![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Agriculture & farming > Crop husbandry
This collection features four peer-reviewed reviews on improving the shelf life of horticultural produce. The first chapter introduces the concept of smart distribution and highlights how optimising the management of produce distribution systems can reduce loss and waste in the horticultural sector and extend shelf life by minimising quality deterioration. The chapter also discusses the use of remote sensing technology to determine food quality. The second chapter reviews a selection of pre- and postharvest strategies used to optimise fruit quality. The chapter considers ways of measuring harvest maturity, as well as the role of temperature controlled environments in extending the shelf life of tree fruit. The third chapter summarises the wealth of recent research on the preservation of fruit quality in mango production, as well as how postharvest operations can be optimised to reduce loss and waste and maximise shelf life, including the use of controlled environments, waxes and edible coatings. The final chapter explores the advantages and disadvantages of cultivating ripening-impaired tomato mutants and genetically engineered genotypes characterized by inhibition of the ripening process. The chapter considers the use of ethylene inhibitors and controlled environments as a means of mitigating devastating yield losses.
Lin Foxhall explores the cultivation of the olive as an extended case study for understanding ancient Greek agriculture in its landscape, economic, social, and political settings. Evidence from written sources, archaeology, and visual images is assembled to focus on what was special about the cultivation and processing of the olive in classical and archaic Greece, and how and why these practices differed from Roman ones. This investigation opens up new ways of thinking about the economies of the archaic and classical Greek world.
Presenting an overview of agroecology within the framework of climate change, this book looks at the impact of our changing climate on crop production and agroecosystems, reporting on how plants will cope with these changes, and how we can mitigate these negative impacts to ensure food production for the growing population. It explores the ways that farmers can confront the challenges of climate change, with contributed chapters from around the world demonstrating the different challenges associated with differing climates. Examples are provided of the approaches being taken right now to expand the ecological, physiological, morphological, and productive potential of a range of crop types. Describes the effects and responses of the macro and micro levels of crops under the different components of climate change Reports on the adaptation and resilience of food production systems within the changing climate Covers how plants cope with the changing climate including physiological, biochemical, phenotype, and ecosystem responses Provides an in-depth discussion on the importance of agricultural education connected to climate change Giving readers a greater understanding of the mechanisms of plant resilience to climate change, this book provides new insights into improving the productivity of an individual crop species as well as bringing resistance and resiliency to the entire agroecosystem. It offers a strong foundation for changing research and education programs so that they build the resistance and resilience that will be needed for the uncertain climate future ahead.
In the last few miles above the Cape Cod Canal, visitors to the Cape pass through the towns of Middleboro, Carver, and Wareham. To most, these places will never be more than a roadside sign, but there is life here--of a very particular sort. Beyond the highway are 11,000 acres of bog, and each fall, after the tourists have gone home, men and machines appear to harvest a third of the nation's cranberries, turkey's tablemate. This book looks at the history of this tart and diminutive fruit, the ways it is cultivated, cared for, and consumed. It looks into the lives and livelihoods of those who harvest it--some families have been in the business for five generations. It provides a rich and surprising story of this under-appreciated berry.
Effect of High Temperature on Crop Productivity and Metabolism of Macro Molecules presents a comprehensive overview on the direct effect of temperatures defined as "high", a definition which increasingly includes a great number of geographic regions. As temperature impacts the number of base growth days, it is necessary to adapt plant selection, strategize planting times, and understand the expected impact of adaptive steps to ensure maximum plant health and crop yield. Global warming, climate change and change in environmental conditions have become common phrases in nearly every scientific seminar, symposium and meeting, thus these changes in climatic patterns constrain normal growth and reproduction cycles. This book reviews the effect of high temperature on agricultural crop production and the effect of high temperature stress on the metabolic aspects of macro molecules, including carbohydrates, proteins, fats, secondary metabolites, and plant growth hormones.
This book presents deliberations on molecular and genomic mechanisms underlying the interactions of crop plants to the abiotic stresses caused by heat, cold, drought, flooding, submergence, salinity, acidity, etc., important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in oilseed crops is imperative for addressing FHNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing has provided precise information regarding the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to abiotic stresses. The eight chapters each dedicated to a oilseed crop in this volume elucidate on different types of abiotic stresses and their effects on and interaction with the crop; enumerate on the available genetic diversity with regard to abiotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; present brief on classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; depict the success stories of genetic engineering for developing abiotic stress-resistant crop varieties; discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite varieties; enunciate on different genomics-aided techniques including genomic selection, allele mining, gene discovery, and gene pyramiding for developing adaptive crop varieties with higher quantity and quality of yields, and also elaborate some case studies on genome editing focusing on specific genes for generating abiotic stress-resistant crops.
The Science of Grapevines, Third Edition reflects the latest insights into cultivar relationships, vascular transport, hormone action, and stress responses of grapevines. Based on the author's many years of teaching, research and practical experience with grapevines and grape production, the book is completely revised and updated, presenting a comprehensive introduction on the physical structure of the grapevine, its organs, their functions, and their environmental interactions. While many concepts discussed are broadly applicable to plants in general, the focus is on grapevines, especially cultivated grapevines. This book enables readers to use these concepts in their own scientific research or in practical production systems. Scientifically grounded and integrating discoveries in other plant species, the book explores the physiological processes underlying grapevine form and function, their developmental and environmental control, and their implications for practical vineyard management.
Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commerical export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop, such as wheat, usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties. This work summarizes concepts dealing with germplasm enhancement and development of improved varieties based on innovative methodologies that include doubled haploidy, marker assisted selection, marker assisted background selection, genetic mapping, genomic selection, high-throughput genotyping, high-throughput phenotyping, mutation breeding, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, low cost high-throughput field phenotyping, etc. It is an important reference with special focus on accelerated development of improved crop varieties.
This collection features five peer-reviewed reviews on optimising rootstock health. The first chapter explores optimising rootstock health to improve root function, resource-use efficiency, sustainability and agricultural productivity. The chapter also presents a case study on tomato rootstocks as a viable strategy to overcome abiotic stresses in Ghana. The second chapter reviews the important aspects of tree growth and development in apple production which are integral to ensure product quality. The chapter discusses the importance of rootstocks and emphasises the mechanisms and morphological effects of dwarfing on rootstocks. The third chapter considers recent advances in the development and utilisation of fruit tree rootstocks, focussing primarily on apples. The chapter also reviews rootstock tolerance to both abiotic and biotic stresses. The fourth chapter discusses advances in avocado tissue culture for clonal propagation and highlights the potential of this technology for improving the sustainable supply of high-quality avocado plants to support future avocado industry growth. The final chapter addresses the challenges and opportunities in pear breeding, focussing on pear cultivars, pear rootstocks and germplasm resources. The chapter also considers the use of dwarfing as a means of improving particular traits.
This collection features six peer-reviewed reviews on optimising rootstock health. The first chapter considers recent advances in irrigation techniques used in sustainable vegetable cultivation and reviews the performance and efficiency of these systems. The second chapter details the need to optimise precision in orchard irrigation management, focussing on matching water supply to plant demand as a means of achieving this. The third chapter assesses irrigation management systems for tomato production and how these can be optimised alongside nutrient management to ensure the production of safe and nutritious tomatoes. The fourth chapter summarises the common types of irrigation systems found in soilless culture production, as well as the emergence of new systems, including plant-based sensing and monitoring systems. The fifth chapter highlights the need for more sustainable water use in ornamental production systems and the methods which can be used to achieve this, such as reducing runoff volume. The final chapter considers recent advances in irrigation management in greenhouse cultivation, focussing on water balance, crop evapotranspiration techniques and irrigation scheduling.
This book fully integrates the conventional and biotechnological approaches to fruit crop breeding. Individual chapters are written on a wide variety of species covering all the major fruit crops in one volume. For each crop, there is a discussion of their taxonomy and evolution, history of improvement, crossing techniques, evaluation methods, and heritability of major traits and germplasm resources. Also discussed are the most recent advances in genetic mapping and QTL (quantitative trait loci) analysis, marker assisted breeding, gene cloning, gene expression analysis, regeneration and transformation. Patenting and licensing issues are also covered.
The emergence of fungicide resistance is a major challenge facing agriculture. With increasing regulation and costs limiting the development of new fungicides, farmers remain reliant on a relatively small group of working fungicides, many of which are decreasingly effective as major crop disease pathogens develop resistance to them. Understanding and minimising fungicide resistance provides an authoritative review on the wealth of research on understanding the development of fungicide resistance in agricultural crops and the establishment of preventative measures which can be implemented to limit its spread and the consequent impact of disease on yields. This collection includes ways of understanding and preventing resistance to key groups of fungicides, such as SBI, Qol, SDHI, OSPBI and multisite inhibitor fungicides.
Sweet Potato: Chemistry, Processing, and Nutrition presents foundational information, including identification, analysis, and use of chemical components from sweet potato in a variety of food and nonfood uses. Sweet potatoes can be easily propagated, are rich source of carbohydrates and functional components, and are highly productive, which makes them most suitable for production of staple and functional foods. With the increasing population and the challenges of providing healthy food to the world, there is an increasing consumer demand for new and better sweet potato products, particularly for those in developing countries. Providing a brief description of the specific sweet potato components, their role during processing and strategies for quality optimization, this book also explores novel methods of sweet potato starch, protein, and pectin modification providing students, researchers, and technologists working in the area of food science and others with the most recent information and state-of-the-art technology for developing new and beneficial uses of sweet potato.
This collection features five peer-reviewed reviews on rust diseases of cereals. The first chapter provides an overview of the wheat rust pathogen lifecycle that has been critical to the design of effective disease management strategies and discusses recent integration of basic biological knowledge and genomic-led tools within an epidemiological framework. The second chapter introduces stripe rust and provides an overview of its decimation of crop yields worldwide. The chapter summarises recent advances in identifying stripe rust resistance genes in wheat as a means of controlling disease spread and limiting its economic damage. The third chapter addresses the need for more effective and sustainable control of rust pathogens affecting wheat and barley in the face of increasing regulatory measures against the use of conventional fungicides, as well as the spread of fungicide resistance. The fourth chapter provides an overview of the recent advances in controlling wheat rust, focussing on the role of pathogen and host genetics, host-pathogen interactions, epidemiology and management strategies. The final chapter considers the main rust pathogens affecting sorghum and details the different conditions in which they proliferate, their symptoms and impact on crop yields.
During the past 15 years, cellular and molecular approaches have emerged as valuable adjuncts to supplement and complement conventional breeding methods for a wide variety of crop plants. Biotechnology increasingly plays a role in the creation, conservation, characterization and utilization of genetic variability for germplasm enhancement. For instance, anther/microspore culture, somaclonal variation, embryo culture and somatic hybridization are being exploited for obtaining incremental improvement in the existing cultivars. In addition, genes that confer insect- and disease-resistance, abiotic stress tolerance, herbicide tolerance and quality traits have been isolated and re-introduced into otherwise sensitive or susceptible species by a variety of transgenic techniques. Together these transformative methodologies grant access to a greater repertoire of genetic diversity as the gene(s) may come from viruses, bacteria, fungi, insects, animals, human beings, unrelated plants or even be artificially derived. Remarkable achievements have been made in the production, characterization, field evaluation and commercialization of transgenic crop varieties worldwide. Likewise, significant advances have been made towards increasing crop yields, improving nutritional quality, enabling crops to be raised under adverse conditions and developing resistance to pests and diseases for sustaining global food and nutritional security. The overarching purpose of this 3-volume work is to summarize the history of crop improvement from a technological perspective but to do so with a forward outlook on further advancement and adaptability to a changing world. Our carefully chosen "case studies of important plant crops" intend to serve a diverse spectrum of audience looking for the right tools to tackle complicated local and global issues.
Advances in Agronomy, Volume 155, the newest release in this valuable serial, continues to be recognized as a leading reference and first-rate source for the latest research in agronomy. Each volume contains an eclectic group of reviews by leading scientists throughout the world. As always, the subjects covered are rich, varied and exemplary of the abundant subject matter addressed by this long-running serial.
Handbook of Agricultural and Farm Machinery, Third Edition, is the essential reference for understanding the food industry, from farm machinery, to dairy processing, food storage facilities and the machinery that processes and packages foods. Effective and efficient food delivery systems are built around processes that maximize efforts while minimizing cost and time. This comprehensive reference is for engineers who design and build machinery and processing equipment, shipping containers, and packaging and storage equipment. It includes coverage of microwave vacuum applications in grain processing, cacao processing, fruit and vegetable processing, ohmic heating of meat, facility design, closures for glass containers, double seaming, and more. The book's chapters include an excellent overview of food engineering, but also regulation and safety information, machinery design for the various stages of food production, from tillage, to processing and packaging. Each chapter includes the state-of-the art in technology for each subject and numerous illustrations, tables and references to guide the reader through key concepts.
The dramatic worldwide increase in agricultural and industrial productivity has created severe environmental problems. Soil and groundwater reservoirs have been polluted with pesticides, xenobiotics and agro-chemicals. The global consensus to reduce inputs of chemical pesticides and agrochemical fertilizers, which are perceived at being hazardous by some consumers, has provided opportunities for the development of novel, benign sustainable crop management strategies. The future of agricultural depends upon our ability to enhance the productivity without damage to their long-term production potential. One of the strategies is the application of effective microbial products beneficial for both farmers and ecosystems. This kind of approach can ensure both ecological and economic sustainability. Soil microbial populations are immersed in framework of interactions, which are known to affect plant fitness and soil quality. For betterment of life of human being, improved quality and variety of products are formed due to versatile action of different group of microorganisms, Microbes are able to degrade solid waste material into compost which is a mixture of decayed organic matter, manure etc. Incomplete microbial degradation of organic waste where the microbial process varies aerobic to anaerobic form is stated as compost, if added to soil improves plant growth and development. The biological activities and microbial metabolism in the soil contribute to alter its mixture and fertility. Incorporation of organic remain in the form of compost is known to influence favourably the physio-chemical and biological properties of soil. The beneficial activities bestowed upon plants by compost utilization are multifaceted, hence most promising alternatives for achieving sustainable agricultural production. An increased awareness on compost has led to their use in agricultural concern. Contents in the present book will comprised various chapters on the role of beneficial bacteria in the composting process. The application is depicted to achieve the attainable productivity besides, in disease management and suppressiveness of organisms of phytopathogenic in nature. Significance of the compost elicits certain responses e.g. soil reclamation, soil fertility, soil health and disease management exhibit due to quality compost amendment in soil. It serves as low cost prospective option for sustainable crop production and protection.
This new volume, Biofertilizers and Biopesticides in Sustainable Agriculture, presents strategies for the management of soil and crop diseases. Microbes have attracted worldwide attention due to their role in disease management and remediation of polluted soils. Taking a sustainable approach, this book explores the means of integrating various microbial management approaches to achieve the desired levels of crop yield under both conventional soils and neglected soils through the use of biopesticides and other botanicals as well as biomolecules. This book also presents a broad and updated view of molecular nitrogen fixation and phosphate-solubilizing and sulfur-transforming microbes for nutrition of crops in relation to the role of metal tolerant microbes in providing protection to plants grown in metal-contaminated soils. The preparation and application of biofertilizers, utilization of household waste materials, and use of genetically modified microorganisms (GMOs) in plant growth and development are also well discussed in the volume.
Dr Samuel Johnson, that famous eighteenth century lexicographer, said of oats 'A grain which in England is generally given to horses but in Scotland supports the people'. And presumably it was a Scotsman who riposted 'But what people and what horses ' That exchange encapsulates much of the history and role of oats - a cereal, once important as human food in parts of northern Europe but latterly used mainly as animal feed, especially favoured for horses. Although no longer a major food anywhere, oats still have a special and favoured niche in the cuisine of people living in the cooler and wetter regions of some parts of northern Europe. However, there is currently a resurgence of interest in the crop, because there is now considerable scientific evidence to support the view of Scotsmen who never doubted its dietary value. This book - very much an international effort, carefully orchestrated by Robert Welch - traces the origin, history and scientific progress which forms a sound basis for any further crop improvement and for broadening the utilization and marketing of oat products. Should rational consider ations lead to an increase in the importance of this cereal, I, for one, would be glad since I believe the rural landscape is the poorer for the increased rarity of golden fields of rippling oats which I used to be involved in harvesting."
The book discusses recent innovation and diversification paths in agri-food, specifically the linkages among food research and innovation, production, consumption, gastronomy, and place branding as well as technology. It also focuses on EU policies and instruments in support of R&I activities in agri-food, and explores agri-food domains within the context of smart specialisation.
Advances in Agronomy, Volume 153, the latest release in this comprehensive series, continues its recognition as a leading, first-rate source for the latest research in agronomy. Each volume contains an eclectic group of reviews by leading scientists throughout the world. As always, the subjects covered are rich, varied, and exemplary of the abundant subject matter addressed by this long-running serial. Chapters in this updated volume include Novel Practice and Smart Technologies to Maximize the Nitrogen Fertilizer Value of Manure for Crop Production in Cold Humid Temperate Regions, Nitrogen Fertilization Management of Switchgrass, Miscanthus and Giant Reed: A Review, and much more.
This book has 11 chapters which systematically introduce the latest achievements in scientific research and technological application of the forage industry in China, and also cover the laws and polices related to forage production. The main focus of this monograph is the progress of forage science in China. Each chapter in this book contains numerous charts and diagrams further illustrating the impact of development activities in the area. It is the first book in its field and compiled by mobilizing all the research forces in the field of forage grass and under the leadership of China Agricultural University, Lanzhou University, and Sichuan Academy of Grassland Sciences with the support of other related universities and research institutes. China is the largest forage consumption country in the world. Every year, more than 2 billion herbivorous livestock need more than 350 million tons of forage but the supply each year is only 250 million tons. With the policy and financial support of the Central Government, the forage industry in China has been developed rapidly, great progress has been made in the science and technology in forage production, processing, and utilization, and its influence has been increased in the world.
Estimating evapotranspiration (ET) has been one of the most critical research areas in agriculture because of water scarcity, the growing population, and climate change. The accurate estimation and mapping of ET are necessary for crop water management. Traditionally, researchers use water balance, soil moisture, weighing lysimeters, or an energy balance approach, such as Bowen ratio or eddy covariance towers to estimate ET. However, these ET methods are point-specific or area-weighted measurements and cannot be extended to a large scale. On the other hand, while remote sensing is able to provide spatially distributed measurements, the spatial resolution of multispectral satellite images is often not enough for crops with clumped canopy structures, such as trees and vines. Unmanned aerial vehicles (UAVs) can mitigate these spatial and temporal limitations. Lightweight cameras and sensors can be mounted on the UAVs and take high-resolution images. Unlike satellite imagery, the spatial resolution of the UAV images can be at the centimeter-level. UAVs can also fly on-demand, which provides high temporal imagery. This book examines the different UAV-based approaches of ET estimation. Models and algorithms, such as mapping evapotranspiration at high resolution with internalized calibration (METRIC), the two-source energy balance (TSEB) model, and machine learning (ML) are discussed. It also covers the challenges and opportunities for UAVs in ET estimation, with the final chapters devoted to new ET estimation methods and their potential applications for future research. |
You may like...
Genetically Modified Plants - Assessing…
Roger Hull, Graham Head, …
Hardcover
R3,045
Discovery Miles 30 450
Medicinal and Aromatic Crops…
Valtcho D. Jeliazkov, Charles L. Cantrell
Hardcover
R4,838
Discovery Miles 48 380
Microbial Management of Plant Stresses…
Ajay Kumar, Samir Droby
Paperback
R3,998
Discovery Miles 39 980
Genomics, Transcriptomics, Proteomics…
Azamal Husen, Altaf Ahmad
Paperback
R3,947
Discovery Miles 39 470
|