![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics > Chemical physics
Soot Formation in Combustion represents an up-to-date overview. The contributions trace back to the 1991 Heidelberg symposium entitled "Mechanism and Models of Soot Formation" and have all been reedited by Prof. Bockhorn in close contact with the original authors. The book gives an easy introduction to the field for newcomers, and provides detailed treatments for the specialists. The following list of contents illustrates the topics under review:
This book is devoted to the problems of oxidation chemical reactions and addresses bimodal reaction sequences. Chemical reactions of oxidation, occurring under certain conditions and in multicomponent systems are complex processes. The process of the oxidation essentially changes in the presence and contact of the solid substances with reactants. The role of solid substances and the appearance of this phenomenon in oxidation reaction are discussed. The reader will understand the "driving forces" of this phenomenon and apply it in practice. Written for chemists, physicists, biologists and engineers working in the domain of oxidation reactions. Key Selling Features: Covers the historical background, modern state of the art, and perspectives in investigations of the coupling between heterogeneous and homogeneous reactions Discusses the feasible pathways of the coupling of heterogeneous and homogeneous reactions in oxidation in man-made and natural chemical systems Addresses the abundance, peculiarities and mechanisms of the bimodal reaction sequences in oxidation with dioxygen in recent decades Discusses the existence of the bimodal reaction sequences in chemical systems investigations in atmospheric chemistry and heterogeneous photocatalysis Presented in a simple concise style, accessible for both specialists and non-specialists
Kinetic Theory of Granular Gases provides an introduction to the
rapidly developing theory of dissipative gas dynamics - a theory
which has mainly evolved over the last decade. The book is aimed at
readers from the advanced undergraduate level upwards and leads on
to the present state of research. Throughout, special emphasis is
put on a microscopically consistent description of pairwise
particle collisions which leads to an impact-velocity-dependent
coefficient of restitution. The description of the many-particle
system, based on the Boltzmann equation, starts with the derivation
of the velocity distribution function, followed by the
investigation of self-diffusion and Brownian motion. Using
hydrodynamical methods, transport processes and self-organized
structure formation are studied.
The book introduces the fundamental aspects of digital imaging and covers four main themes: Ultrasound techniques and imaging applications, Magnetic resonance and MPJ in hospital, Digital imaging with X-rays, Emission tomography (PET and SPECT). Each of these topics is developed by analysing the underlying physics principles and their implementation, quality and safety aspects, clinical performance and recent advancements in the field. Some issues specific to the individual techniques are also treated, e.g. choice of radioisotopes or contrast agents, optimisation of data acquisition and storage, readout electronics, modelling and computer algorithms for imaging and measurement in ultrasounds and tomography applications.
This series provides the chemical physics community with a forum for critical, authoritative evaluations of advances in every area of the discipline. Volume 111 continues to report recent advances with significant, up-to-date chapters by internationally-recognized researchers.
Electron Correlations in Molecules and Solids bridges the gap between quantum chemistry and solid-state theory. In the first half of the text new concepts are developed for treating many-body and correlation effects, combining standard quantum chemical methods with projection techniques, Greens-function methods and Monte-Carlo techniques. The second half deals with applications of the theory to molecules, semiconductors, transition metals, heavy-fermion systems, and the new high-Tc superconducting materials.
Low Energy Ion - Surface Interactions Edited by J. Wayne Rabalais, University of Houston, Texas, USA Recent advances in experimental techniques and theoretical methodologies mean that increasingly detailed and sophisticated studies of state - or energy - selected molecular ions can now be performed. Each volume in this series will be dedicated to reviewing a specific topic, emphasizing new experimental and theoretical developments in the study of ions. This volume details the current understanding of Low Energy Ion - Surface Interactions, along with some of the novel applications. Each of the ten chapters is authored by active researchers in the field who are at the forefront of research in their particular areas. This up-to-date compilation, detailing developments occurring within the last five years, will be particularly useful to researchers and teachers involved with Low Energy Ion - Surface Interactions.
This book explores a wide range of energy storage devices, such as a lithium ion battery, sodium ion battery, magnesium ion battery and supercapacitors. Providing a comprehensive review of the current field, it also discusses the history of these technologies and introduces next-generation rechargeable batteries and supercapacitors. This book will serve as a valuable reference for researchers working with energy storage technologies across the fields of physics, chemistry, and engineering. Features: Edited by established authorities in the field, with chapter contributions from subject area specialists Provides a comprehensive review of field Up to date with the latest developments and research
Coulomb Excitations and Decays in Graphene-Related Systems provides an overview of the subject under the effects of lattice symmetries, layer numbers, dimensions, stacking configurations, orbital hybridizations, intralayer and interlayer hopping integrals, spin-orbital couplings, temperatures, electron/hole dopings, electric field, and magnetic quantization while presenting a new theoretical framework of the electronic properties and the electron-electron interactions together. This book presents a well-developed theoretical model and addresses important advances in essential properties and diverse excitation phenomena. Covering plenty of critical factors related to the field, the book also addresses the theoretical model which is applicable to various dimension-enriched graphene-related systems and other 2D materials, including layered graphenes, graphites, carbon nanotubes, silicene, and germanene. The text is aimed at professionals in materials science, physics, physical chemistry, and upper level students in these fields.
Computational Multiscale Modeling of Multiphase Nanosystems: Theory and Applications presents a systematic description of the theory of multiscale modeling of nanotechnology applications in various fields of science and technology. The problems of computing nanoscale systems at different structural scales are defined, and algorithms are given for their numerical solutions by the quantum/continuum mechanics, molecular dynamics, and mesodynamics methods. Emphasis is given to the processes of the formation, movement, and interaction of nanoparticles; the formation of nanocomposites; and the processes accompanying the application of nanocomposites. The book concentrates on different types of nanosystems: solid, liquid, gaseous, and multi-phase, consisting of various elements interacting with each other, and with other elements of the nanosystem and with the environment. The book includes a large number of examples of numerical modeling of nanosystems. The valuable information presented here will be useful to engineers, researchers, and postgraduate students engaged in the design and research in the field of nanotechnology.
We have shown that simple power-law dynamics is expected for flexible fractal objects. Although the predicted behavior is well established for linear polymers, the situationm is considerably more complex for colloidal aggregates. In the latter case, the observed K-dependence of (r) can be explained either in terms of non-asymptotic hydrodynamics or in terms of weak power-law polydispersity. In the case of powders (alumina, in particular) apparent fractal behavior seen in static scattering is not found in the dynamics. ID. W. Schaefer, J. E. Martin, P. Wiitzius, and D. S. Cannell, Phys. Rev. Lett. 52,2371 (1984). 2 J. E. Martin and D. W. Schaefer, Phys. Rev. Lett. 5:1,2457 (1984). 3 D. W. Schaefer and C. C. Han in Dynamic Light Scattering, R. Pecora ed, Plenum, NY, 1985) p. 181. 4 P. Sen, this book. S J. E. Martin and B. J. Ackerson, Phys. Rev. A :11, 1180 (1985). 6 J. E. Martin, to be published. 7 D. A. Weitz, J. S. Huang, M. Y. Lin and J. Sung, Phys. Rev. Lett. 53,1657 (1984) . 8 J. E. Martin, D. W. Schaefer and A. J. Hurd, to be published; D. W. Schaefer, K. D. Keefer, J. E. Martin, and A. J. Hurd, in Physics of Finely Divided Matter, M. Daoud, Ed., Springer Verlag, NY, 1985. 9 D. W. Schaefer and A. J. Hurd, to be published. lOJ. E. Martin, J. Appl. Cryst. (to be published).
The field of electrochemistry is exploring beyond its basic principles to innovation. New Technologies for Electrochemical Applications presents advancements in electrochemical processes, materials, and technology for electrochemical power sources such as batteries, supercapacitors, fuel cells, hydrogen storage and solar cells. It also examines various environmental applications such as photo electrochemistry, photosynthesis, and coating. Organized to give readers an overview of the current field in electrochemical applications, this book features a historical timeline of advancements and chapters devoted to the topics of organic material and conducting polymers for electrochemical purposes. Established experts in the field detail state-of-the-art materials in biosensors, immunosensors, and electrochemical DNA. This edited reference is a valuable resource for graduate and post-graduate students, and researchers in disciplines such as chemistry, physics, electrical engineering and materials science.
The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. This is the only series of volumes available that presents the cutting edge of research in chemical physics. Includes contributions from experts in this field of research. Contains a representative cross-section of research that questions established thinking on chemical solutions Structured with an editorial framework that makes the book an excellent supplement to an advanced graduate class in physical chemistry or chemical physics
This book describes the physical mechanism of high-frequency (radio-frequency) capacitive discharge (RFCD) of low and medium pressure and the properties of discharge plasma in detail. The main properties and characteristics of RFCD, the features of electric breakdown in a high-frequency field are also investigated. The properties of near-electrode layers of a spatial discharge, the nature of the electric field in them, and the processes of charge transport to electrodes are explored. The work is intended for scientists engaged in gas discharge physics and low-temperature plasmas, graduate students and students of physics, physical chemistry, and relevant specialties.
Used in materials science, physical chemistry and physics, density functional methods provide a unifying description of electronic properties applicable to all materials while also giving specific information on the system under study. A large number of very different materials and systems (atoms, molecules, macromolecules, clusters, bulk solids, surfaces and interfaces) are presently being studied with methods based on density functional formalism. Density Functional Methods in Chemistry and Materials Science reports the results of this research. This book will be of particular interest to those research materials science from a theoretical standpoint. This work will demonstrate how the formalism has become a methodology leading to useful information on structural and electronic properties of a broad range of materials.
Small systems are a very active area of research and development due to improved instrumentation that allows for spatial resolution in the range of sizes from one to 100 nm. In this size range, many physical and chemical properties change, which opens up new approaches to the study of substances and their practical application. This affects both traditional fields of knowledge and many other new fields including physics, chemistry, biology, etc. This book highlights new developments in statistical thermodynamics that answer the most important questions about the specifics of small systems - when one cannot apply equations or traditional thermodynamic models.
Volume 3 of the 5-volume Quantum Nanochemistry presents the chemical reactivity throughout the molecular structure in general and chemical bonding in particular by introducing the bondons as the quantum bosonic particles of the chemical field, localization, from Huckel to Density Functional expositions, especially in relation to how chemical principles of electronegativity and chemical hardness decide the global chemical reactivity and interaction. The volume presents the fundamental and advanced concepts, principles, and models as well as their first and novel combinations and applications in quantum (physical) chemical theory of bonding, molecular reactivity, and aromaticity.
This book covers a selection of recent research studies and new developments in physics and chemistry in micro and nanoscale materials. It brings together research contributions from eminent experts in the field from both academic and industry, providing the latest developments in advanced materials chemical domains.
Conjugated polymers have important technological applications, including solar cells and light emitting devices. They are also active components in many important biological processes. In recent years there have been significant advances in our understanding of these systems, owing to both improved experimental measurements and the development of advanced computational techniques. The aim of this book is to describe and explain the electronic and optical properties of conjugated polymers. It focuses on the three key roles of electron-electron interactions, electron-nuclear coupling, and disorder in determining the character of the electronic states, and it relates these properties to experimental observations in real systems. A number of important optical and electronic processes in conjugated polymers are also described. The second edition has a more extended discussion of excitons in conjugated polymers. There is also a new chapter on the static and dynamical localization of excitons.
The 'Advances in Chemical Physics' series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. This special volume focuses on atoms and photos near meso- and nanobodies, an important area of nontechnology.
This book is a reissue of a classic Oxford text, and provides a comprehensive treatment of electron paramagnetic resonance of ions of the transition groups. The emphasis is on basic principles, with numerous references to publications containing further experimental results and more detailed developments of the theory. An introductory survey gives a general understanding, and a general survey presents such topics as the classical and quantum resonance equations, the spin-Hamiltonian, Endor, spin-spin and spin-lattice interactions, together with an outline of the known behaviour of ions of each of the five transition groups, at the experimentalist's level. Finally a theoretical survey, using group theory and symmetry properties, discusses the fundamentals of the theory of paramagnetism.
Time-dependent density-functional theory (TDDFT) describes the quantum dynamics of interacting electronic many-body systems formally exactly and in a practical and efficient manner. TDDFT has become the leading method for calculating excitation energies and optical properties of large molecules, with accuracies that rival traditional wave-function based methods, but at a fraction of the computational cost. This book is the first graduate-level text on the concepts and applications of TDDFT, including many examples and exercises, and extensive coverage of the literature. The book begins with a self-contained review of ground-state DFT, followed by a detailed and pedagogical treatment of the formal framework of TDDFT. It is explained how excitation energies can be calculated from linear-response TDDFT. Among the more advanced topics are time-dependent current-density-functional theory, orbital functionals, and many-body theory. Many applications are discussed, including molecular excitations, ultrafast and strong-field phenomena, excitons in solids, van der Waals interactions, nanoscale transport, and molecular dynamics.
Bio-nanocomposites combine the enhanced properties of commercial
polymer nanocomposites with the low environmental impact of
biodegradable material, making them a topic of great current
interest. Because of their tremendous role in reducing dependency
on commercial non-biodegradable polymers, and their
environmentally-friendly nature, bio-nanocomposites need to be
studied in greater detail. In this book, recent advancements in
their development are brought together in a single text, to provide
researchers with a thorough insight into the various systems, and
to open up future perspectives. Although the commercial
applications of these bio-nanocomposites are in their infancy,
these materials have a huge commercial potential. In setting out
the next generation of advances in nanocomposite technology, this
book opens the way for further developments in the field.
Neutron Protein Crystallography is one of the first books dedicated
to the emerging field of neutron protein crystallography (NPC). The
text covers all of the practical aspects of NPC, from the basic
background of neutron scattering and diffraction, to the technical
details of neutron facilities, growth of high-quality crystals, and
data analysis. The final chapter is devoted to providing many
examples of using NPC to investigate a wide range of different
proteins. It demonstrates how NPC can explore hydrogen bonds,
protonation and deprotonation of amino acid residues, hydration
structures, and hydrogen-to-deuterium exchange ratios. |
![]() ![]() You may like...
Trends, Discovery, and People in the…
Wendy Evans, David Baker
Paperback
R1,500
Discovery Miles 15 000
|