![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Agriculture & farming > Crop husbandry
This book covers all aspect of legume production management technologies, plant ecological response, nutrients management, biological nitrogen fixation, molecular approaches, potential cultivars, biodiversity management under climate change. Also covered are various aspects of legume management under climate change such as, production management technology, ecology & adaptation, diseases, and international trade; physiology and crops response to nutrients, drought, salinity, and water use efficiency; Biodiversity management, molecular approaches and biological Nitrogen fixation; climate change and strategies. This book presents the most comprehensive and up to date review of research on different cool season grain legume crops, nutrients management, biotic and abiotic stresses management, agronomical approaches for drought management, salinity, drought, weed management and water use efficiency, impact on international trade around the world.
This detailed volume explores rice molecular biology, genetic engineering, and genome editing technologies. Dividing into three parts, the book covers subjects such as genetic engineering and tissue culture of rice, including efficient methods for rice transformation and regeneration, genome editing, targeted integration, and gene stacking in rice, including multiple methods utilizing CRISPR systems for targeted gene knock-out or genome modification via base editing, and diverse methods describing bioinformatic, molecular, and cellular analyses in rice. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Rice Genome Engineering and Gene Editing: Methods and Protocols serves as a valuable resource for researchers worldwide striving to further their efforts on advancing research and producing genetically improved rice varieties.
This book provides case studies on cultivating alternative crops and presents new cropping systems in many regions of the world. It focusses on new emerging research topics aiming to study all aspects of adaptation under several stresses including agricultural, environmental, biological and socioeconomic issues. The book also provides operational and practical solutions for scientists, producers, technology developers and managers to succeed the cultivation of new alternative crops and, consequently, to achieve food security. Many regions in the world are suffering from water scarcity, soil and water salinization and climate change. These conditions make it difficult to achieve food security by cultivating conventional crops. A renaissance of interest for producing alternative crops under water scarcity and water salinization has been, therefore, implemented primarily among small-scale producers, researchers and academics. The use of alternative crops (quinoa, amaranth, legume crops, halophytes, ...etc.) may provide some environmental benefits such as valorization of salt-affected soils, reduced pesticide application, enhanced soil and water quality and promotion of wildlife diversity. This also may provide some economic benefits such as providing the opportunity for producers to take advantage of new markets and premium prices, spreading the economic risk and strengthening local economies and communities. Furthermore, alternative crops are often rich in proteins and minerals, and even some of them are Gluten free (quinoa). This reflects their importance to achieve food security in quantity and quality scale. The year 2013 was exceptional for alternative crops as it was the international year of quinoa celebrated by Food and Agriculture Organization (FAO). This reflects the importance of research conducted on quinoa and other alternative crops in many regions of the world.
Agronomic crops have provided food, beverages, fodder, fuel, medicine and industrial raw materials since the beginning of human civilization. More recently, agronomic crops have been cultivated using scientific rather than traditional methods. However, in the current era of climate change, agronomic crops are suffering from different environmental stresses that result in substantial yield loss. To meet the food demands of the ever-increasing global population, new technologies and management practices are being adopted to boost yields and maintain productivity under both normal and adverse conditions. Further, in the context of sustainable agronomic crop production, scientists are adopting new approaches, such as varietal development, soil management, nutrient and water management, and pest management. Researchers have also made remarkable advances in developing stress tolerance in crops. However, the search for appropriate solutions for optimal production to meet the increasing food demand is still ongoing. Although there are several publications on the recent advances in these areas, there are few comprehensive resources available covering all of the recent topics. This timely book examines all aspects of production technologies, management practices and stress tolerance of agronomic crops.
This specially curated collection features four reviews of current and key research on supporting cereal production in sub-Saharan Africa. The first chapter reviews how research and development can support smallholder wheat farmers through improving access to resources and services. The chapter considers current obstacles faced by smallholder farmers, including biophysical limitations such as climatic issues, as well as socio-economic limitations such as land availability. The second chapter assesses the importance of increasing the adoption rate of improved maize technologies within smallholder farming households across Africa. The chapter discusses the economic and institutional barriers inhibiting adoption, as well as farmer attitudes to innovation. The third chapter describes the effect of poor soil fertility, drought and weeds on maize yields in West Africa. The chapter considers strategies for mitigating these constraints, including nutrient management using fertilizers, weed management and resistant varieties of maize. The final chapter discusses phosphorus scarcity in areas of West Africa and details the need to improve sorghum breeding to enhance the crop's tolerance to low-phosphorus soil conditions.
Estimating evapotranspiration (ET) has been one of the most critical research areas in agriculture because of water scarcity, the growing population, and climate change. The accurate estimation and mapping of ET are necessary for crop water management. Traditionally, researchers use water balance, soil moisture, weighing lysimeters, or an energy balance approach, such as Bowen ratio or eddy covariance towers to estimate ET. However, these ET methods are point-specific or area-weighted measurements and cannot be extended to a large scale. On the other hand, while remote sensing is able to provide spatially distributed measurements, the spatial resolution of multispectral satellite images is often not enough for crops with clumped canopy structures, such as trees and vines. Unmanned aerial vehicles (UAVs) can mitigate these spatial and temporal limitations. Lightweight cameras and sensors can be mounted on the UAVs and take high-resolution images. Unlike satellite imagery, the spatial resolution of the UAV images can be at the centimeter-level. UAVs can also fly on-demand, which provides high temporal imagery. This book examines the different UAV-based approaches of ET estimation. Models and algorithms, such as mapping evapotranspiration at high resolution with internalized calibration (METRIC), the two-source energy balance (TSEB) model, and machine learning (ML) are discussed. It also covers the challenges and opportunities for UAVs in ET estimation, with the final chapters devoted to new ET estimation methods and their potential applications for future research.
Presenting an overview of agroecology within the framework of climate change, this book looks at the impact of our changing climate on crop production and agroecosystems, reporting on how plants will cope with these changes, and how we can mitigate these negative impacts to ensure food production for the growing population. It explores the ways that farmers can confront the challenges of climate change, with contributed chapters from around the world demonstrating the different challenges associated with differing climates. Examples are provided of the approaches being taken right now to expand the ecological, physiological, morphological, and productive potential of a range of crop types. Describes the effects and responses of the macro and micro levels of crops under the different components of climate change Reports on the adaptation and resilience of food production systems within the changing climate Covers how plants cope with the changing climate including physiological, biochemical, phenotype, and ecosystem responses Provides an in-depth discussion on the importance of agricultural education connected to climate change Giving readers a greater understanding of the mechanisms of plant resilience to climate change, this book provides new insights into improving the productivity of an individual crop species as well as bringing resistance and resiliency to the entire agroecosystem. It offers a strong foundation for changing research and education programs so that they build the resistance and resilience that will be needed for the uncertain climate future ahead.
This book presents deliberations on molecular and genomic mechanisms underlying the interactions of crop plants to the abiotic stresses caused by heat, cold, drought, flooding, submergence, salinity, acidity, etc., important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in oilseed crops is imperative for addressing FHNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing has provided precise information regarding the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to abiotic stresses. The eight chapters each dedicated to a oilseed crop in this volume elucidate on different types of abiotic stresses and their effects on and interaction with the crop; enumerate on the available genetic diversity with regard to abiotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; present brief on classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; depict the success stories of genetic engineering for developing abiotic stress-resistant crop varieties; discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite varieties; enunciate on different genomics-aided techniques including genomic selection, allele mining, gene discovery, and gene pyramiding for developing adaptive crop varieties with higher quantity and quality of yields, and also elaborate some case studies on genome editing focusing on specific genes for generating abiotic stress-resistant crops.
This collection features six peer-reviewed reviews on optimising rootstock health. The first chapter considers recent advances in irrigation techniques used in sustainable vegetable cultivation and reviews the performance and efficiency of these systems. The second chapter details the need to optimise precision in orchard irrigation management, focussing on matching water supply to plant demand as a means of achieving this. The third chapter assesses irrigation management systems for tomato production and how these can be optimised alongside nutrient management to ensure the production of safe and nutritious tomatoes. The fourth chapter summarises the common types of irrigation systems found in soilless culture production, as well as the emergence of new systems, including plant-based sensing and monitoring systems. The fifth chapter highlights the need for more sustainable water use in ornamental production systems and the methods which can be used to achieve this, such as reducing runoff volume. The final chapter considers recent advances in irrigation management in greenhouse cultivation, focussing on water balance, crop evapotranspiration techniques and irrigation scheduling.
Triticale's days as a scientific curiosity are definitely over. Its wide acceptance as a feed, grain or forage crop, or for baking and malting, plus its high yields under marginal or stress conditions have made it an economically important crop in countries such as Poland, Germany, Australia, Portugal, Brazil, Morocco and China. This publication contains selected, reviewed, and up-to-date papers presented at the Third International Triticale Symposium held in Lisbon, Portugal, by the International Triticale Association and EUCARPIA. Among the broad spectrum of subjects addressed in these presentations are cytogenetics, biotechnology, genetic resources, breeding, agronomic practices and diseases. Also included are triticale's food, feed and forage uses, as well as its marketing processes. In a world of increasing population and decreasing agricultural resources, triticale offers a genuine solution for increasing land utilization and grain production.
This book presents recent advances in global wheat crop research, including the effects of abiotic stresses like high and low temperatures, drought, hypoxia, salinity, heavy metals, nutrient deficiency, and toxicity on wheat production. It also highlights various approaches to alleviate the damaging effects of abiotic stress on wheat as well as advanced approaches to develop abiotic-stress-tolerant wheat crops. Wheat is probably one of the world's most important cereals; it is a staple food in more than 40 countries, and because of its adaptability is cultivated in almost every region. Global wheat production has more than doubled in the last 50 years due to higher yields. However, despite their high yield potential, modern wheat cultivars are often subject to crop loss due to the abiotic stresses. As such, plant breeders have long aimed to improve tolerance in order to maintain yield. Written by 85 experts, and offering the latest insights into wheat responses and tolerance to various abiotic stresses, it is a valuable tool for agronomists, plant breeders, plant physiologists and students in the field of plant science and agriculture. It is the first book to comprehensively cover past and current abiotic stress problems and tolerance mechanisms.
This collection features four peer-reviewed literature reviews on mite pests in agriculture. The first chapter offers a holistic approach to integrated mite management by reviewing the basics of mite taxonomy and morphology. It studies the key plant mite families, focussing on major plant feeding mites (Tetranychidae, Tarsonemidae, Eriophyoidea), as well as the natural predators that regulate these mite populations. The second chapter explores the cultural, biological and chemical control tactics available for controlling major plant feeding mites. These tactics include: choosing tolerant varieties and weed management. The chapter concludes with a discussion on the debate surrounding the best form of control for mite pests in agriculture. The third chapter highlights the importance of understanding the bio-ecology of Tetranychidae species affecting tomato crops, including the two-spotted spider mite, carmine spider mite and red spider mite. The chapter considers the effects of each pest on tomato plants, as well as how best to control them. The final chapter details the ecology of mite pests affecting wheat that belong to the Eriophyoidea family, such as gall mites and wheat curl mites. The chapter discusses the various forms of control for managing Eriophyid mites, as well as the development of new resistant varieties of wheat.
This specially curated collection features five reviews of current and key research on crops as livestock feed. The first chapter reviews the impact of feeding ruminants cereal grains on animal physiology and health. The chapter explores the use of starch-containing cereal grains as a feedstuff to improve animal efficiency and performance, as well as to reduce the environmental footprint of ruminant animal production. The second chapter discusses key environmental trade-offs in the use of crops as livestock feed. It reviews key elements in trade-off analysis and explores opportunities for making better use of existing feed resources and producing more feed biomass of higher fodder quality. The third chapter reviews ways of optimising the use of barley for animal feed, from production and breeding through to the application of new technologies such as near infrared spectroscopy and molecular markers. The fourth chapter reviews the use of sorghum as an important source of fodder and forage. It reviews the different types of sorghum used for forage and other applications, and then provides a detailed discussion of the use of forage sorghum as feed for ruminants. The final chapter discusses the use of soybean meal (SBM) as an animal feed. It assesses the nutritional content of SBM, as well dealing with its anti-nutritive compounds in optimising its use.
This book describes the current state of international grape genomics, with a focus on the latest findings, tools and strategies employed in genome sequencing and analysis, and genetic mapping of important agronomic traits. It also discusses how these are having a direct impact on outcomes for grape breeders and the international grape research community. While V. vinifera is a model species, it is not always appreciated that its cultivation usually requires the use of other Vitis species as rootstocks. The book discusses genetic diversity within the Vitis genus, the available genetic resources for breeding, and the available genomic resources for other Vitis species. Grapes (Vitis vinifera spp. vinifera) have been a source of food and wine since their domestication from their wild progenitor (Vitis vinifera ssp. sylvestris) around 8,000 years ago, and they are now the world's most valuable horticultural crop. In addition to being economically important, V. vinifera is also a model organism for the study of perennial fruit crops for two reasons: Firstly, its ability to be transformed and micropropagated via somatic embryogenesis, and secondly its relatively small genome size of 500 Mb. The economic importance of grapes made V. vinifera an obvious early candidate for genomic sequencing, and accordingly, two draft genomes were reported in 2007. Remarkably, these were the first genomes of any fruiting crop to be sequenced and only the fourth for flowering plants. Although riddled with gaps and potentially omitting large regions of repetitive sequences, the two genomes have provided valuable insights into grape genomes. Cited in over 2,000 articles, the genome has served as a reference in more than 3,000 genome-wide transcriptional analyses. Further, recent advances in DNA sequencing and bioinformatics are enabling the assembly of reference-grade genome references for more grape genotypes revealing the exceptional extent of structural variation in the species.
This collection features five peer-reviewed literature reviews on mycotoxin control in agriculture. The first chapter reviews advances in post-harvest detection and control of fungal contaminants in cereals. It examines abiotic factors affecting spoilage, methods for early detection of contamination and the range control measures for preventing toxin growth. The second chapter focuses on post-harvest storage and handling practices of barley grain and how these methods can be used to mitigate mycotoxin issues. The chapter also reviews the various mycotoxins and fungi that are associated with barley. The third chapter considers the current strategies available to prevent mycotoxin contamination in groundnut cultivation, focussing on peanuts. It also covers models that predict contamination, as well as the challenges associated with research and quantification of aflatoxin. The fourth chapter presents an overview of the current understanding of mycotoxin contamination of cocoa. The chapter summarises the various methods available to aid detection of mycotoxins and control further contamination. The final chapter addresses the critical safety issue of mycotoxin contamination of food waste planned for re-use. It reviews factors affecting mycotoxin growth and the particular problem of masked mycotoxins.
This specially curated collection features four reviews of current and key research on improving crop disease management. The first chapter reviews strategies for limiting foliar disease development in wheat and barley crops, such as crop rotations, intercropping, gene deployment and conservation tillage. It explores the effectiveness of each strategy against particular foliar diseases, as well as how these strategies can be deployed to reduce inoculum sources for residue-borne cereal leaf diseases. The second chapter considers the use of integrated disease management (IDM) to prevent or reduce yield loss in wheat. The chapter reviews the tactics/tools used in IDM, such as scouting, disease identification and chemical control, and explores how these tactics can be implemented to maximise the effectiveness of managing diseases in wheat. The third chapter assesses how IDM can be applied to barley production and considers the different disease threats, the tools available and possible approaches to deploying them. It also reviews the role of agronomy and how it can be used to optimise these tools. The final chapter reviews the use of IDM in grain legume production and explores the deployment of traditional strategies, such as field and crop management, as well as advanced monitoring methods, modelling and molecular methods to control disease outbreaks in grain legumes.
This book has 11 chapters which systematically introduce the latest achievements in scientific research and technological application of the forage industry in China, and also cover the laws and polices related to forage production. The main focus of this monograph is the progress of forage science in China. Each chapter in this book contains numerous charts and diagrams further illustrating the impact of development activities in the area. It is the first book in its field and compiled by mobilizing all the research forces in the field of forage grass and under the leadership of China Agricultural University, Lanzhou University, and Sichuan Academy of Grassland Sciences with the support of other related universities and research institutes. China is the largest forage consumption country in the world. Every year, more than 2 billion herbivorous livestock need more than 350 million tons of forage but the supply each year is only 250 million tons. With the policy and financial support of the Central Government, the forage industry in China has been developed rapidly, great progress has been made in the science and technology in forage production, processing, and utilization, and its influence has been increased in the world.
This collection features five peer-reviewed reviews on optimising rootstock health. The first chapter explores optimising rootstock health to improve root function, resource-use efficiency, sustainability and agricultural productivity. The chapter also presents a case study on tomato rootstocks as a viable strategy to overcome abiotic stresses in Ghana. The second chapter reviews the important aspects of tree growth and development in apple production which are integral to ensure product quality. The chapter discusses the importance of rootstocks and emphasises the mechanisms and morphological effects of dwarfing on rootstocks. The third chapter considers recent advances in the development and utilisation of fruit tree rootstocks, focussing primarily on apples. The chapter also reviews rootstock tolerance to both abiotic and biotic stresses. The fourth chapter discusses advances in avocado tissue culture for clonal propagation and highlights the potential of this technology for improving the sustainable supply of high-quality avocado plants to support future avocado industry growth. The final chapter addresses the challenges and opportunities in pear breeding, focussing on pear cultivars, pear rootstocks and germplasm resources. The chapter also considers the use of dwarfing as a means of improving particular traits.
This specially curated collection features five reviews of current and key research on improving crop weed management. The first chapter highlights the need for alternative weed control strategies that will preserve herbicide efficacy, as well as agricultural and environmental sustainability. The chapter discusses the role of integrated weed management (IWM) in achieving this through the implementation of practices that can improve plant health, such as crop rotations and no-till farming. The second chapter considers the use of IWM in barley cultivation. After an initial outline of more traditional control methods, primarily the use of herbicides, the chapter provides an example of the successful implementation of IWM in barley in the form of two case studies. The third chapter reviews the impact of weeds on maize grown under temperate conditions in the United States and Europe. It provides a summary of current weed management systems and discusses the issue of herbicide resistance in weed varieties. The fourth chapter reviews the use of IWM in rice cultivation for improved crop productivity and performance and offers detailed discussions on the variety of techniques that can be incorporated into an IWM strategy to achieve this. The final chapter presents a number of weed management options and considerations for sorghum, and discusses the critical period for weed control to occur.
Provides a contemporary view of the impact of climate change on cultivation of various fruit species. Offers modern approaches for mitigating the adverse impact of climate change on fruits cultivation. Describes case studies, empirical experiments and observations emphasizing the research progress of understanding and combating the impact of climate change on fruits production. Illustrates concepts with relevant figures and tabulated data.
Soybean (Glycine max L. (Merr)) is one of the most important crops worldwide. Soybean seeds are vital for both protein meal and vegetable oil. Soybean was domesticated in China, and since last 4-5 decades it has become one of the most widely grown crops around the globe. The crop is grown on an anticipated 6% of the world's arable land, and since the 1970s, the area in soybean production has the highest percentage increase compared to any other major crop. It is a major crop in the United States, Brazil, China and Argentina and important in many other countries. The cultivated soybean has one wild annual relative, G. soja, and 23 wild perennial relatives. Soybean has spread to many Asian countries two to three thousand years ago, but was not known in the West until the 18th century. Among the various constraints responsible for decrease in soybean yields are the biotic and abiotic stresses which have recently increased as a result of changing climatic scenarios at global level. A lot of work has been done for cultivar development and germplasm enhancement through conventional plant breeding. This has resulted in development of numerous high yielding and climate resilient soybean varieties. Despite of this development, plant breeding is long-term by nature, resource dependent and climate dependent. Due to the advancement in genomics and phenomics, significant insights have been gained in the identification of genes for yield improvement, tolerance to biotic and abiotic stress and increased quality parameters in soybean. Molecular breeding has become routine and with the advent of next generation sequencing technologies resulting in SNP based molecular markers, soybean improvement has taken a new dimension and resulted in mapping of genes for various traits that include disease resistance, insect resistance, high oil content and improved yield. This book includes chapters from renowned potential soybean scientists to discuss the latest updates on soybean molecular and genetic perspectives to elucidate the complex mechanisms to develop biotic and abiotic stress resilience in soybean. Recent studies on the improvement of oil quality and yield in soybean have also been incorporated.
Soil and crop sensing is a fundamental component and the first important step in precision agriculture. Unless the level of soil and crop variability is known, appropriate management decisions cannot be made and implemented. In the last few decades, various ground-based sensors have been developed to measure spatial variability in soil properties and nutrients, crop growth and yield, and pest conditions. Remote sensing as an important data collection tool has been increasingly used to map soil and crop growth variability as spatial, spectral and temporal resolutions of image data have improved significantly in recent years. While identifying spatial variability of soil and crop growth within fields is an important first step towards precision management, using that variability to formulate variable rate application plans of farming inputs such as fertilizers and pesticides is another essential step in precision agriculture.The purpose of this book is to present the historical, current and future developments of soil and crop sensing technologies with fundamentals and practical examples. The first chapter gives an overview of soil and crop sensing technologies for precision crop production. The next six chapters provide details on theories, methods, practical applications, as well as challenges and future research needs for all aspects of soil and crop sensing. The last two chapters show how soil and crop sensing technologies can be used for plant phenotyping and precision fertilization. The chapters are written by some of the world's leading experts who have contributed significantly to the developments of precision agriculture technologies, especially in the area of soil and crop sensing. They use their knowledge, experiences, and successful stories to present informative and up-to-date information on relevant topics. Therefore, this book is an invaluable addition to the literature and can be used as a reference by scientists, engineers, practitioners, and college students for the dissemination and advancement of precision agriculture technologies for practical applications. |
![]() ![]() You may like...
Legumes Research - Volume 1
Jose C Jimenez-Lopez, Alfonso Clemente
Hardcover
R3,605
Discovery Miles 36 050
Accelerated Plant Breeding, Volume 1…
Satbir Singh Gosal, Shabir Hussain Wani
Hardcover
R4,657
Discovery Miles 46 570
|