range of subjects, with significant, up-to-date chapters by internationally recognized researchers. The editors collect innovative papers on "Finite Size Scaling for Atomic and Molecular Systems," "Control of Quantum Dynamics by Laser Pulses–Adiabatic Floquet Theory," "Recent Advances in the Theory of Vibration-Rotation Hamiltonians," and several other related topics. Advances in Chemical Physics remains the premier venue for presentations of new findings in its field.
This respected series is devoted to helping physicists and chemists obtain general information about a wide variety of topics in chemical physics. Experts present comprehensive analysis of the subject, encouraging the expression of individual points of view. This approach to the presentation of an overview of a subject both stimulates new research and serves as a personalized learning text for beginners in the field.
This book is dedicated to the field of conductive polymers, focusing on electrical interactions with biological systems. It addresses the use of conductive polymers as the conducting interface for electrical communications with the biological system, both in vitro and in vivo. It provides an overview on the chemistry and physics of conductive polymers, their useful characteristics as well as limitations, and technologies that apply conductive polymers for medical purposes. This groundbreaking resource addresses cytotoxicity and tissue compatibility of conductive polymers, the basics on electromagnetic fields, and commonly used experimental methods. Readers will also learn how cells are cultured in vitro with conductive polymers, and how conductive polymers and living tissues interact electrically. Throughout the contents, chapter authors emphasize the importance of conductive polymers in biomedical engineering and their potential applications in medicine.
This new volume presents leading-edge research in the rapidly changing and evolving field of chemical materials characterization and modification. The topics in the book reflect the diversity of research advances in physical chemistry and electrochemistry, focusing on the preparation, characterization, and applications of polymers and high-density materials. Also covered are various manufacturing techniques. Focusing on the most technologically important materials being utilized and developed by scientists and engineers, the book will help to fill the gap between theory and practice in industry. This comprehensive anthology covers many of the major themes of physical chemistry and electrochemistry, addressing many of the major issues, from concept to technology to implementation. It is an important reference publication that provides new research and updates on a variety of physical chemistry and electrochemistry uses through case studies and supporting technologies, and it also explains the conceptual thinking behind current uses and potential uses not yet implemented. International experts with countless years of experience lend this volume credibility.
Under the leadership of Professor Zaikov, the Institute of Chemical Physics of the Russian Academy of Sciences has become one of the world's leading centres for studies of polymeric materials - in use, during processing, and in harsh environments. The Institute's focus is on commercially available materials and their modifications to improve performance through advanced theoretical analysis and implementation of experimental results. The selected papers from the Institute collated here have been incorporated into five sections - stabilization and degradation, biochemistry, photochemistry, rheology, and flame retardency - and should provide valuable background to producers of polymeric materials.
The Encyclopedia of Physical Chemistry and Chemical Physics
introduces possibly unfamiliar areas, explains important
experimental and computational techniques, and describes modern
endeavors. The encyclopedia quickly provides the basics, defines
the scope of each subdiscipline, and indicates where to go for a
more complete and detailed explanation. Particular attention has
been paid to symbols and abbreviations to make this a user-friendly
encyclopedia. Care has been taken to ensure that the reading level
is suitable for the trained chemist or physicist.
|
You may like...
|