![]() |
![]() |
Your cart is empty |
||
Books > Reference & Interdisciplinary > Communication studies > Data analysis
In the global race to reach the end of AIDS, why is the world slipping off track? The answer has to do with stigma, money, and data. Global funding for AIDS response is declining. Tough choices must be made: some people will win and some will lose. Global aid agencies and governments use health data to make these choices. While aid agencies prioritize a shrinking list of countries, many governments deny that sex workers, men who have sex with men, drug users, and transgender people exist. Since no data is gathered about their needs, life-saving services are not funded, and the lack of data reinforces the denial. The Uncounted cracks open this and other data paradoxes through interviews with global health leaders and activists, ethnographic research, analysis of gaps in mathematical models, and the author's experience as an activist and senior official. It shows what is counted, what is not, and why empowering communities to gather their own data could be key to ending AIDS.
A guide to the principles and methods of data analysis that does not require knowledge of statistics or programming A General Introduction to Data Analytics is an essential guide to understand and use data analytics. This book is written using easy-to-understand terms and does not require familiarity with statistics or programming. The authors--noted experts in the field--highlight an explanation of the intuition behind the basic data analytics techniques. The text also contains exercises and illustrative examples. Thought to be easily accessible to non-experts, the book provides motivation to the necessity of analyzing data. It explains how to visualize and summarize data, and how to find natural groups and frequent patterns in a dataset. The book also explores predictive tasks, be them classification or regression. Finally, the book discusses popular data analytic applications, like mining the web, information retrieval, social network analysis, working with text, and recommender systems. The learning resources offer: A guide to the reasoning behind data mining techniques A unique illustrative example that extends throughout all the chapters Exercises at the end of each chapter and larger projects at the end of each of the text's two main parts Together with these learning resources, the book can be used in a 13-week course guide, one chapter per course topic. The book was written in a format that allows the understanding of the main data analytics concepts by non-mathematicians, non-statisticians and non-computer scientists interested in getting an introduction to data science. A General Introduction to Data Analytics is a basic guide to data analytics written in highly accessible terms.
This is a book about the scientific process and how you apply it to data in ecology. You will learn how to plan for data collection, how to assemble data, how to analyze data and finally how to present the results. The book uses Microsoft Excel and the powerful Open Source R program to carry out data handling as well as producing graphs. Statistical approaches covered include: data exploration; tests for difference - t-test and U-test; correlation - Spearman's rank test and Pearson product-moment; association including Chi-squared tests and goodness of fit; multivariate testing using analysis of variance (ANOVA) and Kruskal-Wallis test; and multiple regression. Key skills taught in this book include: how to plan ecological projects; how to record and assemble your data; how to use R and Excel for data analysis and graphs; how to carry out a wide range of statistical analyses including analysis of variance and regression; how to create professional looking graphs; and how to present your results. New in this edition: a completely revised chapter on graphics including graph types and their uses, Excel Chart Tools, R graphics commands and producing different chart types in Excel and in R; an expanded range of support material online, including; example data, exercises and additional notes & explanations; a new chapter on basic community statistics, biodiversity and similarity; chapter summaries and end-of-chapter exercises. Praise for the first edition: This book is a superb way in for all those looking at how to design investigations and collect data to support their findings. - Sue Townsend, Biodiversity Learning Manager, Field Studies Council [M]akes it easy for the reader to synthesise R and Excel and there is extra help and sample data available on the free companion webpage if needed. I recommended this text to the university library as well as to colleagues at my student workshops on R. Although I initially bought this book when I wanted to discover R I actually also learned new techniques for data manipulation and management in Excel - Mark Edwards, EcoBlogging A must for anyone getting to grips with data analysis using R and excel. - Amazon 5-star review It has been very easy to follow and will be perfect for anyone. - Amazon 5-star review A solid introduction to working with Excel and R. The writing is clear and informative, the book provides plenty of examples and figures so that each string of code in R or step in Excel is understood by the reader. - Goodreads, 4-star review
Since the September 11, 2001 terrorist attacks on United States soil, the intelligence community has been scrutinized on how it performs its functions. Consequently, the 9/11 Commission made several recommendations on how to improve the quality of intelligence analysis. Those charges and the United States' involvement in a war in Iraq have spawned additional charges of the politicization of intelligence. All this is being played out as the Intelligence Community has reformed and reconfigured itself with newly created departments supported by an expanded and inexperienced workforce that was never envisioned when the intelligence community was formally established in 1947. First published in the 1970s, the classic book An Introduction to Intelligence Research and Analysis was used by intelligence analysts to track and monitor the Communist threat. Although today's environment has changed considerably since the Cold War, intelligence analysts still need to understand the basics of intelligence analysis. The book focuses on how to do research, what qualities are needed to be an intelligence analyst, and what methods can be employed to help in producing products. To avoid politicization, intelligence analysts should strive to become more transparent in their methodology of how they arrived at their conclusions. Intelligence Research and Analysis provides several methods to assist in that end.
Written for anyone beginning a research project, this introductory book takes you through the process of analysing your data from start to finish. The author sets out an easy-to-use model for coding data in order to break it down into parts, and then to reassemble it to create a meaningful picture of the phenomenon under study. Full of useful advice, the book guides the reader through the last difficult integrating phase of qualitative analysis including diagramming, memoing, thinking aloud, and using one's feelings, and how to incorporate the use of software where appropriate. Ideal for third year undergraduate students, master students, postgraduates and anybody beginning a research project, the book includes examples covering a wide range of subjects - making the book useful for students across the social science disciplines. Hennie Boeije is currently an Associate Professor with the Department of Methodology and Statistics of the Faculty of Social and Behavioural Sciences at Utrecht University, The Netherlands.
As an emerging discipline, data science broadly means different things across different areas. Exploring the relationship of data science with statistics, a well-established and principled data-analytic discipline, this book provides insights about commonalities in approach, and differences in emphasis.Featuring chapters from established authors in both disciplines, the book also presents a number of applications and accompanying papers.
Effectively and ethically leveraging people data to deliver real business value is what sets the best HR leaders and teams apart. Excellence in People Analytics provides business and human resources leaders with everything they need to know about creating value from people analytics. Written by two leading experts in the field, this practical guide outlines how to create sustainable business value with people analytics and develop a data-driven culture in HR. Most importantly, it allows HR professionals and business executives to translate their data into tangible actions to improve business performance. while navigating the rapidly evolving world of work. Full of practical tools and advice assembled around the Insight222 Nine Dimensions in People Analytics (R) model, this book demonstrates how to use people data to increase profits, improve staff retention and workplace productivity as well as develop individual employee experience. Featuring case studies from leading companies including Microsoft, HSBC, Syngenta, Capital One, Novartis, Bosch, Uber, Santander Brasil and American Eagle Outfitters (R), Excellence in People Analytics is essential reading for all HR professionals needing to unlock the potential in their people data and gain competitive advantage
Data science has never had more influence on the world. Large companies are now seeing the benefit of employing data scientists to interpret the vast amounts of data that now exists. However, the field is so new and is evolving so rapidly that the analysis produced can be haphazard at best. The 9 Pitfalls of Data Science shows us real-world examples of what can go wrong. Written to be an entertaining read, this invaluable guide investigates the all too common mistakes of data scientists - who can be plagued by lazy thinking, whims, hunches, and prejudices - and indicates how they have been at the root of many disasters, including the Great Recession. Gary Smith and Jay Cordes emphasise how scientific rigor and critical thinking skills are indispensable in this age of Big Data, as machines often find meaningless patterns that can lead to dangerous false conclusions. The 9 Pitfalls of Data Science is loaded with entertaining tales of both successful and misguided approaches to interpreting data, both grand successes and epic failures. These cautionary tales will not only help data scientists be more effective, but also help the public distinguish between good and bad data science.
Learn how to easily transform your data into engaging, interactive visual reports! Data is no longer the sole domain of tech professionals and scientists. Whether in our personal, business, or community lives, data is rapidly increasing in both importance and sheer volume. The ability to visualize all kinds of data is now within reach for anyone with a computer and an internet connection. Google Data Studio, quickly becoming the most popular free tool in data visualization, offers users a flexible, powerful way to transform private and public data into interactive knowledge that can be easily shared and understood. Hands On With Google Data Studio teaches you how to visualize your data today and produce professional quality results quickly and easily. No previous experience is required to get started right away--all you need is this guide, a Gmail account, and a little curiosity to access and visualize data just like large businesses and organizations. Clear, step-by-step instructions help you identify business trends, turn budget data into a report, assess how your websites or business listings are performing, analyze public data, and much more. Practical examples and expert tips are found throughout the text to help you fully understand and apply your new knowledge to a wide array of real-world scenarios. This engaging, reader-friendly guide will enable you to: Use Google Data Studio to access various types of data, from your own personal data to public sources Build your first data set, navigate the Data Studio interface, customize reports, and share your work Learn the fundamentals of data visualization, personal data accessibility, and open data API's Harness the power of publicly accessible data services including Google's recently released Data Set Search Add banners, logos, custom graphics, and color palettes Hands On With Google Data Studio: A Data Citizens Survival Guide is a must-have resource for anyone starting their data visualization journey, from individuals, consultants, and small business owners to large business and organization managers and leaders.
The term "smart city" defines the new urban environment, one that is designed for performance through information and communication technologies. Given that the majority of people across the world will live in urban environments within the next few decades, it's not surprising that massive effort and investment is being placed into efforts to develop strategies and plans for achieving "smart" urban growth. Building Smart Cities: Analytics, ICT, and Design Thinking explains the technology and a methodology known as design thinking for building smart cities. Information and communications technologies form the backbone of smart cities. A comprehensive and robust data analytics program enables the right choices to be made in building these cities. Design thinking helps to create smart cities that are both livable and able to evolve. This book examines all of these components in the context of smart city development and shows how to use them in an integrated manner. Using the principles of design thinking to reframe the problems of the smart city and capture the real needs of people living in a highly efficient urban environment, the book helps city planners and technologists through the following: Presentation of the relevant technologies required for coordinated, efficient cities Exploration of the latent needs of community stakeholders in a culturally appropriate context Discussion of the tested approaches to ideation, design, prototyping, and building or retrofitting smart cities Proposal of a model for a viable smart city project The smart city vision that we can create an optimized society through technology is hypothetical at best and reflects the failed repetition through the ages of equating scientific progress with positive social change. Up until now, despite our best hopes and efforts, technology has yet to bring an end to scarcity or suffering. Technical innovation, instead, can and should be directed in the service of our shared cultural values, especially within the rapidly growing urban milieu. In Building Smart Cities: Analytics, ICT, and Design Thinking, the author discusses the need to focus on creating human-centered approaches to our cities that integrate our human needs and technology to meet our economic, environmental, and existential needs. The book shows how this approach can lead to innovative, livable urban environments that are realizable, practical, and economically and environmentally sustainable.
Data Analysis in Molecular Biology and Evolution introduces biologists to DAMBE, a proprietary, user-friendly computer program for molecular data analysis. The unique combination of this book and software will allow biologists not only to understand the rationale behind a variety of computational tools in molecular biology and evolution, but also to gain instant access to these tools for use in their laboratories. Data Analysis in Molecular Biology and Evolution serves as an excellent resource for advanced level undergraduates or graduates as well as for professionals working in the field.
1.1 Overview V ARIOWIN 2.2 is a collection of four Windows (TM) programs - Prevar2D, Vari02D with PCF, Model, and Grid Display - that are used for spatial data analysis and variogram modeling of irregularly spaced data in two dimensions. Prevar2D builds a pair comparison file (PCF), that is, a binary file containing pairs of data sorted in terms of increasing distance. Pair comparison files can be built from subsets in order to reduce memory requirements. Vari02D with PCF is used for spatial data analysis of 2D data. It uses an ASCII data file and a binary pair comparison file produced by Prevar2D. Features implemented in Vari02D with PCF include: * the possibility to characterize the spatial continuity of one variable or the joined spatial continuity of two variables, * variogram surfaces for identifying directions of anisotropies, * directional variograms calculated along any direction, * several measures of spatial continuity. Not only the variogram but also the standardized variogram, the covariance, the correlogram, and the madogram are used to measure spatial continuity. * h-scatterplots to assess the meaning of these measures, * the identification and localization of pairs of data adversely affecting the measure of spatial continuity. Once identified, these pairs can be masked from the calculation interactively. * variogram clouds for identifying pairs of data values having the most influence on the measure of spatial continuity. Those pairs can also be located on the sample map.
This book showcases the different ways in which contemporary forms of data analysis are being used in urban planning and management. It highlights the emerging possibilities that city-regional governance, technology and data have for better planning and urban management - and discusses how you can apply them to your research. Including perspectives from across the globe, it's packed with examples of good practice and helps to demystify the process of using big and open data. Learn about different kinds of emergent data sources and how they are processed, visualised and presented. Understand how spatial analysis and GIS are used in city planning. See examples of how contemporary data analytics methods are being applied in a variety of contexts, such as 'smart' city management and megacities. Aimed at upper undergraduate and postgraduate students studying spatial analysis and planning, this timely text is the perfect companion to enable you to apply data analytics approaches in your research.
How data-informed decision making can make colleges and universities more effective institutions. The continuing importance of data analytics is not lost on higher education leaders, who face a multitude of challenges, including increasing operating costs, dwindling state support, limits to tuition increases, and increased competition from the for-profit sector. To navigate these challenges, savvy leaders must leverage data to make sound decisions. In Big Data on Campus, leading data analytics experts and higher ed leaders show the role that analytics can play in the better administration of colleges and universities. Aimed at senior administrative leaders, practitioners of institutional research, technology professionals, and graduate students in higher education, the book opens with a conceptual discussion of the roles that data analytics can play in higher education administration. Subsequent chapters address recent developments in technology, the rapid accumulation of data assets, organizational maturity in building analytical capabilities, and methodological advancements in developing predictive and prescriptive analytics. Each chapter includes a literature review of the research and application of analytics developments in their respective functional areas, a discussion of industry trends, examples of the application of data analytics in their decision process, and other related issues that readers may wish to consider in their own organizational environment to find opportunities for building robust data analytics capabilities. Using a series of focused discussions and case studies, Big Data on Campus helps readers understand how analytics can support major organizational functions in higher education, including admission decisions, retention and enrollment management, student life and engagement, academic and career advising, student learning and assessment, and academic program planning. The final section of the book addresses major issues and human factors involved in using analytics to support decision making; the ethical, cultural, and managerial implications of its use; the role of university leaders in promoting analytics in decision making; and the need for a strong campus community to embrace the analytics revolution. Contributors: Rana Glasgal, J. Michael Gower, Tom Gutman, Brian P. Hinote, Braden J. Hosch, Aditya Johri, Christine M. Keller, Carrie Klein, Jaime Lester, Carrie Hancock Marcinkevage, Gail B. Marsh, Susan M. Menditto, Jillian N. Morn, Valentina Nestor, Cathy O'Bryan, Huzefa Rangwala, Timothy Renick, Charles Tegen, Rachit Thariani, Chris Tompkins, Lindsay K. Wayt, Karen L. Webber, Henry Y. Zheng, Ying Zhou
Recent years have seen a sharp increase in the application of sophisticated statistical modelling methods to sample survey data. Analysis of Survey Data aims to provide a solid basis for the statistical theory underpinning these applications. This book brings together two key statistical traditions, statistical modelling - such as regression analysis - and sample survey methods, as used for sample design and estimation.
"Data Analysis and Visualization in Genomics and Proteomics" is the
first book addressing integrative data analysis and visualization
in this field. It addresses important techniques for the
interpretation of data originating from multiple sources, encoded
in different formats or protocols, and processed by multiple
systems. One of the first systematic overviews of the problem of
biological data integration using computational approachesThis book
provides scientists and students with the basis for the development
and application of integrative computational methods to analyse
biological data on a systemic scalePlaces emphasis on the
processing of multiple data and knowledge resources, and the
combination of different models and systems
This book has won the CHOICE Outstanding Academic Title award 2014. A century of education and education reform along with the last three decades of high-stakes testing and accountability reveals a disturbing paradox: Education has a steadfast commitment to testing and grading despite decades of research, theory, and philosophy that reveal the corrosive consequences of both testing and grading within an education system designed to support human agency and democratic principles. This edited volume brings together a collection of essays that confronts the failure of testing and grading and then offers practical and detailed examinations of implementing at the macro and micro levels of education teaching and learning free of the weight of testing and grading. The book explores the historical failure of testing and grading; the theoretical and philosophical arguments against testing and grading; the negative influence of testing and grading on social justice, race, class, and gender; and the role of testing and grading in perpetuating a deficit perspective of children, learning, race, and class. The chapters fall under two broad sections: Part I: "Degrading Learning, Detesting Education: The Failure of High-Stake Accountability in Education" includes essays on the historical, theoretical, and philosophical arguments against testing and grading; Part II: "De-Grading and De-Testing in a Time of High-Stakes Education Reform" presents practical experiments in de-testing and de-grading classrooms for authentic learning experiences.
Distribution-free resampling methods-permutation tests, decision trees, and the bootstrap-are used today in virtually every research area. A Practitioner's Guide to Resampling for Data Analysis, Data Mining, and Modeling explains how to use the bootstrap to estimate the precision of sample-based estimates and to determine sample size, data permutations to test hypotheses, and the readily-interpreted decision tree to replace arcane regression methods. Highlights Each chapter contains dozens of thought provoking questions, along with applicable R and Stata code Methods are illustrated with examples from agriculture, audits, bird migration, clinical trials, epidemiology, image processing, immunology, medicine, microarrays and gene selection Lists of commercially available software for the bootstrap, decision trees, and permutation tests are incorporated in the text Access to APL, MATLAB, and SC code for many of the routines is provided on the author's website The text covers estimation, two-sample and k-sample univariate, and multivariate comparisons of means and variances, sample size determination, categorical data, multiple hypotheses, and model building Statistics practitioners will find the methods described in the text easy to learn and to apply in a broad range of subject areas from A for Accounting, Agriculture, Anthropology, Aquatic science, Archaeology, Astronomy, and Atmospheric science to V for Virology and Vocational Guidance, and Z for Zoology. Practitioners and research workers and in the biomedical, engineering and social sciences, as well as advanced students in biology, business, dentistry, medicine, psychology, public health, sociology, and statistics will find an easily-grasped guide to estimation, testing hypotheses and model building.
What happens to risk as the economic horizon goes to zero and risk is seen as an exposure to a change in state that may occur instantaneously at any time? All activities that have been undertaken statically at a fixed finite horizon can now be reconsidered dynamically at a zero time horizon, with arrival rates at the core of the modeling. This book, aimed at practitioners and researchers in financial risk, delivers the theoretical framework and various applications of the newly established dynamic conic finance theory. The result is a nonlinear non-Gaussian valuation framework for risk management in finance. Risk-free assets disappear and low risk portfolios must pay for their risk reduction with negative expected returns. Hedges may be constructed to enhance value by exploiting risk interactions. Dynamic trading mechanisms are synthesized by machine learning algorithms. Optimal exposures are designed for option positioning simultaneously across all strikes and maturities.
This richly illustrated book describes the use of interactive and dynamic graphics as part of multidimensional data analysis. Chapter topics include clustering, supervised classification, and working with missing values. A variety of plots and interaction methods are used in each analysis, often starting with brushing linked low-dimensional views and working up to manual manipulation of tours of several variables. The book is augmented by a wealth of online material.
Critical Theory and Qualitative Data Analysis in Education offers a path-breaking explanation of how critical theories can be used within the analysis of qualitative data to inform research processes, such as data collection, analysis, and interpretation. This contributed volume offers examples of qualitative data analysis techniques and exemplars of empirical studies that employ critical theory concepts in data analysis. By creating a clear and accessible bridge between data analysis and critical social theories, this book helps scholars and researchers effectively translate their research designs and findings to multiple audiences for more equitable outcomes and disruption of historical and contemporary inequality.
Learn the latest version of ArcGIS Pro with the newest edition of this bestselling series. Getting to Know ArcGIS Pro 2.8 introduces the tools and functions of ArcGIS Pro, the powerful desktop GIS application. Geographic information system (GIS) software is making a huge impact in businesses and organizations with mapping and analytic capabilities. Getting to Know ArcGIS Pro 2.8 uses practical project workflows to teach best practices to readers of all skill levels. Readers will explore data visualizations, build a geodatabase, discover 3D GIS, create maps for web and physical presentations, and more. With more than 300 full-color images, Getting to Know ArcGIS Pro 2.8 clarifies complicated processes such as developing a geoprocessing model, using Python to write a script tool, and creating space-time cubes for analysis. Throughout the book, short sidebars about real-world GIS scenarios in specific industries help readers understand how ArcGIS Pro can be applied widely to solve problems. At the end of each chapter, a summary and glossary help reinforce the skills learned. This edition has been completely updated for use with ArcGIS Pro 2.8. Other updates include new chapters on ArcGIS Online and geocoding. The Getting to Know series has been teaching readers about GIS for more than twenty years. Ideal for students, self-learners, and professionals who want to learn the premier GIS desktop application, Getting to Know ArcGIS Pro 2.8 is a textbook and desk reference designed to show users how they can use ArcGIS Pro successfully on their own.
This textbook bypasses the need for advanced mathematics by providing in-text computer code, allowing students to explore Bayesian data analysis without the calculus background normally considered a prerequisite for this material. Now, students can use the best methods without needing advanced mathematical techniques. This approach goes beyond "frequentist" concepts of p-values and null hypothesis testing, using the full power of modern probability theory to solve real-world problems. The book offers a fully self-contained course, which demonstrates analysis techniques throughout with worked examples crafted specifically for students in the behavioral and neural sciences. The book presents two general algorithms that help students solve the measurement and model selection (also called "hypothesis testing") problems most frequently encountered in real-world applications.
This book covers some recent developments in statistical inference. The author's main aim is to develop a theory of generalized p-values and generalized confidence intervals and to show how these concepts may be used to make exact statistical inferences in a variety of practical applications. In particular, they provide methods applicable in problems involving nuisance parameters such as those encountered in comparing two exponential distributions or in ANOVA without the assumption of equal error variances. The generalized procedures are shown to be more powerful in detecting significant experimental results and in avoiding misleading conclusions.
This textbook is a complete rewrite, and expansion of Hugh Rollinson's highly successful 1993 book Using Geochemical Data: Evaluation, Presentation, Interpretation. Rollinson and Pease's new book covers the explosion in geochemical thinking over the past three decades, as new instruments and techniques have come online. It provides a comprehensive overview of how modern geochemical data are used in the understanding of geological and petrological processes. It covers major element, trace element, and radiogenic and stable isotope geochemistry. It explains the potential of many geochemical techniques, provides examples of their application, and emphasizes how to interpret the resulting data. Additional topics covered include the critical statistical analysis of geochemical data, current geochemical techniques, effective display of geochemical data, and the application of data in problem solving and identifying petrogenetic processes within a geological context. It will be invaluable for all graduate students, researchers, and professionals using geochemical techniques. |
![]() ![]() You may like...
Taking the Fear Out of Data Analysis…
Adamantios Diamantopoulos, Bodo B. Schlegelmilch, …
Paperback
R1,127
Discovery Miles 11 270
The Evaluation of Complex Infrastructure…
Lasse Gerrits, Stefan Verweij
Hardcover
R2,786
Discovery Miles 27 860
Spatial Regression Analysis Using…
Daniel A. Griffith, Yongwan Chun, …
Paperback
R3,203
Discovery Miles 32 030
Handbook of Spatial Analysis in the…
Sergio J. Rey, Rachel S. Franklin
Hardcover
R7,668
Discovery Miles 76 680
Handbook of Qualitative Research…
Helle Neergaard, Claire Leitch
Paperback
R1,647
Discovery Miles 16 470
Collaborative Inquiry for Organization…
Abraham B. Shani, David Coghlan
Paperback
R831
Discovery Miles 8 310
|