![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Reference & Interdisciplinary > Communication studies > Data analysis
This title should enable clinicians and managers of stroke services to judge their effectiveness and efficiency. It may be useful for auditing the National Service Frameworks for older people and stroke patients. The work provides generic tools for collecting and interpreting data and assessing cost effectiveness, that can be applied to any chronic desease. This tool is practical for both running stroke services and doing comparative research on any chronic disease.
In an age where customer opinion and feedback can have an immediate, major effect upon the success of a business or organization, marketers must have the ability to analyze unstructured data in everything from social media and internet reviews to customer surveys and phone logs. Practical Text Analytics is an essential daily reference resource, providing real-world guidance on the effective application of text analytics. The book presents the analysis process so that it is immediately understood by the marketing professionals who must use it, so they can apply proven concepts and methods correctly and with confidence. By decoding industry terminology and demonstrating practical application of data models once reserved for experts, Practical Text Analytics shows marketers how to frame the right questions, identify key themes and find hidden meaning from unstructured data. Readers will learn to develop powerful new marketing strategies to elevate customer experience, solidify brand value and elevate reputation. Online resources include self-test questions, chapter review Q&A and an Instructor's Manual with text sources and instructions.
Today we are witnessing an increased use of data visualization in society. Across domains such as work, education and the news, various forms of graphs, charts and maps are used to explain, convince and tell stories. In an era in which more and more data are produced and circulated digitally, and digital tools make visualization production increasingly accessible, it is important to study the conditions under which such visual texts are generated, disseminated and thought to be of societal benefit. This book is a contribution to the multi-disciplined and multi-faceted conversation concerning the forms, uses and roles of data visualization in society. Do data visualizations do 'good' or 'bad'? Do they promote understanding and engagement, or do they do ideological work, privileging certain views of the world over others? The contributions in the book engage with these core questions from a range of disciplinary perspectives.
Climate predictions - and the computer models behind them - play a key role in shaping public opinion and our response to the climate crisis. Some people interpret these predictions as 'prophecies of doom' and some others dismiss them as mere speculation, but the vast majority are only vaguely aware of the science behind them. This book gives a balanced view of the strengths and limitations of climate modeling. It covers historical developments, current challenges, and future trends in the field. The accessible discussion of climate modeling only requires a basic knowledge of science. Uncertainties in climate predictions and their implications for assessing climate risk are analyzed, as are the computational challenges faced by future models. The book concludes by highlighting the dangers of climate 'doomism', while also making clear the value of predictive models, and the severe and very real risks posed by anthropogenic climate change.
'A statistical national treasure' Jeremy Vine, BBC Radio 2 'Required reading for all politicians, journalists, medics and anyone who tries to influence people (or is influenced) by statistics. A tour de force' Popular Science Do busier hospitals have higher survival rates? How many trees are there on the planet? Why do old men have big ears? David Spiegelhalter reveals the answers to these and many other questions - questions that can only be addressed using statistical science. Statistics has played a leading role in our scientific understanding of the world for centuries, yet we are all familiar with the way statistical claims can be sensationalised, particularly in the media. In the age of big data, as data science becomes established as a discipline, a basic grasp of statistical literacy is more important than ever. In The Art of Statistics, David Spiegelhalter guides the reader through the essential principles we need in order to derive knowledge from data. Drawing on real world problems to introduce conceptual issues, he shows us how statistics can help us determine the luckiest passenger on the Titanic, whether serial killer Harold Shipman could have been caught earlier, and if screening for ovarian cancer is beneficial. 'Shines a light on how we can use the ever-growing deluge of data to improve our understanding of the world' Nature
This is the first rigorous, self-contained treatment of the theory of deep learning. Starting with the foundations of the theory and building it up, this is essential reading for any scientists, instructors, and students interested in artificial intelligence and deep learning. It provides guidance on how to think about scientific questions, and leads readers through the history of the field and its fundamental connections to neuroscience. The author discusses many applications to beautiful problems in the natural sciences, in physics, chemistry, and biomedicine. Examples include the search for exotic particles and dark matter in experimental physics, the prediction of molecular properties and reaction outcomes in chemistry, and the prediction of protein structures and the diagnostic analysis of biomedical images in the natural sciences. The text is accompanied by a full set of exercises at different difficulty levels and encourages out-of-the-box thinking.
This book gives an up-to-date overview of methodological and data-analytical issues of cross-cultural studies. Written by leading experts in the field, it presents the most important tools for doing cross-cultural research and outlines design considerations, methods, and analytical techniques that can improve ecological validity and help researchers to avoid pitfalls in cross-cultural psychology. By focusing on the relevant research questions that can be tackled with particular methods, it provides practical guidance on how to translate conceptual questions into decisions on study design and statistical techniques. Featuring examples from cognitive and educational assessment, personality, health, and intercultural communication and management, and illustrating key techniques in feature boxes, this concise and accessible guide is essential reading for researchers, graduate students, and professionals who work with culture-comparative data.
This textbook provides future data analysts with the tools, methods, and skills needed to answer data-focused, real-life questions; to carry out data analysis; and to visualize and interpret results to support better decisions in business, economics, and public policy. Data wrangling and exploration, regression analysis, machine learning, and causal analysis are comprehensively covered, as well as when, why, and how the methods work, and how they relate to each other. As the most effective way to communicate data analysis, running case studies play a central role in this textbook. Each case starts with an industry-relevant question and answers it by using real-world data and applying the tools and methods covered in the textbook. Learning is then consolidated by 360 practice questions and 120 data exercises. Extensive online resources, including raw and cleaned data and codes for all analysis in Stata, R, and Python, can be found at www.gabors-data-analysis.com.
This is the first comprehensive overview of the 'science of science,' an emerging interdisciplinary field that relies on big data to unveil the reproducible patterns that govern individual scientific careers and the workings of science. It explores the roots of scientific impact, the role of productivity and creativity, when and what kind of collaborations are effective, the impact of failure and success in a scientific career, and what metrics can tell us about the fundamental workings of science. The book relies on data to draw actionable insights, which can be applied by individuals to further their career or decision makers to enhance the role of science in society. With anecdotes and detailed, easy-to-follow explanations of the research, this book is accessible to all scientists and graduate students, policymakers, and administrators with an interest in the wider scientific enterprise.
'A necessary book for our times. But also just great fun' Saul Perlmutter, Nobel Laureate The world is awash in bullshit, and we're drowning in it. Politicians are unconstrained by facts. Science is conducted by press release. Start-up culture elevates hype to high art. These days, calling bullshit is a noble act. Based on a popular course at the University of Washington, Calling Bullshit gives us the tools to see through the obfuscations, deliberate and careless, that dominate every realm of our lives. In this lively guide, biologist Carl Bergstrom and statistician Jevin West show that calling bullshit is crucial to a properly functioning social group, whether it be a circle of friends, a community of researchers, or the citizens of a nation. Through six rules of thumb, they help us recognize bullshit whenever and wherever we encounter it - even within ourselves - and explain it to a crystal-loving aunt or casually racist grandfather.
Big Data and methods for analyzing large data sets such as machine learning have in recent times deeply transformed scientific practice in many fields. However, an epistemological study of these novel tools is still largely lacking. After a conceptual analysis of the notion of data and a brief introduction into the methodological dichotomy between inductivism and hypothetico-deductivism, several controversial theses regarding big data approaches are discussed. These include, whether correlation replaces causation, whether the end of theory is in sight and whether big data approaches constitute entirely novel scientific methodology. In this Element, I defend an inductivist view of big data research and argue that the type of induction employed by the most successful big data algorithms is variational induction in the tradition of Mill's methods. Based on this insight, the before-mentioned epistemological issues can be systematically addressed.
The real world is perceived and broken down as data, models and algorithms in the eyes of physicists and engineers. Data is noisy by nature and classical statistical tools have so far been successful in dealing with relatively smaller levels of randomness. The recent emergence of Big Data and the required computing power to analyse them have rendered classical tools outdated and insufficient. Tools such as random matrix theory and the study of large sample covariance matrices can efficiently process these big data sets and help make sense of modern, deep learning algorithms. Presenting an introductory calculus course for random matrices, the book focusses on modern concepts in matrix theory, generalising the standard concept of probabilistic independence to non-commuting random variables. Concretely worked out examples and applications to financial engineering and portfolio construction make this unique book an essential tool for physicists, engineers, data analysts, and economists.
In the global race to reach the end of AIDS, why is the world slipping off track? The answer has to do with stigma, money, and data. Global funding for AIDS response is declining. Tough choices must be made: some people will win and some will lose. Global aid agencies and governments use health data to make these choices. While aid agencies prioritize a shrinking list of countries, many governments deny that sex workers, men who have sex with men, drug users, and transgender people exist. Since no data is gathered about their needs, life-saving services are not funded, and the lack of data reinforces the denial. The Uncounted cracks open this and other data paradoxes through interviews with global health leaders and activists, ethnographic research, analysis of gaps in mathematical models, and the author's experience as an activist and senior official. It shows what is counted, what is not, and why empowering communities to gather their own data could be key to ending AIDS.
This book presents an accessible introduction to data-driven storytelling. Resulting from unique discussions between data visualization researchers and data journalists, it offers an integrated definition of the topic, presents vivid examples and patterns for data storytelling, and calls out key challenges and new opportunities for researchers and practitioners.
In the global race to reach the end of AIDS, why is the world slipping off track? The answer has to do with stigma, money, and data. Global funding for AIDS response is declining. Tough choices must be made: some people will win and some will lose. Global aid agencies and governments use health data to make these choices. While aid agencies prioritize a shrinking list of countries, many governments deny that sex workers, men who have sex with men, drug users, and transgender people exist. Since no data is gathered about their needs, life-saving services are not funded, and the lack of data reinforces the denial. The Uncounted cracks open this and other data paradoxes through interviews with global health leaders and activists, ethnographic research, analysis of gaps in mathematical models, and the author's experience as an activist and senior official. It shows what is counted, what is not, and why empowering communities to gather their own data could be key to ending AIDS.
More students study management and organization studies than ever, the number of business schools worldwide continues to rise, and more management research is being published in a greater number of journals than could have been imagined twenty years ago. Dennis Tourish looks beneath the surface of this progress to expose a field in crisis and in need of radical reform. He identifies the ways in which management research has lost its way, including a remoteness from the practical problems that managers and employees face, a failure to replicate key research findings, poor writing, endless obscure theorizing, and an increasing number of research papers being retracted for fraud and other forms of malpractice. Tourish suggests fundamental changes to remedy these issues, enabling management research to become more robust, more interesting and more valuable to society. A must read for academics, practising managers, university administrators and policy makers within higher education.
Throughout the world, voters lack access to information about politicians, government performance, and public services. Efforts to remedy these informational deficits are numerous. Yet do informational campaigns influence voter behavior and increase democratic accountability? Through the first project of the Metaketa Initiative, sponsored by the Evidence in Governance and Politics (EGAP) research network, this book aims to address this substantive question and at the same time introduce a new model for cumulative learning that increases coordination among otherwise independent researcher teams. It presents the overall results (using meta-analysis) from six independently conducted but coordinated field experimental studies, the results from each individual study, and the findings from a related evaluation of whether practitioners utilize this information as expected. It also discusses lessons learned from EGAP's efforts to coordinate field experiments, increase replication of theoretically important studies across contexts, and increase the external validity of field experimental research.
Recent years have witnessed an explosion in the volume and variety of data collected in all scientific disciplines and industrial settings. Such massive data sets present a number of challenges to researchers in statistics and machine learning. This book provides a self-contained introduction to the area of high-dimensional statistics, aimed at the first-year graduate level. It includes chapters that are focused on core methodology and theory - including tail bounds, concentration inequalities, uniform laws and empirical process, and random matrices - as well as chapters devoted to in-depth exploration of particular model classes - including sparse linear models, matrix models with rank constraints, graphical models, and various types of non-parametric models. With hundreds of worked examples and exercises, this text is intended both for courses and for self-study by graduate students and researchers in statistics, machine learning, and related fields who must understand, apply, and adapt modern statistical methods suited to large-scale data.
Leading tech companies such as Netflix, Amazon and Uber use data science and machine learning at scale in their core business processes, whereas most traditional companies struggle to expand their machine learning projects beyond a small pilot scope. This book enables organizations to truly embrace the benefits of digital transformation by anchoring data and AI products at the core of their business. It provides executives with the essential tools and concepts to establish a data and AI portfolio strategy as well as the organizational setup and agile processes that are required to deliver machine learning products at scale. Key consideration is given to advancing the data architecture and governance, balancing stakeholder needs and breaking organizational silos through new ways of working. Each chapter includes templates, common pitfalls and global case studies covering industries such as insurance, fashion, consumer goods, finance, manufacturing and automotive. Covering a holistic perspective on strategy, technology, product and company culture, Driving Digital Transformation through Data and AI guides the organizational transformation required to get ahead in the age of AI.
Geometric and topological inference deals with the retrieval of information about a geometric object using only a finite set of possibly noisy sample points. It has connections to manifold learning and provides the mathematical and algorithmic foundations of the rapidly evolving field of topological data analysis. Building on a rigorous treatment of simplicial complexes and distance functions, this self-contained book covers key aspects of the field, from data representation and combinatorial questions to manifold reconstruction and persistent homology. It can serve as a textbook for graduate students or researchers in mathematics, computer science and engineering interested in a geometric approach to data science.
Geometric and topological inference deals with the retrieval of information about a geometric object using only a finite set of possibly noisy sample points. It has connections to manifold learning and provides the mathematical and algorithmic foundations of the rapidly evolving field of topological data analysis. Building on a rigorous treatment of simplicial complexes and distance functions, this self-contained book covers key aspects of the field, from data representation and combinatorial questions to manifold reconstruction and persistent homology. It can serve as a textbook for graduate students or researchers in mathematics, computer science and engineering interested in a geometric approach to data science.
An extensively revised and expanded third edition of the successful textbook on analysis and visualization of social networks integrating theory, applications, and professional software for performing network analysis (Pajek). The main structural concepts and their applications in social research are introduced with exercises. Pajek software and datasets are available, so readers can learn network analysis through application and case studies. In the end readers will have the knowledge, skills, and tools to apply social network analysis across different disciplines. A fundamental redesign of the menu structure and the capability to analyze much larger networks required a new edition. This edition presents several new operations including community detection, generalized main paths searches, new network indices, advanced visualization approaches, and instructions for installing Pajek under MacOSX. This third edition is up-to-date with Pajek version 5 and it introduces PajekXXL for very large networks and Pajek3XL for huge networks.
An extensively revised and expanded third edition of the successful textbook on analysis and visualization of social networks integrating theory, applications, and professional software for performing network analysis (Pajek). The main structural concepts and their applications in social research are introduced with exercises. Pajek software and datasets are available, so readers can learn network analysis through application and case studies. In the end readers will have the knowledge, skills, and tools to apply social network analysis across different disciplines. A fundamental redesign of the menu structure and the capability to analyze much larger networks required a new edition. This edition presents several new operations including community detection, generalized main paths searches, new network indices, advanced visualization approaches, and instructions for installing Pajek under MacOSX. This third edition is up-to-date with Pajek version 5 and it introduces PajekXXL for very large networks and Pajek3XL for huge networks.
A comprehensive introduction and teaching resource for state-of-the-art Qualitative Comparative Analysis (QCA) using R software. This guide facilitates the efficient teaching, independent learning, and use of QCA with the best available software, reducing the time and effort required when encountering not just the logic of a new method, but also new software. With its applied and practical focus, the book offers a genuinely simple and intuitive resource for implementing the most complete protocol of QCA. To make the lives of students, teachers, researchers, and practitioners as easy as possible, the book includes learning goals, core points, empirical examples, and tips for good practices. The freely available online material provides a rich body of additional resources to aid users in their learning process. Beyond performing core analyses with the R package QCA, the book also facilitates a close integration with the R package SetMethods allowing for a host of additional protocols for building a more solid and well-rounded QCA. |
You may like...
Ethical Practice of Statistics and Data…
Rochelle Tractenberg
Hardcover
R2,402
Discovery Miles 24 020
Spatial Regression Analysis Using…
Daniel A. Griffith, Yongwan Chun, …
Paperback
R3,015
Discovery Miles 30 150
Insightful Data Visualization with SAS…
Falko Schulz, Travis Murphy
Hardcover
R1,147
Discovery Miles 11 470
The Data and Analytics Playbook - Proven…
Lowell Fryman, Gregory Lampshire, …
Paperback
R1,200
Discovery Miles 12 000
Pattern Recognition and Classification…
Eva Volna, Martin Kotyrba, …
Hardcover
R4,634
Discovery Miles 46 340
Applying Data Science and Learning…
Goran Trajkovski, Marylee Demeter, …
Hardcover
R5,333
Discovery Miles 53 330
|