Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Agriculture & farming > Crop husbandry
During the past 15 years, cellular and molecular approaches have emerged as valuable adjuncts to supplement and complement conventional breeding methods for a wide variety of crop plants. Biotechnology increasingly plays a role in the creation, conservation, characterization and utilization of genetic variability for germplasm enhancement. For instance, anther/microspore culture, somaclonal variation, embryo culture and somatic hybridization are being exploited for obtaining incremental improvement in the existing cultivars. In addition, genes that confer insect- and disease-resistance, abiotic stress tolerance, herbicide tolerance and quality traits have been isolated and re-introduced into otherwise sensitive or susceptible species by a variety of transgenic techniques. Together these transformative methodologies grant access to a greater repertoire of genetic diversity as the gene(s) may come from viruses, bacteria, fungi, insects, animals, human beings, unrelated plants or even be artificially derived. Remarkable achievements have been made in the production, characterization, field evaluation and commercialization of transgenic crop varieties worldwide. Likewise, significant advances have been made towards increasing crop yields, improving nutritional quality, enabling crops to be raised under adverse conditions and developing resistance to pests and diseases for sustaining global food and nutritional security. The overarching purpose of this 3-volume work is to summarize the history of crop improvement from a technological perspective but to do so with a forward outlook on further advancement and adaptability to a changing world. Our carefully chosen "case studies of important plant crops" intend to serve a diverse spectrum of audience looking for the right tools to tackle complicated local and global issues.
Cryopreservation has proven to be an important tool for the storage and conservation of plant genetic resources. This book is a unique resource for plant scientists, providing more than 100 ready-to-use cryopreservation protocols for plant types from algae and bryophytes to a range of flowering plants. It includes techniques for diverse plant parts such as dormant buds, pollen, and apical meristems and for cell types such as suspension and callus cultures.
"The result is a beautiful book with a lot of useful and updated information. I am sure it will be in great demand, and hopefully will help in the further improvement of cassava yields, especially in Africa where it is such an important food crop." Dr Reinhardt Howeler, CIAT Emeritus; author in: Achieving sustainable cultivation of cassava Volume 1 Originating in South America, cassava is now grown in over 100 countries around the world. It is the third most important source of calories in the tropics after rice and maize. Its caloric value, as well as its ability to tolerate dry conditions and poor soils, makes it a key food security crop in developing countries, particularly in Africa. As demand for food grows, there is an urgent need to increase yields in the face of such challenges as climate change, threats from pests and diseases and the need to make cultivation more resource-efficient and sustainable. Drawing on an international range of expertise, this collection focuses on ways of improving the cultivation of cassava at each step in the value chain, from breeding to post-harvest storage. Volume 1 starts by reviewing current issues facing cassava cultivation around the world before discussing methods for sustainable intensification such as rotations, intercropping and more efficient nutrient management. Achieving sustainable cultivation of cassava Volume 1: Cultivation techniques will be a standard reference for agricultural scientists in universities, government and other research centres and companies involved in improving cassava cultivation. It is accompanied by Volume 2 which reviews breeding, pests and diseases.
This comprehensive guide to potato production systems management contains 20 chapters and more than 350 color photographs. Beginning with the history of potato culture, it spans all aspects of potato production, pest and planting management, storage, and marketing. Written by a team of over 35 scientists from North America, this book offers updated research-based information and serves as a unique, valuable tool for researchers, extension specialists, students, and farm managers. More than a description of principles, it contains practical analytical tools, charts, and methods to create guidelines for best production practices and cost estimates. Some key areas include: Potato Growth and Development, Potato Variety Selection and Management, Seed and Planting Management, Seed Production and Certification, Field Selection, Crop Rotation, and Soil Management, Integrated Pest Management for Potatoes, Potato Nutrient Management, Irrigation Management, Tuber Quality, Economics and Marketing, Production Costs, among others. Potato Production Systems should be a valuable reference for successful culture of the "noble tuber."
This book includes papers presented at the 2017 Joint meeting of Fodder Crops and Amenity Grasses Section and Protein Crops Working Group of EUCARPIA-Oil and Protein Crops Section. The theme of the meeting "Breeding Grasses and Protein Crops in the Era of Genomics" has been divided into six parts: (1) Utilisation of genetic resources and pre-breeding, (2) Genetic improvement of quality and agronomic traits, (3) Breeding for enhanced stress tolerance (4) Implementation of phenomics and biometrics, (5) Development of genomic tools and bioinformatics and (6) Reports of Parallel Sessions.
The book summarizes present scientific knowledge in plant
physiology with regards to plant production. The authors, mainly
professors of plant physiology at agricultural universities in
Czechoslovakia, present the individual fields of plant physiology
with regard to the demands of agricultural practice and education
of students and doctorani at these universities.
Increase in world population, extreme weather conditions, decrease in fresh water supplies, and changes of dietary habits are major issues that affect global food security. We are expected to face the challenges of land use by 2050 because population will reach 9 billion while agricultural productivity losses are expected due to overuse of lands. How can we feed the next generations in a manner that respects our finite natural resources? Managing our resources in a sustainable way have only begun for selected crops. Much remains to be done to increase food yield. Cropping practices capable of sustainable production need to be elaborated, especially in fragile ecosystems. Typical applications will include the improvement and use of genetic resources; crop management and diversification; diffusion of improved varieties; development of cropping systems; sustainable cropping systems for areas prone to environmental degradation; use of agro-ecological data for crop production forecasting; and networks for regional coordination, and data exchange. The impetus behind this book is to bring attention to a cropping system that bears direct relevance to sustainable agriculture and food security. "Underutilized" crops are found in numerous agricultural ecosystems and often survive mainly in marginal areas. It is timely to review their status because, in recent decades, scientific and economic interests have emerged which focus on lesser-known cultivated species. Underutilized crops have a great potential to alleviate hunger directly, through increasing food production in challenging environments where major crops are severely limited. "Global Perspectives on Underutilized Crops" is therefore topical and highlights the unmet agricultural challenges that we face today. This book is an important resource for students and researchers of crop science and agricultural policy makers.
This book presents a game changing technology of lower energy-intensive urea production of urea which is used as fertilizer. The technology, from a resource to a knowledge-intensive based industry, investigates a new synthesis approach employing electromagnetic induction and nano-catalyst at lower energy consumption. This clean and green method for a sustainable future might change the landscape of future chemical processes. It is made possible due to the enhancement in nanotechnology where quantum mechanical understanding is called into play. New reactor designs are elaborated on and discussed explicitly. Hematite and nickel oxide nanocatalysts are proposed for the green urea synthesis process, in the presence of static and oscillating magnetic fields. Strategies to increase single to triplet conversion rate are given for better understanding of the improved urea rate. The focus is deliberately on scrutinizing the greenhouse gas effect on the urea yield, in this case CO2 flow rate. Coating techniques for slow release strategies are provided to reduce the volatilization of ammonia and leaching effect, hence offering a complete solution of Green Technology. Agriculture 4.0 that creates the new patterns and precision monitoring of crop rotation and livestock utilization will be able to pave the way for better crop yield. Development of advanced technology in agriculture is important for the implementation of Agriculture 4.0 and currently an inevitable trend of the socioeconomic development in the context of broader international integration for the sustainable future. The author would like to acknowledge Ministry of Higher Education (MOHE) for the grant worth RM 12 million to accomplish Green and Economical Urea project and to have full understanding on Green Technology in Urea. This book is a collaborative effort by her colleagues, Ku Zilati, Khanif, Shahrina, Zainovia, Azizah, Zakaria, and who have carried out the research over the past five years which started in 2011. Their unconditional commitment had brought us together and we completed the project with success. I wish to also thank Dr Menaka Ganeson and all my PhD students, Dr. Saima, Dr. Bilal, Mr. Zia and Mr. Irfan for their commitment to assist me to complete the book. Last but not least, thank you very much to Professor Mike Payne (Cambridge University) and Professor Koziol (Cranfield University) for the comments.
The book covers the latest development in the biosciences field covering key topics in crop improvement including 'omic approaches to improving sustainable crop production, advancement in marker technology, strategies in genetic manipulation, crop quality and sustainability and plant microbe interaction detailing on proven technologies to address critical issue for agricultural sustainability which are beneficial for researchers and students. The book also includes aspects of preserving crops after harvest as this is a key factor in promoting sustainable crop quality in terms of addressing waste, choosing the appropriate packaging and moving crops through the food and industrial supply chain. An important strategy to overcome the challenges in providing food for the world population in a sustainable manner is through concerted efforts by crop scientists to embrace new technologies in increasing yield, quality and improving food safety while minimizing adverse environmental impact of the agricultural activities. Most of the proven molecular and genetic technologies in crop science have been tested and verified in model plants such as Arabidopsis and tomato. The technologies, when deployed on various plant species of importance for human nutrition and industrial applications, including cereals, vegetables, fruits, herbs, fibre and oil crops, face many challenges, not only due to their longer life cycle but many other physiological and environmental factors affecting yield and quality of plant products. Furthermore, major impacts on crop production due to catastrophic diseases and global climate change needs urgent and innovative solutions. Therefore a systematic approach, employing various leading-edge technologies that enable the functional elucidation of key pathway genes via 'omics tools, genome wide association with desired phenotypes and development of cost effective and practicable molecular tools for selection, is vital. The International Conference on Crop Improvement was held to address these and other pressing issues. This volume summarizes the keynote presentations from the meeting and highlights addition discussions that are critical to crop improvement in a challenging time.
The research and its outcomes presented here focuses on tropospheric or ground level ozone, in particular due to its surfacing as a major threat to crop productivity around the world. This book presents the ozone concentration data for a variety of geographical regions, examines the factors responsible for its increasing concentrations and its potential effects on physiological and biochemical responses culminating in crop productivity losses which, in turn may pose a serious threat to global food security. Beside this, certain ameliorative measures that could be adopted to assess ozone injury in plants are also discussed. Global climate change scenarios predict a significant increase in future tropospheric ozone concentration. Particular attention is therefore given to evaluate the effect of global climate change on ozone concentrations. Readers will also discover how yield losses due to ozone are related to changes in the socio-economic conditions of the society, especially in South Asian regions. Students and researchers studying crop and soil science, environmental scientists, risk assessment professionals and policy makers will find this book of interest.
Major world oil crops and their products are among the most valuable commodity in today's world trade. Over the past couple of decades, oilseed production has increased to become the most important world sources of vegetable oils, in response to the rising world population and living standard. Recent technological advances made in breeding major world oil crops have led to higher production and improved product quality.This comprehensive volume encompasses recent innovations and practice in the production and use of different oil crops, including Brassica, Sunflower, Safflower, Cottonseed, Castor, Olive, Coconut, Oilpalm, Sesame, Groundnut, and Soybean. The contributors are leading specialists from different countries of the world. Much of the literature available on these crops is not up-to-date; hence this volume is a ready reference for researchers, breeders, biotechnologists, industrialists, and nutritionists. Dr. Surinder Kumpar Gupta, born in 1959, is currently working as Professor/Chief Scientist (Oilseeds) Plant Breeding & Genetics and Nodal officer in the School of Biotechnology, S K University of Agricultural Sciences & Technology. He holds a brilliant academic and service record and has been devoted to research on Oilseed Brassicas for nearly two decades. He obtained his post-graduate degree and PhD from Punjab Agricultural University. He is a recipient of a post-doctoral Fellowship in Plant Biotechnology and has published more than 100 research papers in esteemed national and international journals, mostly on Brassicas. He has already developed five varieties of rapeseed-mustard, and has written two books and edited three volumes on rapeseed & mustard breeding. For his excellent scientific endeavors, he has been conferred the 'Young Scientists Award: 1993-1994' by the State Department of Science & Technology.
This book reviews the current state of knowledge concerning cacao pathogens and methods for their management. Topics discussed include the history, biology and genetic diversity of Moniliophthora species (which cause witches' broom and frosty pod rot) and Phytophthora species (which cause black pod rot) that cause diseases resulting in major losses to cacao production. Emerging pathogens such as Cacao swollen shoot virus and Ceratobasidium theobromae (which causes vascular streak dieback) are also discussed in detail, along with many pathogens of significant local concern. Most of these pathogens represent major risks to global cacao production should they expand into new areas, breaking out of their current limited distributions. By considering cacao diseases as a group, similarities in the available tools and techniques used in their management become apparent, as do their limitations. Gaps in our current knowledge of cacao pathogens and the management of the diseases they cause are detailed, and suggestions for future research directions are provided. This insight allows readers to consider cacao disease threats from a more comprehensive, global perspective and paves the way for an improved synergy of efforts between the various research programs, agencies, and industries, both private and public, with vested interests in cacao production, and cacao farmers.
This book provides all aspects of the physiology, stress responses and tolerance to abiotic stresses of the Brassicaceae plants. Different plant families have been providing food, fodder, fuel, medicine and other basic needs for the human and animal since the ancient time. Among the plant families, Brassicaceae has special importance for their agri-horticultural importance and multifarious uses apart from the basic needs. Interest understanding the response of Brassicaceae plants toward abiotic stresses is growing considering the economic importance and the special adaptive mechanisms. The knowledge needs to be translated into improved elite lines that can contribute to achieve food security. The physiological and molecular mechanisms acting on Brassicaceae introduced in this book are useful to students and researchers working on biology, physiology, environmental interactions and biotechnology of Brassicaceae plants.
Abiotic stresses such as drought (water deficit), extreme temperatures (cold, frost and heat), salinity (sodicity) and mineral (metal and metalloid) toxicity limit productivity of crop plants worldwide and are big threats to global food security. With worsening climate change scenarios, these stresses will further increase in intensity and frequency. Improving tolerance to abiotic stresses, therefore, has become a major objective in crop breeding programs. A lot of research has been conducted on the regulatory mechanisms, signaling pathways governing these abiotic stresses, and cross talk among them in various model and non-model species. Also, various 'omics' platforms have been utilized to unravel the candidate genes underpinning various abiotic stresses, which have increased our understanding of the tolerance mechanisms at structural, physiological, transcriptional and molecular level. Further, a wealth of information has been generated on the role of chromatin assembly and its remodeling under stress and on the epigenetic dynamics via histones modifications. The book consolidates outlooks, perspectives and updates on the research conducted by scientists in the abovementioned areas. The information covered in this book will therefore interest workers in all areas of plant sciences. The results presented on multiple crops will be useful to scientists in building strategies to counter these stresses in plants. In addition, students who are beginners in the areas of abiotic stress tolerance will find this book handy to clear their concepts and to get an update on the research conducted in various crops at one place
The global population is increasing rapidly, and feeding the ever-increasing population poses a serious challenge for agriculturalists around the world. Seed is a basic and critical input in agriculture to ensure global food security. Roughly 90 percent of the crops grown all over the world are propagated by seed. However, seed can also harbour and spread pathogens, e.g. fungi, bacteria, nematodes, viruses etc., which cause devastating diseases. Seed-borne pathogens represent a major threat to crop establishment and yield. Hence, timely detection and diagnosis is a prerequisite for their effective management. The book "Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management" addresses key issues related to seed-borne/transmitted diseases in various agricultural crops. Divided into 30 chapters, it offers a comprehensive compilation of papers concerning: the history of seed pathology, importance of seed-borne diseases, seed-borne diseases and quarantine, seed health testing and certification, detection and diagnosis of seed-borne diseases and their phytopathogens, host-parasite interactions during development of seed-borne diseases, diversity of seed-borne pathogens, seed-borne diseases in major agricultural crops, non-parasitic seed disorders, mechanisms of seed transmission and seed infection, storage fungi and mycotoxins, impact of seed-borne diseases on human and animal health, and management options for seed-borne diseases. We wish to thank all of the eminent researchers who contributed valuable chapters to our book, which will be immensely useful for students, researchers, academics, and all those involved in various agro-industries.
This volume covers the global history of the Lysenko controversy, while exploring in greater depth the background of D. Lysenko's career and influence in the USSR. By presenting the rise and fall of T.D. Lysenko in a variety of aspects-his influence upon art, unrecognized predecessors, and the extent to which genetics continued in the USSR even while he was in power, and the revival of his reputation today-the authors provide a fresh perspective on one of the most notorious episodes in the history of science.
This book is a compilation of information on insect/mite/vertebrate pests and fungal/bacterial/viral/mycoplasma/nematode diseases of tropical root and tuber crops such as cassava, sweet potato, yams, taro, Amorphophallus, yam bean and tannia. The book highlights the distribution, symptoms and damage, biology, survival and spread of each pest and describes management methods. It also sheds light on different eco-friendly pest management strategies including physical, cultural, chemical, biological, host resistance and integrated methods. The book is written in a lucid style using easy-to-understand language and offers adoptable recommendations involving eco-friendly control measures. It serves as a useful reference source for policy makers, research and extension workers, practicing farmers and students. The material can also be used for teaching post graduate courses in state agricultural universities.
This book provides an overview of the innovations in crop phenotyping using emerging technologies, i.e., high-throughput crop phenotyping technology, including its concept, importance, breakthrough and applications in different crops and environments. Emerging technologies in sensing, machine vision and high-performance computing are changing the world beyond our imagination. They are also becoming the most powerful driver of the innovation in agriculture technology, including crop breeding, genetics and management. It includes the state of the art of technologies in high-throughput phenotyping, including advanced sensors, automation systems, ground-based or aerial robotic systems. It also discusses the emerging technologies of big data processing and analytics, such as advanced machine learning and deep learning technologies based on high-performance computing infrastructure. The applications cover different organ levels (root, shoot and seed) of different crops (grains, soybean, maize, potato) at different growth environments (open field and controlled environments). With the contribution of more than 20 world-leading researchers in high-throughput crop phenotyping, the authors hope this book provides readers the needed information to understand the concept, gain the insides and create the innovation of high-throughput phenotyping technology. |
You may like...
Principles and Practice of Agricultural…
S. Venkatraman
Hardcover
Encyclopedia of Soybean: Volume 03…
Albert Marinelli, Kiara Woods
Hardcover
R2,344
Discovery Miles 23 440
|