![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Agriculture & farming > Crop husbandry
In the 1980s and 1990s, green manure/cover crop (GMCC) systems became a popular agricultural technology in research and development efforts for smallholder tropical and subtropical farmers. However, few syntheses of these experiences have been conducted. This volume of case studies contributes to bridging this gap by reviewing field-level experiences with these systems. Twelve case studies are included. Eleven of them describe experiences from Latin America (4 cases), Africa (6 cases) and Asia (1 case) and the twelfth case reports on the development of a GMCC systems database. Two concluding chapters, `Learning from the Case Studies' and `Future Perspectives', build upon the cases. The systems described are diverse. Some systems have been spontaneously adopted by farmers, while others have been introduced to the farmers through diffusion efforts. Some of the cases reviewed describe small, localized efforts while others report on large-scale, well-known ones, such as the combination of GMCCs and conservation tillage in Santa Catarina, Brazil, the maize-Mucuna system in northern Honduras, and the improved fallow systems in Eastern Zambia. Most experiences include both development and research aspects and to the extent possible the cases integrate these two. Discussion of the strengths and shortcomings of the systems and efforts is frank, and the goal is to learn from these experiences to benefit future efforts. It is expected that both researchers and development practitioners and students of tropical farming systems and soil management will find this volume of case studies useful.
On the occasion of its twenty-fifth anniversary, in 1985, the Netherlands Society for Grassland and Fodder Crops (NVWV) agreed to organize an International Symposium on a topic related to intensive grass and fodder production systems. The theme selected was "Animal manure on grassland and fodder crops: Fertilizer or waste?" This Symposium was organized under the auspices of the European Grassland Federation and held at the International Agricultural Centre in Wageningen from 31 August to 3 September 1987. The problems connected with the disposal of animal waste have received much attention in recent years, especially in regions with intensive animal of animal manure per hectare agricul husbandry. Whereas the production tural land increased strongly, the need for it decreased because of the introduction of cheap inorganic fertilizers which are easier to handle and have a more reliable effect on crop growth. As a consequence, many farmers dispose of animal manure as cheaply as possible, whilst avoiding damage to grassland and crops and paying little attention to effective use of the plants nutrients contained in the manure. Present practices of manure handling and application often lead to environmental problems. The rise in awareness of these problems renewed interest in possibilities to improve the utilization of nutrients from animal manure in crop production. Research on this topic has been stimulated in many countries during the last decade and the aim of this Symposium was to review and assess present-day knowledge."
The improvement of crop species has been a basic pursuit since cultivation began thousands of years ago. To feed an ever increasing world population will require a great increase in food production. Wheat, corn, rice, potato and few others are expected to lead as the most important crops in the world. Enormous efforts are made all over the world to document as well as use these resources. Everybody knows that the introgression of genes in wheat provided the foundation for the "Green Revolution". Later also demonstrated the great impact that genetic resources have on production. Several factors are contributing to high plant performance under different environmental conditions, therefore an effective and complementary use of all available technological tools and resources is needed to meet the challenge.
Presenting the state of the art of tissue culture and in vitro propagation of vegetable and tuber crops, medicinal and aromatic plants, fibre and oilseed crops, and grasses, this book complements the previous two volumes on High-Tech and Micropropagation, which concentrated on special techniques (Vol.17) and trees and bushes of commercial value (Vol.18). The specific plants covered here include asparagus, lettuce, horse radish, cucumber, potato, cassava, sweet potato, artichoke, yams, cardamom, fennel, celery, thyme, leek, mentha, turmeric, lavender, agave, yucca, cotton, jute, sunflower, ryegrass, zoysiagrass, and various species of "Aconitum," "Artemisia," "Camelia," "Centaurium," "Digitalis," "Dioscorea," "Glehnia," "Levisticum," "Parthenium," and "Pinella." The book is of use to advanced students, teachers and research workers in the field of pharmacy, horticulture, plant breeding and plant biotechnology in general, and also to individuals interested in industrial micropropagation.
Emphasis in agricultural production has shifted from mere quantity to quality products. Practical experience and scientific investigations have shown that, of the various culture measures, balanced fertilization above all exerts a considerable influence on the quality of agricultural products. Simply adding more of what the crop has already absorbed to capacity is unproductive, expensive, wasteful and damaging to the environment. Therefore, balanced crop nutrition increases crop quality, safeguards natural resources and brings benefit to the farmer. Otherwise rapid population growth and severe urbanization will exhaust our natural resources.
1.1. INTRODUCTION Plastic covering, either framed or floating, is now used worldwide to protect crops from unfavorable growing conditions, such as severe weather and insects and birds. Protected cultivation in the broad sense, including mulching, has been widely spread by the innovation of plastic films. Paper, straw, and glass were the main materials used before the era of plastics. Utilization of plastics in agriculture started in the developed countries and is now spreading to the developing countries. Early utilization of plastic was in cold regions, and plastic was mainly used for protection from the cold. Now plastic is used also for protection from wind, insects and diseases. The use of covering techniques started with a simple system such as mulching, then row covers and small tunnels were developed, and finally plastic houses. Floating mulch was an exception to this sequence: it was introduced rather recently, although it is a simple structure. New development of functional and inexpensive films triggered widespread use of floating mulch. Table 1.1. The use a/plastic mulch in the world (after Jouet, 2001).
Advances in Agronomy, Volume 175, the latest release in this leading reference on agronomy, contains a variety of updates and highlights new advances in the field. Each chapter is written by an international board of authors.
The rapidly growing human population has increased the dependence on fossil fuel based agrochemicals such as fertilizers and pesticides to produce the required agricultural and forestry products. This has exerted a great pressure on the non renewable fossil fuel resources, which cannot last indefinitely. Besides, indiscriminate use ofpesticides for pests (weeds, insects, nematodes, pathogens) control has resulted in serious ecological and environmental problems viz., (A) Increasing incidence of resistance in pest organisms to important pesticides. (B) Shift in pests population, particulary in weeds and insects. In weeds, species that are more closely related to the crops they infest have developed. In insects, scenario is most grim, the predators have been killed and minor insect pests have become major pests and require very heavy doses ofhighly toxic insecticides for their control. (C) Greater environmental pollution and health hazards (a) particularly from contamination of surface and underground drinking water resources and (b) from their inhalation during handling and application. (D) Toxic residues of pesticides pollute the environment and may prove hazardous to even our future generations. (E) Some agricultural commodities may contain minute quantities ofpesticides residues, with long tenn adverse effects on human and livestock health. Therefore, serious ecological questions about the reliance on pesticides for pests control has been raised. The use of fertilizers, besides causing environmental problems has also impoverished the soil health and decreased the beneficial soil fauna. For example, in some major crop rotations viz."
Genome Mapping and Molecular Breeding in Plants presents the current status of the elucidation and improvement of plant genomes of economic interest. The focus is on genetic and physical mapping, positioning, cloning, monitoring of desirable genes by molecular breeding and the most recent advances in genomics. The series comprises seven volumes: Cereals and Millets; Oilseeds; Pulses, Sugar and Tuber Crops; Fruits and Nuts; Vegetables; Technical Crops; and Forest Trees. Technical Crops includes plants of great agricultural importance. One chapter is devoted to cotton, the most important fiber crop on which significant progress in molecular genetic research has been made. Reviews on oil palm, coffee, tea, cocoa and rubber describe traditional breeding and preliminary molecular results. Chapters on forage crops, ornamentals, and medicinal and aromatic plants each cover a large number of crops and may serve as road maps for further molecular research.
Growing concerns about the impacts of climate change and dependence on fossil fuels have intensified interest in bioenergy from sugar cane and other crops, highlighting important links between energy, environment and development goals. Sub-Saharan Africa is characterized by severe poverty; the possibility to exploit a renewable energy resource offers valuable avenues for sustainable development and could support a more dynamic and competitive economy. This book describes how the bioenergy expansion will improve rural livelihoods, reduce costly energy imports, reduce GHG emissions, and offer new development paths. Drawing on international experience, it is shown that harnessing this potential will require significant increases in investment, technology transfer, and international cooperation. Because of its high efficiency, the authors argue that sugar cane should be viewed as a global resource for sustainable development and should command much greater focus and concerted policy action. Through an analysis of the agronomy, land suitability and industrial processing of sugar cane and its co-products, along with an assessment of the energy, economic and environmental implications, this volume demonstrates that sugar cane offers a competitive and environmentally beneficial resource for Africa's economic development and energy security. With fourty-four authors representing thirty organisations in sixteen countries, the book offers a truly international and interdisciplinary perspective by combining technical and economic principles with social, political and environmental assessment and policy analysis.
In recent years there has been an unprecedented expansion of knowledge about anthocyanins pigments. Indeed, the molecular genetic control of anthocyanins biosynthesis is now one of the best understood of all secondary metabolic pathways. There have also been substantial improvements in analytical technology that have led to the discovery of novel anthocyanin compounds. Armed with this knowledge and the tools for genetic engineering, plant breeders are now introducing vibrant new colors into horticultural crops. The food industry has also benefited from the resurgence of interest in anthocyanins. A greater understanding of the chemistry of these pigments has led to improved methods for stabilizing the color of anthocyanins extracts, so that they are more useful as food colorings. Methods for the bulk production of anthocyanins from cell cultures have been optimized for this purpose. Possible benefits to human health from the ingestion of anthocyanin-rich foods have also been a major feature of the recent scientific literature. Anthocyanins are remarkably potent antioxidants, and their ingestion has been postulated to stave off the effects of oxidative stress. These pigments, especially in conjunction with other flavonoids, have been associated with reductions in the incidence and severity of many other non-infectious diseases, including diabetes, cardiovascular disease and certain cancers. An industry is developing around anthocyanins as nutritional supplements. Finally, there has been significant progress in our understanding of the benefits of anthocyanins to plants themselves. Originally considered an extravagance without a purpose, anthocyanins are now implicated in multifarious vital functions. These include the attraction of pollinators and frugivores, aposematic defense from herbivores, and protection from environmental stressors such as strong light, UVB, drought, and free radical attacks. Anthocyanins are evidently highly versatile, and enormously useful to plants. This book covers all aspects of the biosynthesis and function of anthocyanins (and related compounds such as proanthocyanidins) in plants, and their applications in agriculture, food products, and human health. Featured areas include their relevance to: * Plant stress * Flower and fruit color * Human health * Wine quality and health attributes * Food colorants and ingredients * Cell culture production systems * The pastoral sector
Hazardous and Trace Materials in Soil and Plants: Sources, Effects and Management explores the latest advancements in reducing, avoiding and eliminating soil contaminants that challenge the health and safety of agricultural plants. With a focus on minimizing the production of those hazardous substances, controlling their distribution and ensuring safe utilization, the book explores each contributing area and provides insights toward improved, sustainable and secure production. This is an excellent reference resource on both current research and future directions from laboratory research to field applications. The combined impacts of climate change and industrialization have led to increased and diversified threats to the health of the soil in which our food crops are grown, as well as in the plants themselves. This dual-hazard scenario is increasingly recognized as a threat to not just the environment, but to global food security as agricultural soils contaminated with pollutants alter plant metabolism, thus resulting in reduced crop quality and production quantity.
Phosphorus (P) is an essential macronutrient for plant growth. It is as phosphate that plants take up P from the soil solution. Since little phosphate is available to plants in most soils, plants have evolved a range of mechanisms to acquire and use P efficiently - including the development of symbiotic relationships that help them access sources of phosphorus beyond the plant's own range. At the same time, in agricultural systems, applications of inorganic phosphate fertilizers aimed at overcoming phosphate limitation are unsustainable and can cause pollution. This latest volume in Springer's Plant Ecophysiology series takes an in-depth look at these diverse plant-phosphorus interactions in natural and agricultural environments, presenting a series of critical reviews on the current status of research. In particular, the book presents a wealth of information on the genetic and phenotypic variation in natural plant ecosystems adapted to low P availability, which could be of particular relevance to developing new crop varieties with enhanced abilities to grow under P-limiting conditions. The book provides a valuable reference material for graduates and research scientists working in the field of plant-phosphorus interactions, as well as for those working in plant breeding and sustainable agricultural development.
Proceedings of an International Symposium
Medicinal Plants, Volume 6 of the Genetic Resources, Chromosome Engineering, and Crop Improvement series summarizes landmark research and describes medicinal plants as nature's pharmacy. Highlights Examines the use of molecular technology for maintaining authenticity and quality of plant-based products Details reports on individual medicinal plants including their history, origin, genetic resources, cytogenetics, and varietal improvement through conventional and modern methods, and their use in pharmaceutical, cosmeceutical, nutrition, and food industries Explains how to protect plants with medicinal properties from deforestation, urbanization, overgrazing, pollution, overharvesting, and biopiracy Brings together information on germplasm resources of medicinal plants, their history, taxonomy and biogeography, ecology and biodiversity, genetics and breeding, exploitation, and utilization in the medicine and food industries Written by leading international experts and an innovative panel of scientists, Medicinal Plants offers the most comprehensive and up-to-date information on medicinal plant genetic resources and their increasing importance in pharmaceutical and cosmeceutical industries, medicine, and nutrition around the world. Includes eight-page color insert more than 25 full color figures.
Comprehensive and timely, Edible and Medicinal Mushrooms: Technology and Applications provides the most up to date information on the various edible mushrooms on the market. Compiling knowledge on their production, application and nutritional effects, chapters are dedicated to the cultivation of major species such as Agaricus bisporus, Pleurotus ostreatus, Agaricus subrufescens, Lentinula edodes, Ganoderma lucidum and others. With contributions from top researchers from around the world, topics covered include: * Biodiversity and biotechnological applications * Cultivation technologies * Control of pests and diseases * Current market overview * Bioactive mechanisms of mushrooms * Medicinal and nutritional properties Extensively illustrated with over 200 images, this is the perfect resource for researchers and professionals in the mushroom industry, food scientists and nutritionists, as well as academics and students of biology, agronomy, nutrition and medicine.
Carbon Dots in Agricultural Systems integrates and crystallizes the emerging knowledge and application strategies of carbon dots as a powerful tool in agriculture systems. The book includes practical insights into the synthesis of carbon dots from indigenous raw materials and how to employ them in agriculture systems to increase crop productivity and provide renewable and cost-effective strategies that meet agricultural needs. Presented by an international team of experts, this resource updates on the latest in synthesis, physical, chemical and optical properties, along with the effects and mechanisms of carbon dots, all further explained in real-world studies. Finally, the book highlights emerging innovative topics which are of great relevance to scientists, academicians and innovators in agriculture (soil science, agricultural chemistry and agronomy) and biotechnology for further research and development.
While working in the laboratory of Professor Dr. Jacob Reinert at the Freie Universitat Berlin (1974-1976), I had the opportunity to become deeply involved in studying the intricacies of the fascinating phenomenon of somatic embryogenesis in plant cells and protoplasts. In numerous stimu lating discussions with Professor Reinert on this subject, I was fully convinced that somatic embryogenesis would become one of the most important areas of study, not only regarding basic and fundamental aspects, but also for its application in crop improvement. During the last decade, we have witnessed tremendous interest and achievements in the use of somatic embryos for the production of synthetic seeds, for micro propagation, genetic transformation, cryopreservation, and conservation of germplasm. The en masse production of somatic embryos in the bioreactors has facilitated some of these studies. Somatic embryos have now been induced in more than 300 plant species belonging to a wide range offamilies. It was therefore felt that a compilation ofliterature/state of the art on this subject was necessary. Thus, two volumes on Somatic Embryo genesis and Synthetic Seed have been compiled, which contain 65 chapters contributed by International experts. Somatic Embryogenesis and Synthetic Seed I comprises 31 chapters, arranged in 3 sections: Section I Commitment of the cell to somatic embryogenesis; early events; anatomy; molecular basis; gene expression; role of polyamines; machine vision analysis of somatic embryos. Section II Applications of somatic embryos; technology of synthetic seed; fluid drilling; micropropagation; genetic transfor mation through somatic embryos; cryopreservation.
This book, written by leading grain scientists from Europe and Africa, examines six such grains that have been important food crops in various parts of the world and have the potential for much greater and more widespread use. The chemistry, nutritional value, food processing technologies and potential applications of three true cereals: sorghum, spelt wheat and the major millet species, and three dicotyledonous pseudocereals: grain amaranth, buckwheat and quinoa are discussed. Just three cereal grains account for more than 75% of all grains produced worldwide. This causes high risks for the future of humankind via catastrophic food crop failures and is detrimental to our long-term health. In addition, the intensive cultivation practices needed to produce the required high yields of these cereals is frequently leading to environmental degradation, and they are often inappropriate in the Developing World.
This book contains papers and posters presented at the 18th Eucarpia Fodder Crops Section Meeting held at Loen, Nordfjord, Norway in August 1993. In most environments some form of marginal conditions or stress prevails. Few crops are being produced under such a wide range of environmental and management stresses as fodder crops. Improved adaptation of fodder crops to marginal conditions is crucial in developing sustainable, low-input agricultural systems. The book is unique in demonstrating the large diversity both in crops and environmental stresses that confront the forage breeders. Both general and specific aspects of adaptation to marginal growing conditions are presented, ranging from problems caused by snow and ice in the Subarctic regions of Europe to the severe drought problems in the Mediterranean regions. For everyone involved in studies of adaptation and breeding of perennial plants for marginal conditions or stress environments.
Incorporating contributions from microbiologists, molecular
biologists, plant breeders and soil scientists this volume reports
the results and recommendations of an FAO/IAEA meeting of twelve
experts on biological nitrogen fixation. This volume will be
invaluable to scientists working on nitrogen fixation, soil
microbiology, agronomy and crop production as well as farm advisers
and extension specialists. -reviews the latest thinking on various aspects of biological
nitrogen fixation technology and applications;
Genome Mapping and Molecular Breeding in Plants presents the current status of the elucidation and improvement of plant genomes of economic interest. The focus is on genetic and physical mapping, positioning, cloning, monitoring of desirable genes by molecular breeding and the most recent advances in genomics. The series comprises seven volumes: Cereals and Millets; Oilseeds; Pulses, Sugar and Tuber Crops; Fruits and Nuts; Vegetables; Technical Crops; and Forest Trees. Cereals and Millets form the leading group of field crops, providing staple food for most of the earth s population. This volume, with contributions by 27 eminent scientists, includes chapters on rice, wheat, maize, barley, oats, rye, sorghum, pearl millet, foxtail millet and finger millet. The emphasis is on advanced research on the major crops, including the model plants maize and rice, as well as on future road maps of genomic research for the less-often considered but equally deserving cereals and millets. "
Genome Mapping and Molecular Breeding in Plants presents the current status of the elucidation and improvement of plant genomes of economic interest. The focus is on genetic and physical mapping, positioning, cloning, monitoring of desirable genes by molecular breeding and the most recent advances in genomics. The series comprises seven volumes: Cereals and Millets; Oilseeds; Pulses, Sugar and Tuber Crops; Fruits and Nuts; Vegetables; Technical Crops; and Forest Trees. Fruits and nuts form the largest group among crop plants. Several constraints such as long life cycle, heterozygosity and large plant size caused comparatively slow research progress in the past. The chapters on 20 fruit and nut crops authored by 56 renowned scientists from 12 countries include for the first time comprehensive reviews on mango, banana, olive, pineapple, pistachio, persimmon and papaya. Other crops covered are apple, grape, cherry, plum, peach, pear, apricot, strawberry, raspberry, blueberry, almond, citrus and avocado.
Fantasies and dreams have their rightful place in science, and sometimes they turn into reality. Regeneration of hybrid plants through protoplast fusion is one such dream come true. In the early 1970s I shared the pioneering excitement in the field of protoplast technology at the Second International Congress of Plant Tissue Culture held in Strasbourg, France. Subsequently, I participated in three international conferences devoted to plant protoplasts, in Salamanca, Spain (1972), Versailles, France (1972), and Nottingham, England (1975). At Versailles Dr. P.S. Carlson presented his work on the successful regeneration of somatic hybrids between Nicotiana glauca and Nicotiana langsdorfii. The enthusi- asm shown by the participants was sufficient indication of the bright future of somatic hybridization. On my return from Versailles, I gathered my thoughts and prepared a concept paper on Potentials of Protoplast Culture Work in Agriculture which was published in Euphytica (Bajaj 1974). The studies on protoplast fusion and somatic hybridization then gained momentum and active work started in many laboratories. Very significant work was done by Melchers et al. (1978) who obtained a somatic hybrid between potato and tomato, calling it "Pomato".
Plant Factory Basics, Applications, and Advances takes the reader from an overview of the need for and potential of plant factories with artificial lighting (PFALs) in enhancing food production and security to the latest advances and benefits of this agriculture environment. Edited by leading experts Toyoki Kozai, Genhua Niu, and Joseph Masabni, this book aims to provide a platform of PFAL technology and science, including ideas on its extensive business and social applications towards the next-generation PFALs. The book is presented in four parts: Introduction, Basics, Applications, and Advanced Research. Part 1 covers why PFALs are necessary for urban areas, how they can contribute to the United Nations' Sustainable Development Goals, and a definition of PFAL in relation to the term "indoor vertical farm." Part 2 presents SI units and radiometric, photometric, and photonmetric quantities, types, components, and performance of LED luminaires, hydroponics and aquaponics, and plant responses to the growing environment in PFALs. Part 3 describes the indexes and definition of various productivity aspects of PFAL, provides comparisons of the productivity of the past and the present operation of any given PFALs, and compares PFALs with one another from the productivity standpoint by applying the common indexes. Part 4 describes the advances in lighting and their effects on plant growth, breeding of indoor and outdoor crops, production of fruiting vegetables and head vegetables, and concluding with a focus on a human-centered perspective of urban agriculture. Providing real-world insights and experience, Plant Factory Basics, Applications, and Advances is the ideal resource for those seeking to take the next step in understanding and applying PFAL concepts. |
You may like...
Corporate Governance Regimes…
Joseph A. McCahery, Piet Moerland, …
Hardcover
R9,251
Discovery Miles 92 510
A Restatement of the English Law of…
Andrew Burrows Fba Qc (Hon)
Hardcover
R3,635
Discovery Miles 36 350
|