![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Agriculture & farming > Crop husbandry
Plant Stress Mitigators: Types, Techniques and Functions presents a detailed contextual discussion of various stressors on plant health and yield, with accompanying insights into options for limiting impacts using chemical elicitors, bio-stimulants, breeding techniques and agronomical techniques such as seed priming, cold plasma treatment, and nanotechnology, amongst others. The book explores the various action mechanisms for enhancing plant growth and stress tolerance capacity, including nutrient solubilizing and mobilizing, biocontrol activity against plant pathogens, phytohormone production, soil conditioners, and many more unrevealed mechanisms. This book combines research, methods, opinion, perspectives and reviews, dissecting the stress alleviation action of different plant stress mitigators on crops grown under optimal and sub-optimal growing conditions (abiotic and biotic stresses).
Advances in Rice Blast Research provides a complete overview of the research undertaken on the rice-blast pathosystem. This book gathers in one volume the most recent works on rice blast fungus genetics and molecular biology of pathogenicity, rice blast fungus population studies, and genetics and molecular biology of rice resistance to blast, including resistance gene cloning. It also presents the latest results on resistance breeding and resistance management strategies, epidemiology and disease management. This book is a must for plant pathologists and breeders working on rice blast and also to plant pathologists and breeders dealing with fungal diseases in general, because the rice-blast pathosystem is a model in plant pathology. Advances in Rice Blast Research provides a complete overview of the research undertaken on the rice-blast pathosystem. This book gathers in one volume the most recent works on rice blast fungus genetics and molecular biology of pathogenicity, rice blast fungus population studies, and genetics and molecular biology of rice resistance to blast, including resistance gene cloning. It also presents the latest results on resistance breeding and resistance management strategies, epidemiology and disease management. This book is a must for plant pathologists and breeders working on rice blast and also to plant pathologists and breeders dealing with fungal diseases in general, because the rice-blast pathosystem is a model in plant pathology.
Legumes play an important role in the cropping systems of sub Saharan Africa (SSA). Legumes are an important source of nutrition to both humans and livestock by providing the much needed protein, minerals, fibre and vitamins. The sale of legumes seed, leaves and fibre generates income for the marginalized communities especially women. Cultivation of legumes is essential for the regeneration of nutrient-deficient soils. By biologically fixing nitrogen (BNF) in the soil, legumes provide a relatively low-cost method of replacing otherwise expensive inorganic nitrogen in the soil. This enhances soil fertility and boosts subsequent cereal crop yields. Production of legumes in SSA is however; hampered by a number of constraints among them low and declining soil fertility, low soil pH, high salinity, drought and flooding, poor access to improved germplasm, diseases, pests and weeds. Farmers need to learn how to overcome these constraints if the full benefits of legumes are to be gained. This book presents a synthesis of research work on legumes and draws attention to the importance of legumes in integrated soil fertility management (ISFM) and poverty alleviation in SSA.
Plants have to manage a series of environmental stresses throughout their entire lifespan. Among these, abiotic stress is the most detrimental; one that is responsible for nearly 50% of crop yield reduction and appears to be a potential threat to global food security in coming decades. Plant growth and development reduces drastically due to adverse effects of abiotic stresses. It has been estimated that crop can exhibit only 30% of their genetic potentiality under abiotic stress condition. So, this is a fundamental need to understand the stress responses to facilitate breeders to develop stress resistant and stress tolerant cultivars along with good management practices to withstand abiotic stresses. Also, a holistic approach to understanding the molecular and biochemical interactions of plants is important to implement the knowledge of resistance mechanisms under abiotic stresses. Agronomic practices like selecting cultivars that is tolerant to wide range of climatic condition, planting date, irrigation scheduling, fertilizer management could be some of the effective short-term adaptive tools to fight against abiotic stresses. In addition, "system biology" and "omics approaches" in recent studies offer a long-term opportunity at the molecular level in dealing with abiotic stresses. The genetic approach, for example, selection and identification of major conditioning genes by linkage mapping and quantitative trait loci (QTL), production of mutant genes and transgenic introduction of novel genes, has imparted some tolerant characteristics in crop varieties from their wild ancestors. Recently research has revealed the interactions between micro-RNAs (miRNAs) and plant stress responses exposed to salinity, freezing stress and dehydration. Accordingly transgenic approaches to generate stress-tolerant plant are one of the most interesting researches to date. This book presents the recent development of agronomic and molecular approaches in conferring plant abiotic stress tolerance in an organized way. The present volume will be of great interest among research students and teaching community, and can also be used as reference material by professional researchers.
Advances in Agronomy, Volume 176, the latest release in this leading reference on agronomy, contains a variety of updates and highlights new advances in the field. Each chapter is written by an international board of authors.
This book systematically presents 40 pests, 7 natural pest enemies, and 20 diseases and weeds commonly encountered in sugarcane production, combining clear colour photos with detailed scientific descriptions. It covers a range of related topics, including morphological identification, habits and frequency of occurrence, prevention and control measures, symptom identification, characteristics of infections and epidemics, parasitic (predator) characteristics, ways of utilising natural pest enemies, main species and distribution, fluctuation in the field, and chemical control of weeds. With novel content presented in simple, straightforward language, the book provides a valuable reference guide for scientific researchers, educators and industrial practitioners, as well as students and advisers at agricultural universities.
Abiotic stress cause changes in soil-plant-atmosphere continuum and is responsible for reduced yield in several major crops. Therefore, the subject of abiotic stress response in plants - metabolism, productivity and sustainability - is gaining considerable significance in the contemporary world. Abiotic stress is an integral part of "climate change," a complex phenomenon with a wide range of unpredictable impacts on the environment. Prolonged exposure to these abiotic stresses results in altered metabolism and damage to biomolecules. Plants evolve defense mechanisms to tolerate these stresses by upregulation of osmolytes, osmoprotectants, and enzymatic and non-enzymatic antioxidants, etc. This volume deals with abiotic stress-induced morphological and anatomical changes, abberations in metabolism, strategies and approaches to increase salt tolerance, managing the drought stress, sustainable fruit production and postharvest stress treatments, role of glutathione reductase, flavonoids as antioxidants in plants, the role of salicylic acid and trehalose in plants, stress-induced flowering. The role of soil organic matter in mineral nutrition and fatty acid profile in response to heavy metal stress are also dealt with. Proteomic markers for oxidative stress as a new tools for reactive oxygen species and photosynthesis research, abscisic acid signaling in plants are covered with chosen examples. Stress responsive genes and gene products including expressed proteins that are implicated in conferring tolerance to the plant are presented. Thus, this volume would provides the reader with a wide spectrum of information including key references and with a large number of illustrations and tables. Dr. Parvaiz is Assistant Professor in Botany at A.S. College, Srinagar, Jammu and Kashmir, India. He has completed his post-graduation in Botany in 2000 from Jamia Hamdard New Delhi India. After his Ph.D from the Indian Institute of Technology (IIT) Delhi, India in 2007 he joined the International Centre for Genetic Engineering and Biotechnology, New Delhi. He has published more than 20 research papers in peer reviewed journals and 4 book chapters. He has also edited a volume which is in press with Studium Press Pvt. India Ltd., New Delhi, India. Dr. Parvaiz is actively engaged in studying the molecular and physio-biochemical responses of different plants (mulberry, pea, Indian mustard) under environmental stress. Prof. M.N.V. Prasad is a Professor in the Department of Plant Sciences at the University of Hyderabad, India. He received B.Sc. (1973) and M.Sc. (1975) degrees from Andhra University, India, and the Ph.D. degree (1979) in botany from the University of Lucknow, India. Prasad has published 216 articles in peer reviewed journals and 82 book chapters and conference proceedings in the broad area of environmental botany and heavy metal stress in plants. He is the author, co-author, editor, or co-editor for eight books. He is the recipient of Pitamber Pant National Environment Fellowship of 2007 awarded by the Ministry of Environment and Forests, Government of India.
Wild emmer is the progenitor of most cultivated wheats and thus an important source of wheat improvement. This book draws the results from multidisciplinary studies on the ecological, genetic, genomic, agronomic, and evolutionary aspects of wild emmer, conducted at many labs around the world.It is divided into the following parts: Origin and Evolution of Wheat - Population Genetics of Wild Emmer Wheat at the Protein and DNA Levels - Genetic Resources of Wild Emmer for Wheat Improvement - Genome Organization and Genetic Mapping - Conclusions and Prospects.The authors describe the evolution of wild emmer as a model organism of a selfer in evolutionary biology, and its rich potential genetic resources for wheat improvement.
Hazardous and Trace Materials in Soil and Plants: Sources, Effects and Management explores the latest advancements in reducing, avoiding and eliminating soil contaminants that challenge the health and safety of agricultural plants. With a focus on minimizing the production of those hazardous substances, controlling their distribution and ensuring safe utilization, the book explores each contributing area and provides insights toward improved, sustainable and secure production. This is an excellent reference resource on both current research and future directions from laboratory research to field applications. The combined impacts of climate change and industrialization have led to increased and diversified threats to the health of the soil in which our food crops are grown, as well as in the plants themselves. This dual-hazard scenario is increasingly recognized as a threat to not just the environment, but to global food security as agricultural soils contaminated with pollutants alter plant metabolism, thus resulting in reduced crop quality and production quantity.
In the 1980s and 1990s, green manure/cover crop (GMCC) systems became a popular agricultural technology in research and development efforts for smallholder tropical and subtropical farmers. However, few syntheses of these experiences have been conducted. This volume of case studies contributes to bridging this gap by reviewing field-level experiences with these systems. Twelve case studies are included. Eleven of them describe experiences from Latin America (4 cases), Africa (6 cases) and Asia (1 case) and the twelfth case reports on the development of a GMCC systems database. Two concluding chapters, `Learning from the Case Studies' and `Future Perspectives', build upon the cases. The systems described are diverse. Some systems have been spontaneously adopted by farmers, while others have been introduced to the farmers through diffusion efforts. Some of the cases reviewed describe small, localized efforts while others report on large-scale, well-known ones, such as the combination of GMCCs and conservation tillage in Santa Catarina, Brazil, the maize-Mucuna system in northern Honduras, and the improved fallow systems in Eastern Zambia. Most experiences include both development and research aspects and to the extent possible the cases integrate these two. Discussion of the strengths and shortcomings of the systems and efforts is frank, and the goal is to learn from these experiences to benefit future efforts. It is expected that both researchers and development practitioners and students of tropical farming systems and soil management will find this volume of case studies useful.
On the occasion of its twenty-fifth anniversary, in 1985, the Netherlands Society for Grassland and Fodder Crops (NVWV) agreed to organize an International Symposium on a topic related to intensive grass and fodder production systems. The theme selected was "Animal manure on grassland and fodder crops: Fertilizer or waste?" This Symposium was organized under the auspices of the European Grassland Federation and held at the International Agricultural Centre in Wageningen from 31 August to 3 September 1987. The problems connected with the disposal of animal waste have received much attention in recent years, especially in regions with intensive animal of animal manure per hectare agricul husbandry. Whereas the production tural land increased strongly, the need for it decreased because of the introduction of cheap inorganic fertilizers which are easier to handle and have a more reliable effect on crop growth. As a consequence, many farmers dispose of animal manure as cheaply as possible, whilst avoiding damage to grassland and crops and paying little attention to effective use of the plants nutrients contained in the manure. Present practices of manure handling and application often lead to environmental problems. The rise in awareness of these problems renewed interest in possibilities to improve the utilization of nutrients from animal manure in crop production. Research on this topic has been stimulated in many countries during the last decade and the aim of this Symposium was to review and assess present-day knowledge."
Presenting the state of the art of tissue culture and in vitro propagation of vegetable and tuber crops, medicinal and aromatic plants, fibre and oilseed crops, and grasses, this book complements the previous two volumes on High-Tech and Micropropagation, which concentrated on special techniques (Vol.17) and trees and bushes of commercial value (Vol.18). The specific plants covered here include asparagus, lettuce, horse radish, cucumber, potato, cassava, sweet potato, artichoke, yams, cardamom, fennel, celery, thyme, leek, mentha, turmeric, lavender, agave, yucca, cotton, jute, sunflower, ryegrass, zoysiagrass, and various species of "Aconitum," "Artemisia," "Camelia," "Centaurium," "Digitalis," "Dioscorea," "Glehnia," "Levisticum," "Parthenium," and "Pinella." The book is of use to advanced students, teachers and research workers in the field of pharmacy, horticulture, plant breeding and plant biotechnology in general, and also to individuals interested in industrial micropropagation.
Emphasis in agricultural production has shifted from mere quantity to quality products. Practical experience and scientific investigations have shown that, of the various culture measures, balanced fertilization above all exerts a considerable influence on the quality of agricultural products. Simply adding more of what the crop has already absorbed to capacity is unproductive, expensive, wasteful and damaging to the environment. Therefore, balanced crop nutrition increases crop quality, safeguards natural resources and brings benefit to the farmer. Otherwise rapid population growth and severe urbanization will exhaust our natural resources.
Carbon Dots in Agricultural Systems integrates and crystallizes the emerging knowledge and application strategies of carbon dots as a powerful tool in agriculture systems. The book includes practical insights into the synthesis of carbon dots from indigenous raw materials and how to employ them in agriculture systems to increase crop productivity and provide renewable and cost-effective strategies that meet agricultural needs. Presented by an international team of experts, this resource updates on the latest in synthesis, physical, chemical and optical properties, along with the effects and mechanisms of carbon dots, all further explained in real-world studies. Finally, the book highlights emerging innovative topics which are of great relevance to scientists, academicians and innovators in agriculture (soil science, agricultural chemistry and agronomy) and biotechnology for further research and development.
Growing concerns about the impacts of climate change and dependence on fossil fuels have intensified interest in bioenergy from sugar cane and other crops, highlighting important links between energy, environment and development goals. Sub-Saharan Africa is characterized by severe poverty; the possibility to exploit a renewable energy resource offers valuable avenues for sustainable development and could support a more dynamic and competitive economy. This book describes how the bioenergy expansion will improve rural livelihoods, reduce costly energy imports, reduce GHG emissions, and offer new development paths. Drawing on international experience, it is shown that harnessing this potential will require significant increases in investment, technology transfer, and international cooperation. Because of its high efficiency, the authors argue that sugar cane should be viewed as a global resource for sustainable development and should command much greater focus and concerted policy action. Through an analysis of the agronomy, land suitability and industrial processing of sugar cane and its co-products, along with an assessment of the energy, economic and environmental implications, this volume demonstrates that sugar cane offers a competitive and environmentally beneficial resource for Africa's economic development and energy security. With fourty-four authors representing thirty organisations in sixteen countries, the book offers a truly international and interdisciplinary perspective by combining technical and economic principles with social, political and environmental assessment and policy analysis.
1.1. INTRODUCTION Plastic covering, either framed or floating, is now used worldwide to protect crops from unfavorable growing conditions, such as severe weather and insects and birds. Protected cultivation in the broad sense, including mulching, has been widely spread by the innovation of plastic films. Paper, straw, and glass were the main materials used before the era of plastics. Utilization of plastics in agriculture started in the developed countries and is now spreading to the developing countries. Early utilization of plastic was in cold regions, and plastic was mainly used for protection from the cold. Now plastic is used also for protection from wind, insects and diseases. The use of covering techniques started with a simple system such as mulching, then row covers and small tunnels were developed, and finally plastic houses. Floating mulch was an exception to this sequence: it was introduced rather recently, although it is a simple structure. New development of functional and inexpensive films triggered widespread use of floating mulch. Table 1.1. The use a/plastic mulch in the world (after Jouet, 2001).
The improvement of crop species has been a basic pursuit since cultivation began thousands of years ago. To feed an ever increasing world population will require a great increase in food production. Wheat, corn, rice, potato and few others are expected to lead as the most important crops in the world. Enormous efforts are made all over the world to document as well as use these resources. Everybody knows that the introgression of genes in wheat provided the foundation for the "Green Revolution". Later also demonstrated the great impact that genetic resources have on production. Several factors are contributing to high plant performance under different environmental conditions, therefore an effective and complementary use of all available technological tools and resources is needed to meet the challenge.
The rapidly growing human population has increased the dependence on fossil fuel based agrochemicals such as fertilizers and pesticides to produce the required agricultural and forestry products. This has exerted a great pressure on the non renewable fossil fuel resources, which cannot last indefinitely. Besides, indiscriminate use ofpesticides for pests (weeds, insects, nematodes, pathogens) control has resulted in serious ecological and environmental problems viz., (A) Increasing incidence of resistance in pest organisms to important pesticides. (B) Shift in pests population, particulary in weeds and insects. In weeds, species that are more closely related to the crops they infest have developed. In insects, scenario is most grim, the predators have been killed and minor insect pests have become major pests and require very heavy doses ofhighly toxic insecticides for their control. (C) Greater environmental pollution and health hazards (a) particularly from contamination of surface and underground drinking water resources and (b) from their inhalation during handling and application. (D) Toxic residues of pesticides pollute the environment and may prove hazardous to even our future generations. (E) Some agricultural commodities may contain minute quantities ofpesticides residues, with long tenn adverse effects on human and livestock health. Therefore, serious ecological questions about the reliance on pesticides for pests control has been raised. The use of fertilizers, besides causing environmental problems has also impoverished the soil health and decreased the beneficial soil fauna. For example, in some major crop rotations viz."
Medicinal Plants, Volume 6 of the Genetic Resources, Chromosome Engineering, and Crop Improvement series summarizes landmark research and describes medicinal plants as nature's pharmacy. Highlights Examines the use of molecular technology for maintaining authenticity and quality of plant-based products Details reports on individual medicinal plants including their history, origin, genetic resources, cytogenetics, and varietal improvement through conventional and modern methods, and their use in pharmaceutical, cosmeceutical, nutrition, and food industries Explains how to protect plants with medicinal properties from deforestation, urbanization, overgrazing, pollution, overharvesting, and biopiracy Brings together information on germplasm resources of medicinal plants, their history, taxonomy and biogeography, ecology and biodiversity, genetics and breeding, exploitation, and utilization in the medicine and food industries Written by leading international experts and an innovative panel of scientists, Medicinal Plants offers the most comprehensive and up-to-date information on medicinal plant genetic resources and their increasing importance in pharmaceutical and cosmeceutical industries, medicine, and nutrition around the world. Includes eight-page color insert more than 25 full color figures.
In recent years there has been an unprecedented expansion of knowledge about anthocyanins pigments. Indeed, the molecular genetic control of anthocyanins biosynthesis is now one of the best understood of all secondary metabolic pathways. There have also been substantial improvements in analytical technology that have led to the discovery of novel anthocyanin compounds. Armed with this knowledge and the tools for genetic engineering, plant breeders are now introducing vibrant new colors into horticultural crops. The food industry has also benefited from the resurgence of interest in anthocyanins. A greater understanding of the chemistry of these pigments has led to improved methods for stabilizing the color of anthocyanins extracts, so that they are more useful as food colorings. Methods for the bulk production of anthocyanins from cell cultures have been optimized for this purpose. Possible benefits to human health from the ingestion of anthocyanin-rich foods have also been a major feature of the recent scientific literature. Anthocyanins are remarkably potent antioxidants, and their ingestion has been postulated to stave off the effects of oxidative stress. These pigments, especially in conjunction with other flavonoids, have been associated with reductions in the incidence and severity of many other non-infectious diseases, including diabetes, cardiovascular disease and certain cancers. An industry is developing around anthocyanins as nutritional supplements. Finally, there has been significant progress in our understanding of the benefits of anthocyanins to plants themselves. Originally considered an extravagance without a purpose, anthocyanins are now implicated in multifarious vital functions. These include the attraction of pollinators and frugivores, aposematic defense from herbivores, and protection from environmental stressors such as strong light, UVB, drought, and free radical attacks. Anthocyanins are evidently highly versatile, and enormously useful to plants. This book covers all aspects of the biosynthesis and function of anthocyanins (and related compounds such as proanthocyanidins) in plants, and their applications in agriculture, food products, and human health. Featured areas include their relevance to: * Plant stress * Flower and fruit color * Human health * Wine quality and health attributes * Food colorants and ingredients * Cell culture production systems * The pastoral sector
Genome Mapping and Molecular Breeding in Plants presents the current status of the elucidation and improvement of plant genomes of economic interest. The focus is on genetic and physical mapping, positioning, cloning, monitoring of desirable genes by molecular breeding and the most recent advances in genomics. The series comprises seven volumes: Cereals and Millets; Oilseeds; Pulses, Sugar and Tuber Crops; Fruits and Nuts; Vegetables; Technical Crops; and Forest Trees. Technical Crops includes plants of great agricultural importance. One chapter is devoted to cotton, the most important fiber crop on which significant progress in molecular genetic research has been made. Reviews on oil palm, coffee, tea, cocoa and rubber describe traditional breeding and preliminary molecular results. Chapters on forage crops, ornamentals, and medicinal and aromatic plants each cover a large number of crops and may serve as road maps for further molecular research.
Proceedings of an International Symposium
Comprehensive and timely, Edible and Medicinal Mushrooms: Technology and Applications provides the most up to date information on the various edible mushrooms on the market. Compiling knowledge on their production, application and nutritional effects, chapters are dedicated to the cultivation of major species such as Agaricus bisporus, Pleurotus ostreatus, Agaricus subrufescens, Lentinula edodes, Ganoderma lucidum and others. With contributions from top researchers from around the world, topics covered include: * Biodiversity and biotechnological applications * Cultivation technologies * Control of pests and diseases * Current market overview * Bioactive mechanisms of mushrooms * Medicinal and nutritional properties Extensively illustrated with over 200 images, this is the perfect resource for researchers and professionals in the mushroom industry, food scientists and nutritionists, as well as academics and students of biology, agronomy, nutrition and medicine.
Phosphorus (P) is an essential macronutrient for plant growth. It is as phosphate that plants take up P from the soil solution. Since little phosphate is available to plants in most soils, plants have evolved a range of mechanisms to acquire and use P efficiently - including the development of symbiotic relationships that help them access sources of phosphorus beyond the plant's own range. At the same time, in agricultural systems, applications of inorganic phosphate fertilizers aimed at overcoming phosphate limitation are unsustainable and can cause pollution. This latest volume in Springer's Plant Ecophysiology series takes an in-depth look at these diverse plant-phosphorus interactions in natural and agricultural environments, presenting a series of critical reviews on the current status of research. In particular, the book presents a wealth of information on the genetic and phenotypic variation in natural plant ecosystems adapted to low P availability, which could be of particular relevance to developing new crop varieties with enhanced abilities to grow under P-limiting conditions. The book provides a valuable reference material for graduates and research scientists working in the field of plant-phosphorus interactions, as well as for those working in plant breeding and sustainable agricultural development.
Biopesticide: Volume Two, the latest release in the Advances in Bioinoculant series, provides an updated overview on the active substances utilized in current bioinsecticides, along with information on which of them can be used for integrated pest management programs in agro-ecosystems. The book presents a comprehensive look at the development of novel solutions against new targets, also introducing new technologies that enhance the efficacy of already available active substances. Finally, readers will find insights into the advanced molecular studies on insect microbial community diversity that are opening new frontiers in the development of innovative pest management strategies. This book will be valuable to those prioritizing agro biodiversity management to address optimal productizing and enhanced food security. |
You may like...
Vulnerability - New Essays in Ethics and…
Catriona Mackenzie, Wendy Rogers, …
Hardcover
R3,760
Discovery Miles 37 600
Q: Skills for Success: Level 2: Reading…
Jenny Bixby, Joe McVeigh
Mixed media product
R1,847
Discovery Miles 18 470
NorthStar Reading and Writing 4 SB…
Andrew English, Laura English
Paperback
R1,020
Discovery Miles 10 200
|