![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Agriculture & farming > Crop husbandry
This volume of "Advances in Virus Research "focuses on mycoviruses.
The authors and reviews represent the most current and cutting-edge
research in the field. A broad range of research is presented from
research experts. * Contributions from leading authorities * Informs and updates on all the latest developments in the field
Advances in Agronomy continues to be recognized as a leading
reference and a first-rate source for the latest research in
agronomy. As always, the subjects covered are varied and exemplary
of the myriad of subject matter dealt with by this long-running
serial.
"Advances in Agronomy" continues to be recognized as a leading
reference and a first-rate source for the latest research in
agronomy. As always, the subjects covered are varied and exemplary
of the myriad of subject matter dealt with by this long-running
serial.
"Advances in Agronomy" continues to be recognized as a leading
reference and a first-rate source for the latest research in
agronomy. As always, the subjects covered are varied and exemplary
of the myriad of subject matter dealt with by this long-running
serial.
The food, feed, ?ber, and fuel needs of the changing world pose the challenge of doubling or tripling of world food, feed, and ?ber production by the year 2050 to meet the needs of a 11 billion global population. In addition, the dramatic changes in food prices in the recent years further warrant that production and productivity need to be enhanced to ensure adequate supplies. Biotechnology can make a signi?cant contribution to this effort as demonstrated by cotton and other crops; the new advances in biotechnology have made it possible to develop plants that contain genes that were not possible to be developed by sexual means. Cotton has been a leader in the use of biotechnology. With the introduction of Bt cotton, followed by stacked cotton products (insect and herbicide tolerance) and extensive use of molecular breeding tools, cotton cultivation has been much improved. The contributions in this book illustrate the scienti?c advances that are going on in cotton and the impact they continue to deliver for all cotton growers. Twelve percent of the global cotton area is now under biotech products at 15. 5 million ha. The primary bene?ts from using genetically engineered cotton include reduced insecticide use, lower production costs, improved yields, lower farming risks, and increased opportunities to grow cotton in areas of severe pest infestation.
"Global Tea Breeding: Achievements, Challenges and Perspectives" provides a global review on biodiversity and biotechnology issues in tea breeding and selection. The contributions are written by experts from China, India, Kenya, Sri Lanka, Vietnam, Turkey, Indonesia, Japan, Bangladesh, Korea, Nigeria, and etc., which countries amount to 90% of the world tea production. This book focuses on the germplasm, breeding and selection of tea cultivars for the production of black, green and Oolong teas from the tea plant, "Camellia sinensis "(L.) O. Kuntze. It can benefit the tea breeders in the global tea industry, as well as the breeders of other woody cash crops like coffee and other sub-tropical fruit trees. Liang Chen is a Professor and Associate Director at National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China. Zeno Apostolides is a Professor at the Department of Biochemistry, University of Pretoria, South Africa. Zong-Mao Chen is the Academician of the Chinese Academy of Engineering and a Professor at the Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China.
When one is privileged to participate long enough in a professional capacity, certain trends may be observed in the dynamics of how challenges are met or how problems are solved. Agricultural research is no exception in view of how the plant sciences have moved forward in the past 30 years. For example, the once grand but now nearly forgotten art of whole plant physiology has given way almost completely to the more sophisticated realm of molecular biology. What once was the American Society of Plant Physiologists' is now the American Society of Plant Molecular Biology; a democratic decision to indemnify efforts to go beyond the limits of the classical science and actually begin to understand the underlying biological basis for genetic regulation of metabolic mechanisms in plants. Yet, as new technologies open windows of light on the inner workings of biological processes, one might reminisce with faint nostalgia on days long past when the artisans of plant physiology, biochemistry, analytical chemistry and other scientific disciplines ebbed and waned in prominence. No intentional reference is made here regarding Darwinism; the plant sciences always have been extremely competitive. Technology is pivotal. Those who develop and/or implement innovative concepts typically are regarded as leaders in their respective fields. Each positive incremental step helps bring recognition and the impetus to push a scientific discipline forward with timely approaches to address relevant opportunities.
During the past 15 years, cellular and molecular approaches have emerged as valuable adjuncts to supplement and complement conventional breeding methods for a wide variety of crop plants. Biotechnology increasingly plays a role in the creation, conservation, characterization and utilization of genetic variability for germplasm enhancement. For instance, anther/microspore culture, somaclonal variation, embryo culture and somatic hybridization are being exploited for obtaining incremental improvement in the existing cultivars. In addition, genes that confer insect- and disease-resistance, abiotic stress tolerance, herbicide tolerance and quality traits have been isolated and re-introduced into otherwise sensitive or susceptible species by a variety of transgenic techniques. Together these transformative methodologies grant access to a greater repertoire of genetic diversity as the gene(s) may come from viruses, bacteria, fungi, insects, animals, human beings, unrelated plants or even be artificially derived. Remarkable achievements have been made in the production, characterization, field evaluation and commercialization of transgenic crop varieties worldwide. Likewise, significant advances have been made towards increasing crop yields, improving nutritional quality, enabling crops to be raised under adverse conditions and developing resistance to pests and diseases for sustaining global food and nutritional security. The overarching purpose of this 3-volume work is to summarize the history of crop improvement from a technological perspective but to do so with a forward outlook on further advancement and adaptability to a changing world. Our carefully chosen "case studies of important plant crops" intend to serve a diverse spectrum of audience looking for the right tools to tackle complicated local and global issues.
"Advances in Agronomy" continues to be recognized as a leading
reference and a first-rate source for the latest research in
agronomy. As always, the subjects covered are varied and exemplary
of the myriad of subject matter dealt with by this long-running
serial.
Soil is a complex body that exists as many types, each with diverse
properties that may vary widely across time and space as a function
of many factors. This complexity makes the evaluation of soil
quality much more challenging than that of water or air quality.
Evaluation of soil quality now considers environmental implications
as well as economic productivity, seeking to be more holistic in
its approach.
"Advances in Agronomy" continues to be recognized as a leading
reference and a first-rate source for the latest research in
agronomy. As always, the subjects covered are varied and exemplary
of the myriad of subject matter dealt with by this long-running
serial.
This detailed volume explores barley as both a crop and a model, with practical techniques such as crossing barley, a range of tissue culture methods, the preparation of barley tissues for different forms of microscopy, and the assessment of sensitivity to abiotic stresses. Efficient protocols are provided for transformation, TILLING, virus-induced gene silencing and genome editing. There is also particular emphasis on a range of protocols for genotyping and for the analysis of gene expression. Written for the highly successful Methods in Molecular Biology series, chapters include introductions on their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and easy-to-use, Barley: Methods and Protocols serves as a valuable reference volume for cereal researchers and breeders by providing detailed protocols covering important traditional skills such as crossing and tissue culture through to the latest technologies for genotyping, expression analysis, and genome editing.
Agriculture depends on improved cultivars, and cultivars are developed through proper plant breeding. Unfortunately, applied plant breeding programs that are focused on cereal commodity crops are under serious erosion because of lack of funding. This loss of public support affects breeding continuity, objectivity, and, perhaps equally important, the training of future plant breeders and the utilization and improvement of plant genetic resources currently available. Breeding programs should focus not only on short-term research goals but also on long-term genetic improvement of germplasm. The research products of breeding programs are important not only for food security but also for commodity-oriented public and private programs, especially in the fringes of crop production. Breeding strategies used for long-term selection are often neglected but the reality is that long-term research is needed for the success of short-term products. An excellent example is that genetically broad-based public germplasm has significantly been utilized and recycled by industry, producing billions of dollars for industry and farmers before intellectual property rights were available. Successful examples of breeding continuity have served the sustainable cereal crop production that we currently have. The fact that farmers rely on public and private breeding institutions for solving long-term challenges should influence policy makers to reverse this trend of reduced funding. Joint cooperation between industry and public institutions would be a good example to follow. The objective of this volume is to increase the utilization of useful genetic resources and increase awareness of the relative value and impact of plant breeding and biotechnology. That should lead to a more sustainable crop production and ultimately food security. Applied plant breeding will continue to be the foundation to which molecular markers are applied. Focusing useful molecular techniques on the right traits will build a strong linkage between genomics and plant breeding and lead to new and better cultivars. Therefore, more than ever there is a need for better communication and cooperation among scientists in the plant breeding and biotechnology areas. We have an opportunity to greatly enhance agricultural production by applying the results of this research to meet the growing demands for food security and environmental conservation. Ensuring strong applied plant breeding programs with successful application of molecular markers will be essential in ensuring such sustainable use of plant genetic resources.
Contributors to this special 100th volume were carefully selected
by the editor for their perspectives on not only the current
state-of-the-art of their topic but also where their fields are
going and what future opportunities exist to advance scientific
frontiers. Originating in 1949, "Advances in Agronomy" is a
venerable serial review featuring state-of-the-art reviews on crop
and soil sciences over the years, and is highly regarded around the
world. Volume 100 continues this long tradition of excellence, with
cutting-edge and visionary reviews from distinguished scientists at
the top of their respective fields.
"Advances in Agronomy" continues to be recognized as a leading
reference and a first-rate source for the latest research in
agronomy. As always, the subjects covered are varied and exemplary
of the myriad of subject matter dealt with by this long-running
serial.
"Advances in Agronomy" continues to be recognized as a leading
reference and a first-rate source for the latest research in
agronomy. As always, the subjects covered are varied and exemplary
of the myriad of subject matter dealt with by this long-running
serial.
|
You may like...
Carbon-based Polymer Nanocomposites for…
Ahmad Fauzi Ismail, Pei Sean Goh
Paperback
Information-Statistical Data Mining…
Bon K. Sy, Arjun K Gupta
Hardcover
R4,177
Discovery Miles 41 770
|