![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry
This work pursues a novel route to functionalizing large surfaces with hybrid nanoparticles. It also casts new light on the combined use of surface plasmon resonance and X-rays. SPR spectroscopy is employed to study Au-based plasmonic nanostructures fabricated by novel methods, and a new experimental device is developed combining SPR with X-ray absorption spectroscopy at a synchrotron beamline. Using the new SPR-XAS setup developed in this work, the author has studied in-situ and real-time effects of X-ray irradiation in materials such as glasses and Co-phthalocyanines.
This book discusses chemometric methods for spectroscopy analysis including NIR, MIR, Raman, NMR, and LIBS, from the perspective of practical applied spectroscopy. It covers all aspects of chemometrics associated with analytical spectroscopy, including representative sample selection algorithm, outlier detection algorithm, model updating and maintenance algorithm and strategy and calibration performance evaluation methods.To provide a systematic and comprehensive overview the latest progress of chemometric methods including recent scientific research and practical applications are presented. In addition the book also highlights the improvement of classical algorithms and the extension of common strategies. It is therefore useful as a reference book for researchers engaged in analytical spectroscopy technology, chemometrics, analytical instruments and other related fields.
Here, the authors introduce readers to solving molecular structure elucidation problems using the expert system ACD/Structure Elucidator. They explain in detail the concepts of the Computer-Assisted Structure Elucidation (CASE) approach and point out the crucial role of understanding the axiomatic nature of the data used to deduce the structure. Aspects covered include the main blocks of the expert system and essential features of the mathematical algorithms used. Graduate and PhD students as well as practicing chemists are provided with a detailed explanation of the various practical approaches depending on available spectral data peculiarities and the complexity of the unknown structure. This is supported by a large number of real-world completed examples, most of which are related to the structure elucidation of natural product molecules containing unusual skeletons. Dedicated software and further supplementary material are available at www.acdlabs.com/TeachingSE.
"Hills is probably the best person I can think of to write this book. He has the deepest background combined with considerable experience in solving problems with food." —R. G. Bryant, University of Virginia. Food scientists have many excellent tools at their disposal with which to study food at both the micro- and macrostructural levels. But, when it comes to analyzing dynamic structural changes in food during processing and storage, none can compare with magnetic resonance imaging (MRI). Still a very young approach, MRI food imaging has contributed greatly to recent advances in food science, and promises to yield much more valuable information in the years ahead. Written by a leading pioneer in the field, Magnetic Resonance Imaging in Food Science covers the latest in MRI food imaging theory and practice. Written primarily for food scientists and engineers, the book offers a practical, unified approach to the subject. Material is organized in three main parts corresponding to the distances of scale probed by MRI studies—namely, the macroscopic, microscopic, and macromolecular. Throughout, the emphasis is on ways in which studies of food undergoing processes can be modeled using the equations of heat, mass, and momentum transport, and how those models can be used in process design optimization programs. Magnetic Resonance Imaging in Food Science provides researchers with the most up-to-date, detailed coverage of:
Magnetic Resonance Imaging in Food Science is an important working resource for all researchers engaged in the never-ending struggle to produce safer, higher-quality foods more efficiently.
Now a routine tool in biomedical and life science research, live cell imaging has made major progress enabling this core biochemical, cell, and molecular biology technique to become even more powerful, versatile, and affordable. In Live Cell Imaging: Methods and Protocols, a panel of expert contributors provide a comprehensive compendium of experimental approaches to live cell imaging in the form of several overview chapters followed by representative examples and case studies covering different aspects of the most current methodology. By examining a range of state-of-the-art protocols extensively validated in complex biological studies, this volume highlights new experimental and instrumental opportunities and helps researchers to select appropriate imaging methods for their specific biological questions and measurement tasks. Written in the highly successful Methods in Molecular BiologyT series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Live Cell Imaging: Methods and Protocols promises to contribute greatly to the further development and dissemination of this fundamentally important technology which spans across many disciplines including molecular and cell biology, chemistry, physics, optics, engineering, cell physiology, and medicine. Written for: Molecular and cellular biologists, chemists, physicists, optics specialists, engineers, cell physiologists, and medical doctors
Serves as a practical reference for those involved in Secondary Ion Mass Spectrometry (SIMS)- Introduces SIMS along with the highly diverse fields (Chemistry, Physics, Geology and Biology) to it is applied using up to date illustrations- Introduces the accepted fundamentals and pertinent models associated with elemental and molecular sputtering and ion emission- Covers the theory and modes of operation of the instrumentation used in the various forms of SIMS (Static vs Dynamic vs Cluster ion SIMS)- Details how data collection/processing can be carried out, with an emphasis placed on how to recognize and avoid commonly occurring analysis induced distortions- Presented as concisely as believed possible with All sections prepared such that they can be read independently of each other
The 3rd International Multidisciplinary Microscopy Congress (InterM2015), held from 19 to 23 October 2015, focused on the latest developments concerning applications of microscopy in the biological, physical and chemical sciences at all dimensional scales, advances in instrumentation, techniques in and educational materials on microscopy. These proceedings gather 17 peer-reviewed technical papers submitted by leading academic and research institutions from nine countries and representing some of the most cutting-edge research available.
The isolation and structural characterization of substances present at very low concentrations, as is necessary to satisfy regulatory requirements for pharmaceutical drug degradants and impurities, can present scientific challenges. The coupling of HPLC with NMR spectroscopy has been at the forefront of cutting-edge technologies to address these issues. LC-NMR: Expanding the Limits of Structure Elucidation presents a comprehensive overview of key concepts in HPLC and NMR that are required to achieve definitive structure elucidation with very low levels of analytes. Because skill sets from both of these highly established disciplines are involved in LC-NMR, the author provides introductory background to facilitate readers' proficiency in both areas, including an entire chapter on NMR theory. The much-anticipated second edition provides guidance in setting up LC-NMR systems, discussion of LC methods that are compatible with NMR, and an update on recent hardware and software advances for system performance, such as improvements in magnet design, probe technology, and solvent suppression techniques that enable unprecedented mass sensitivity in NMR. This edition features methods to quantify concentration and assess purity of isolated metabolites on the micro scale and incorporates computational approaches to accelerate the structure elucidation process. The author also includes implementation and application of qNMR and automated and practical use of computational chemistry combined with QM and DFT to predict highly accurate NMR chemical shifts. The text focuses on current developments in chromatographic-NMR integration, with particular emphasis on utility in the pharmaceutical industry. Applications include trace analysis, analysis of mixtures, and structural characterization of degradation products, impurities, metabolites, peptides, and more. The text discusses novel uses and emerging technologies that challenge detection limits as well future directions for this important technique. This book is a practical primary resource for NMR structure determination-including theory and application-that guides the reader through the steps required for isolation and NMR structure elucidation on the micro scale.
Dipolar Recoupling, by Niels Chr. Nielsen, Lasse A. Strasso and Anders B. Nielsen.- Solid-State NMR Techniques for the Structural Determination of Amyloid Fibrils, by Jerry C. C. Chan.- Solid-State 19F-NMR of Peptides in Native Membranes, by Katja Koch, Sergii Afonin, Marco Ieronimo, Marina Berditsch and Anne S. Ulrich.- Probing Quadrupolar Nuclei by Solid-State NMR Spectroscopy: Recent Advances, by Christian Fernandez and Marek Pruski.- Solid State NMR of Porous Materials Zeolites and Related Materials, by Hubert Koller and Mark Weiss.- Solid-State NMR of Inorganic Semiconductors, by James P. Yesinowski.-"
This is a methods-oriented book, which contains enormous amounts of
information on 31P NMR, in a concise and well-edited format. It is
an invaluable resource for every NMR spectroscopist.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
Selectivity is an important part of organic synthesis. The whole
basis of organic chemistry, and especially organic synthesis,
depends upon the selectivity which can be achieved in organic
reactions. This concise textbook describes the strategies which can
be adopted to improve selectivity, and the reactions which have
been specially designed to afford high selectivity. The book
illustrates the range of processes to which these principles can be
applied and the high degree of selectivity which can be achieved.
Selectivity in Organic Synthesis provides a solid introduction to
this subject, focusing on the key areas and applications.
Selectivity in Organic Synthesis features:
Covers the fundamental instrumentation and techniques Discusses HRMS-based phytochemical research details Focuses strictly on the phytochemical considerations
As one of the most extensive and important protein post-translational modifications, glycosylation plays a vital role in regulating organisms and is associated with various physiological and pathological processes. Recently, researchers have focused on the need to characterize protein glycosylation sites, structures, and their degree of modification, to better understand their biological functions while also looking for potential biomarkers for diagnosis and treatment of disease. Mass spectrometry (MS) is one of the most powerful tools used to study biomolecules including glycoproteins and glycans. With the continuous development of glycoproteomics and glycomics based on MS analysis, more techniques have evolved and contribute to understanding the structure and function of glycoproteins and glycans. This book reviews advancements achieved in MS-based glycoproteomic analysis, including a wide range of analytical methodologies and strategies involved in selective enrichment; as well as qualitative, quantitative, and data analysis, together with their clinical applications. Significant examples are discussed to illustrate the principles, laboratory protocols, and advice for key implementation to ensure successful results. Mass Spectrometry-Based Glycoproteomics and Its Clinic Application will serve as a valuable resource to elucidate new techniques and their applications for students, postdocs, and researchers working in proteomics, glycoscience, analytical chemistry, biochemistry, and clinical medicine. Editor: Haojie Lu is a professor at Fudan University, specializing in proteomics based on mass spectrometry with particular emphasis on novel technologies for separation and identification of low-abundant proteins and post-translationally modified proteins (including glycosylation), as well as relative and absolute quantification methods for proteomics.
The book presents recent developments in the field of composites, investigated by Broadband Dielectric Spectroscopy (BDS) and sheds a special focus on nanocomposites. This volume compares the results obtained by BDS with data from other methods like hyphenated calorimetry, dynamical-mechanical spectroscopy, NMR spectroscopy and neutron scattering. The addressed systems range from all kinds of model systems, such as polymers filled with spherical silica particles, advanced materials such as polymers with molecular stickers or hyperbranched polymer-based matrices to industrially significant systems, like epoxy-based materials. The book offers an excellent insight to a valuable application of dielectric spectroscopy and it is a helpful guide for every scientist who wants to study dynamics in composite materials.
This book offers historical and state-of-the-art molecular spectroscopy methods and applications in dynamic compression science, aimed at the upcoming generation in physical sciences involved in studies of materials at extremes. It begins with addressing the motivation for probing shock compressed molecular materials with spectroscopy and then reviews historical developments and the basics of the various spectroscopic methods that have been utilized. Introductory chapters are devoted to fundamentals of molecular spectroscopy, overviews of dynamic compression technologies, and diagnostics used to quantify the shock compression state during spectroscopy experiments. Subsequent chapters describe all the molecular spectroscopic methods used in shock compression research to date, including theory, experimental details for application to shocked materials, and difficulties that can be encountered. Each of these chapters also includes a section comparing static compression results. The last chapter offers an outlook for the future, which leads the next-generation readers to tackling persistent problems.
This book provides an overview of key current developments in the synthetic strategy of functional novel nanomaterials in various spectroscopic characterizations and evaluations and highlights possible future applications in nanotechnology and materials science. It illustrates the wide-ranging interest in these areas and provides a background to the later chapters, which address the novel synthesis of high-yield nanomaterials and their biomaterials, graphene, polymeric nanomaterials, green nanomaterials, green polyester, liquid crystal electro-optic switching applications, nanobiotechnology, transition metal oxides, response characteristics of exclusive spectroscopic investigation as well as electron microscopic study, flexible and transparent electrodes, optoelectronics, nanoelectronics, smart displays, switchable device modulation, health care, energy storage, solar/fuel cells, environmental and plant biology, social, ethical, and regulatory implications of various aspects of green nanotechnology, as well as significant foreseeable spectroscopic applications of key functional nanomaterials. Given appropriate regulation for and research on the topics covered, commercial production of manufactured novel composite materials can be realized. Furthermore, the many discoveries highlighted in the book can modulate spectroscopic performances with technical excellence in multidisciplinary research of high competence.
Lifetime spectroscopy is one of the most sensitive diagnostic tools for the identification and analysis of impurities in semiconductors. Since it is based on the recombination process, it provides insight into precisely those defects that are relevant to semiconductor devices such as solar cells. This book introduces a transparent modeling procedure that allows a detailed theoretical evaluation of the spectroscopic potential of the different lifetime spectroscopic techniques. The various theoretical predictions are verified experimentally with the context of a comprehensive study on different metal impurities. The quality and consistency of the spectroscopic results, as explained here, confirms the excellent performance of lifetime spectroscopy.
Mass Spectrometry: Principles and Applications, Third Edition Edmond de Hoffmann, "UniversitA(c) Catholique de Louvain, Belgium" and Vincent Stroobant, "Ludwig Institute for Cancer Research, Brussels Branch, Belgium." "Mass Spectrometry, Third Edition" provides students with a complete overview of the principles, theories and key applications of modern mass spectrometry. Extensively revised and updated, the third edition of this successful textbook focuses on recent developments in techniques and applications. All instrumental aspects of mass spectrometry are clearly and concisely described. Emphasis is placed throughout the text on practical application examples. As with previous editions, it contains numerous tables of useful data, references and a series of exercises of increasing difficulty to encourage student understanding. Provides a complete overview of the principles, theories and applications of modern mass spectrometry An extensive revision and update including: increased coverage of MALDI and ESI, resolution and mass accuracy and activation of ions New material about instruments such as linear traps, Orbitrap, TOF/TOF, hybrid instruments, and about new atmospheric ionisation techniques such as APPI, DESI, DART. The range of applications has been expanded and newer methods such as metabolome are included Contains numerous examples and exercises to encourage student understanding "Mass Spectrometry: Principles and Applications, Third Edition" will prove invaluable to undergraduates and postgraduates using this technique in departments of chemistry, biochemistry, medicine, pharmacology, agriculture, materials science and food science. It will alsoappeal to researchers looking for an overview of the latest techniques and developments.
An introduction to underlying principles and experimental procedures using the newest strategies and techniques for obtaining extensive NMR assignments in biopolymers based on NMR data and the primary structure. Includes an extensive and non-mathematical discussion of 2D NMR and Nulcear Overhauser effects; resonance assignments and structure determination in proteins; and resonance assignments and structure determination in nucleic acids. Enables specialists and non-specialists to evaluate the potentialities and limitations of the method.
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
This biography is a personal portrait of one of the best-known Dutch physicists, Nicolaas Bloembergen. Born in 1920 in Dordrecht, Bloembergen studied physics in Utrecht, leaving after World War II for the United States, where he became an American citizen in 1958. At Harvard University, he pioneered nuclear magnetic resonance (NMR, used in chemistry and biology for structure identification; moreover leading to MRI), laser theory and nonlinear optics. In 1978 he was awarded the Lorentz Medal for his contribution to the theory of nonlinear optics (used in fiber optics), and in 1981 he received the Nobel Prize for physics, along with Arthur Schawlow and Kai Siegbahn. The book is based on numerous conversations with Nicolaas Bloembergen himself, his wife Deli Brink, his family, and colleagues in science. It describes his childhood and study in Bilthoven and Utrecht, the first postwar years at Harvard, the discoveries of masers and lasers, and the award of the Nobel Prize. It also delves into Bloembergen's involvement in American politics, particularly his role in Ronald Reagan's controversial Star Wars program.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
In recent years, optical properties of the unique atomic and molecular structures of materials have drawn great scientific interest. Linear optical properties of materials such as metals, metal oxides, magnetic oxides, and organic materials are based on energy transfer and find applications in wastewater treatment, forensic science, biomedical science, photovoltaics, nuclear technology, and LED displays. Nonlinear optical properties of materials are based on the nonlinear medium and find more advanced applications in frequency mixing generations and optical parametric oscillations. This book presents the underlying principles, implementation, and applications of the linear and nonlinear optical properties of materials and has been divided into two parts emphasizing these properties. The first part of the book, Linear Optics, discusses bimetallic nanoparticles in dielectric media and their integration to dye molecules to detect trace amounts of heavy metals at the nanometer level, as well as to enhance luminescence and image contrasts in forensic inspection and biomedical diagnosis. It shows how the integration of bimetallic nanoparticles into a ZnO matrix promotes broadening of the absorption spectrum from the ultraviolet to the visible wavelength. It explains the role of surface adsorption and photocatalytic degradation in dye-removal kinetics by Fe3O4 magnetic nanoparticles under pulsed white light. It also discusses the double-layer shielding tank design to safely store radioactive waste and photon propagation through the multilayer structures of a human tissue model. The second part of the book, Nonlinear Optics, presents general concepts such as electromagnetic theory, nonlinear medium, and wave propagation, as well as more advanced concepts such as second harmonic generation, phase matching, optical parametric interactions, different frequency generation, sum frequency generation, tunable laser, and optical resonant oscillator.
The book gives an overview about all relevant electrochemical and spectroscopic methods used in corrosion research. Besides the correct use and interpretation, the methods are correlated with industrial test methods for organic coatings and conversion layers. |
![]() ![]() You may like...
Game Theory, Experience, Rationality…
W. Leinfellner, Eckehart Koehler
Hardcover
R4,777
Discovery Miles 47 770
Africa's Business Revolution - How to…
Acha Leke, Mutsa Chironga, …
Hardcover
![]()
|