![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Reference & Interdisciplinary > Communication studies > Data analysis
Numerical Methods in Environmental Data Analysis introduces environmental scientists to the numerical methods available to help answer research questions through data analysis. One challenge in data analysis is misrepresentation of datasets that are relevant directly or indirectly to the research. This book illustrates new ways of screening dataset or images for maximum utilization, introducing environmental modeling, numerical methods, and computations techniques in data analysis. Throughout the book, the author includes case studies that provide guidance on how to translate research questions into appropriate models. Individuals working with data sets or images generated from environmental monitoring centers or satellites will find this book to be a concise guide for analyzing and interpreting their data.
Ethical Practice of Statistics and Data Science is intended to prepare people to fully assume their responsibilities to practice statistics and data science ethically. Aimed at early career professionals, practitioners, and mentors or supervisors of practitioners, the book supports the ethical practice of statistics and data science, with an emphasis on how to earn the designation of, and recognize, "the ethical practitioner". The book features 47 case studies, each mapped to the Data Science Ethics Checklist (DSEC); Data Ethics Framework (DEFW); the American Statistical Association (ASA) Ethical Guidelines for Statistical Practice; and the Association of Computing Machinery (ACM) Code of Ethics. It is necessary reading for students enrolled in any data intensive program, including undergraduate or graduate degrees in (bio-)statistics, business/analytics, or data science. Managers, leaders, supervisors, and mentors who lead data-intensive teams in government, industry, or academia would also benefit greatly from this book. This is a companion volume to Ethical Reasoning For A Data-Centered World, also published by Ethics International Press (2022). These are the first and only books to be based on, and to provide guidance to, the ASA and ACM Ethical Guidelines/Code of Ethics.
The American Statistical Association (ASA) and the Association of Computing Machinery (ACM) have longstanding ethical practice standards that are explicitly intended to be utilized by all who use statistical practices or computing, or both. Since statistics and computing are critical in any data-centered activity, these practice standards are essential to instruction in the uses of statistical practices or computing across disciplines. Ethical Reasoning for a Data-Centered World is aimed at any undergraduate or graduate students utilizing data. Whether the career goal is research, teaching, business, government, or a combination, this book presents a method for understanding and prioritizing ethical statistics, computing, and data science - featuring the ASA and ACM practice standards. To facilitate engagement, integration with prior learning, and authenticity, the material is organized around seven tasks: Planning/Designing; Data collection; Analysis; Interpretation; Reporting; Documenting; and Engaging in Team Work. This book is a companion volume to Ethical Practice of Statistics and Data Science, also published by Ethics International Press (2022). These are the first and only books to be based on, and to provide guidance to, the American Statistical Association (ASA) and Association of Computing Machinery (ACM) ethical guideline documents.
Spatial Regression Analysis Using Eigenvector Spatial Filtering provides theoretical foundations and guides practical implementation of the Moran eigenvector spatial filtering (MESF) technique. MESF is a novel and powerful spatial statistical methodology that allows spatial scientists to account for spatial autocorrelation in their georeferenced data analyses. Its appeal is in its simplicity, yet its implementation drawbacks include serious complexities associated with constructing an eigenvector spatial filter. This book discusses MESF specifications for various intermediate-level topics, including spatially varying coefficients models, (non) linear mixed models, local spatial autocorrelation, space-time models, and spatial interaction models. Spatial Regression Analysis Using Eigenvector Spatial Filtering is accompanied by sample R codes and a Windows application with illustrative datasets so that readers can replicate the examples in the book and apply the methodology to their own application projects. It also includes a Foreword by Pierre Legendre.
The Data and Analytics Playbook: Proven Methods for Governed Data and Analytic Quality explores the way in which data continues to dominate budgets, along with the varying efforts made across a variety of business enablement projects, including applications, web and mobile computing, big data analytics, and traditional data integration. The book teaches readers how to use proven methods and accelerators to break through data obstacles to provide faster, higher quality delivery of mission critical programs. Drawing upon years of practical experience, and using numerous examples and an easy to understand playbook, Lowell Fryman, Gregory Lampshire, and Dan Meers discuss a simple, proven approach to the execution of multiple data oriented activities. In addition, they present a clear set of methods to provide reliable governance, controls, risk, and exposure management for enterprise data and the programs that rely upon it. In addition, they discuss a cost-effective approach to providing sustainable governance and quality outcomes that enhance project delivery, while also ensuring ongoing controls. Example activities, templates, outputs, resources, and roles are explored, along with different organizational models in common use today and the ways they can be mapped to leverage playbook data governance throughout the organization.
Research in the domains of learning analytics and educational data mining has prototyped an approach where methodologies from data science and machine learning are used to gain insights into the learning process by using large amounts of data. As many training and academic institutions are maturing in their data-driven decision making, useful, scalable, and interesting trends are emerging. Organizations can benefit from sharing information on those efforts. Applying Data Science and Learning Analytics Throughout a Learner's Lifespan examines novel and emerging applications of data science and sister disciplines for gaining insights from data to inform interventions into learners' journeys and interactions with academic institutions. Data is collected at various times and places throughout a learner's lifecycle, and the learners and the institution should benefit from the insights and knowledge gained from this data. Covering topics such as learning analytics dashboards, text network analysis, and employment recruitment, this book is an indispensable resource for educators, computer scientists, faculty of higher education, government officials, educational administration, students of higher education, pre-service teachers, business professionals, researchers, and academicians.
The ""Handbook of Research on Electronic Surveys and Measurements"" is the comprehensive reference source for innovative knowledge on electronic surveys. This commanding handbook of research provides complete coverage of the challenges associated with the use of the Internet to develop online surveys, administer Web-based instruments, and conduct computer-mediated assessments. Many internationally renowned experts in the field of electronic surveys and measurements have contributed to this comprehensive publication, and each chapter contains multiple references to published works in the field. The ""Handbook of Research on Electronic Surveys and Measurements"" is the only work with cutting edge descriptions of the design, implementation, and use of electronic surveys, and also includes discussions on the challenges associated with online data collection and profiles of selected online measures. This combination of how-to information about online research coupled with profiles of specific measures makes it an indispensable reference for every library.
Patterns can be any number of items that occur repeatedly, whether in the behaviour of animals, humans, traffic, or even in the appearance of a design. As technologies continue to advance, recognizing, mimicking, and responding to all types of patterns becomes more precise. Pattern Recognition and Classification in Time Series Data focuses on intelligent methods and techniques for recognizing and storing dynamic patterns. Emphasizing topics related to artificial intelligence, pattern management, and algorithm development, in addition to practical examples and applications, this publication is an essential reference source for graduate students, researchers, and professionals in a variety of computer-related disciplines.
Despite businesses often being based on creating desirable experiences, products and services for consumers, many fail to consider the end user in their planning and development processes. This book is here to change that. User experience research, also known as UX research, focuses on understanding user behaviours, needs and motivations through a range of observational techniques, task analysis and other methodologies. User Research is a practical guide that shows readers how to use the vast array of user research methods available. Written by one of the UK's leading UX research professionals, readers can benefit from in-depth knowledge that explores the fundamentals of user research. Covering all the key research methods including face-to-face user testing, card sorting, surveys, A/B testing and many more, the book gives expert insight into the nuances, advantages and disadvantages of each, while also providing guidance on how to interpret, analyze and share the data once it has been obtained. Now in its second edition, User Research provides a new chapter on research operations and infrastructure as well as new material on combining user research methodologies.
View the Table of Contents. Read Chapter 1. "Auerbach and Silverstein write at a level that can be
understood by beginners but is sophisticated enough for
scholars...informative and interesting." Qualitative Data is meant for the novice researcher who needs guidance on what specifically to do when faced with a sea of information. It takes readers through the qualitative research process, beginning with an examination of the basic philosophy of qualitative research, and ending with planning and carrying out a qualitative research study. It provides an explicit, step-by-step procedure that will take the researcher from the raw text of interview data through data analysis and theory construction to the creation of a publishable work. The volume provides actual examples based on the authors' own work, including two published pieces in the appendix, so that readers can follow examples for each step of the process, from the project's inception to its finished product. The volume also includes an appendix explaining how to implement these data analysis procedures using NVIVO, a qualitative data analysis program.
This volume focuses on the ethics of internet and social networking research exploring the challenges faced by researchers making use of social media and big data in their research. The internet, the world wide web and social media - indeed all forms of online communications - are attractive fields of research across a range of disciplines. They offer opportunities for methodological initiatives and innovations in research and easily accessed, massive amounts of primary and secondary data sources. This collection examines the new challenges posed by data generated online, explores how researchers are addressing those ethical challenges, and provides rich case studies of ethical decision making in the digital age.
The invited authors of this edited volume have been prolific in the arena of Real Data Analysis (RDA) as it applies to the social and behavioral sciences, especially in the disciplines of education and psychology. Combined, this brain trust represents 3,247 articles in refereed journals, 127 books published, US $45.3 Million in extramural research funding, 34 teaching and 92 research awards, serve(d) as Editor/Assistant Editor/Editorial Board Member for 95 peer reviewed journals, and provide( d) ad hoc reviews for 362 journals. Their enormous footprint on real data analysis is showcased for professors, researchers, educators, administrators, and graduate students in the second text in the AERA/SIG ES Quantitative Methods series.
Large surveys are becoming increasingly available for public use,
and researchers are often faced with the need to analyse complex
survey data to address key scientific issues. For proper analysis
it is also important to be aware of the different aspects of the
design of complex surveys. Practical Methods for Design and
Analysis of Complex Surveys features intermediate and advanced
statistical techniques for use in designing and analysing complex
surveys. This extensively updated edition features much new
material, and detailed practical exercises with links to a Web
site, helping instructors and enabling use for distance
learning. Practical Methods for Design and Analysis of Complex Surveys provides a useful practical resource for researchers and practitioners working in the planning, implementation or analysis of complex surveys and opinion polls, including business, educational, health, social, and socio-economic surveys and official statistics. In addition, the book is well suited for use on intermediate and advanced courses in survey sampling.
Data literacy is one of the key skills that companies are looking for but it's a specialist skill - currently. This book is your comprehensive guide to becoming data literate: understand data analytics, how to use data insights effectively in your organisation, and how to talk about data with experts and non-experts confidently.
From the quality of the air we breathe to the national leaders we choose, data and statistics are a pervasive feature of daily life and daily news. But how do news, numbers and public opinion interact with each other - and with what impacts on society at large? Featuring an international roster of established and emerging scholars, this book is the first comprehensive collection of research into the little understood processes underpinning the uses/misuses of statistical information in journalism and their socio-psychological and political effects. Moving beyond the hype around "data journalism," News, Numbers and Public Opinion delves into a range of more latent, fundamental questions such as: * Is it true that most citizens and journalists do not have the necessary skills and resources to critically process and assess numbers? * How do/should journalists make sense of the increasingly data-driven world? * What strategies, formats and frames do journalists use to gather and represent different types of statistical data in their stories? * What are the socio-psychological and political effects of such data gathering and representation routines, formats and frames on the way people acquire knowledge and form attitudes? * What skills and resources do journalists and publics need to deal effectively with the influx of numbers into in daily work and life - and how can newsrooms and journalism schools meet that need? The book is a must-read for not only journalists, journalism and media scholars, statisticians and data scientists but also anybody interested in the interplay between journalism, statistics and society.
Business and medical professionals rely on large data sets to identify trends or other knowledge that can be gleaned from the collection of it. New technologies concentrate on data's management, but do not facilitate users' extraction of meaningful outcomes. Pattern and Data Analysis in Healthcare Settings investigates the approaches to shift computing from analysis on-demand to knowledge on-demand. By providing innovative tactics to apply data and pattern analysis, these practices are optimized into pragmatic sources of knowledge for healthcare professionals. This publication is an exhaustive source for policy makers, developers, business professionals, healthcare providers, and graduate students concerned with data retrieval and analysis.
The book describes the emergence of big data technologies and the role of Spark in the entire big data stack. It compares Spark and Hadoop and identifies the shortcomings of Hadoop that have been overcome by Spark. The book mainly focuses on the in-depth architecture of Spark and our understanding of Spark RDDs and how RDD complements big data's immutable nature, and solves it with lazy evaluation, cacheable and type inference. It also addresses advanced topics in Spark, starting with the basics of Scala and the core Spark framework, and exploring Spark data frames, machine learning using Mllib, graph analytics using Graph X and real-time processing with Apache Kafka, AWS Kenisis, and Azure Event Hub. It then goes on to investigate Spark using PySpark and R. Focusing on the current big data stack, the book examines the interaction with current big data tools, with Spark being the core processing layer for all types of data. The book is intended for data engineers and scientists working on massive datasets and big data technologies in the cloud. In addition to industry professionals, it is helpful for aspiring data processing professionals and students working in big data processing and cloud computing environments.
Spatial data analysis has seen explosive growth in recent years. Both in mainstream statistics and econometrics as well as in many applied ?elds, the attention to space, location, and interaction has become an important feature of scholarly work. The methodsdevelopedto dealwith problemsofspatialpatternrecognition,spatialau- correlation, and spatial heterogeneity have seen greatly increased adoption, in part due to the availability of user friendlydesktopsoftware. Throughhis theoretical and appliedwork,ArthurGetishasbeena majorcontributing?gureinthisdevelopment. In this volume, we take both a retrospective and a prospective view of the ?eld. We use the occasion of the retirement and move to emeritus status of Arthur Getis to highlight the contributions of his work. In addition, we aim to place it into perspective in light of the current state of the art and future directions in spatial data analysis. To this end, we elected to combine reprints of selected classic contributions by Getiswithchapterswrittenbykeyspatialscientists.Thesescholarswerespeci?cally invited to react to the earlier work by Getis with an eye toward assessing its impact, tracing out the evolution of related research, and to re?ect on the future broadening of spatial analysis. The organizationof the book follows four main themes in Getis' contributions: * Spatial analysis * Pattern analysis * Local statistics * Applications For each of these themes, the chapters provide a historical perspective on early methodological developments and theoretical insights, assessments of these c- tributions in light of the current state of the art, as well as descriptions of new techniques and applications.
Recently, there has been a rapid increase in interest regarding social network analysis in the data mining community. Cognitive radios are expected to play a major role in meeting this exploding traffic demand on social networks due to their ability to sense the environment, analyze outdoor parameters, and then make decisions for dynamic time, frequency, space, resource allocation, and management to improve the utilization of mining the social data. Cognitive Social Mining Applications in Data Analytics and Forensics is an essential reference source that reviews cognitive radio concepts and examines their applications to social mining using a machine learning approach so that an adaptive and intelligent mining is achieved. Featuring research on topics such as data mining, real-time ubiquitous social mining services, and cognitive computing, this book is ideally designed for social network analysts, researchers, academicians, and industry professionals.
This is a book about the scientific process and how you apply it to data in ecology. You will learn how to plan for data collection, how to assemble data, how to analyze data and finally how to present the results. The book uses Microsoft Excel and the powerful Open Source R program to carry out data handling as well as producing graphs. Statistical approaches covered include: data exploration; tests for difference - t-test and U-test; correlation - Spearman's rank test and Pearson product-moment; association including Chi-squared tests and goodness of fit; multivariate testing using analysis of variance (ANOVA) and Kruskal-Wallis test; and multiple regression. Key skills taught in this book include: how to plan ecological projects; how to record and assemble your data; how to use R and Excel for data analysis and graphs; how to carry out a wide range of statistical analyses including analysis of variance and regression; how to create professional looking graphs; and how to present your results. New in this edition: a completely revised chapter on graphics including graph types and their uses, Excel Chart Tools, R graphics commands and producing different chart types in Excel and in R; an expanded range of support material online, including; example data, exercises and additional notes & explanations; a new chapter on basic community statistics, biodiversity and similarity; chapter summaries and end-of-chapter exercises. Praise for the first edition: This book is a superb way in for all those looking at how to design investigations and collect data to support their findings. - Sue Townsend, Biodiversity Learning Manager, Field Studies Council [M]akes it easy for the reader to synthesise R and Excel and there is extra help and sample data available on the free companion webpage if needed. I recommended this text to the university library as well as to colleagues at my student workshops on R. Although I initially bought this book when I wanted to discover R I actually also learned new techniques for data manipulation and management in Excel - Mark Edwards, EcoBlogging A must for anyone getting to grips with data analysis using R and excel. - Amazon 5-star review It has been very easy to follow and will be perfect for anyone. - Amazon 5-star review A solid introduction to working with Excel and R. The writing is clear and informative, the book provides plenty of examples and figures so that each string of code in R or step in Excel is understood by the reader. - Goodreads, 4-star review
Statistical Tools for Nonlinear Regression, Second Edition, presents methods for analyzing data using parametric nonlinear regression models. The new edition has been expanded to include binomial, multinomial and Poisson non-linear models. Using examples from experiments in agronomy and biochemistry, it shows how to apply these methods. It concentrates on presenting the methods in an intuitive way rather than developing the theoretical backgrounds. The examples are analyzed with the free software nls2 updated to deal with the new models included in the second edition. The nls2 package is implemented in S-PLUS and R. Its main advantages are to make the model building, estimation and validation tasks, easy to do. More precisely, Complex models can be easily described using a symbolic syntax. The regression function as well as the variance function can be defined explicitly as functions of independent variables and of unknown parameters or they can be defined as the solution to a system of differential equations. Moreover, constraints on the parameters can easily be added to the model. It is thus possible to test nested hypotheses and to compare several data sets. Several additional tools are included in the package for calculating confidence regions for functions of parameters or calibration intervals, using classical methodology or bootstrap. Some graphical tools are proposed for visualizing the fitted curves, the residuals, the confidence regions, and the numerical estimation procedure.
This book thoroughly covers the remote sensing visualization and analysis techniques based on computational imaging and vision in Earth science. Remote sensing is considered a significant information source for monitoring and mapping natural and man-made land through the development of sensor resolutions that committed different Earth observation platforms. The book includes related topics for the different systems, models, and approaches used in the visualization of remote sensing images. It offers flexible and sophisticated solutions for removing uncertainty from the satellite data. It introduces real time big data analytics to derive intelligence systems in enterprise earth science applications. Furthermore, the book integrates statistical concepts with computer-based geographic information systems (GIS). It focuses on image processing techniques for observing data together with uncertainty information raised by spectral, spatial, and positional accuracy of GPS data. The book addresses several advanced improvement models to guide the engineers in developing different remote sensing visualization and analysis schemes. Highlights on the advanced improvement models of the supervised/unsupervised classification algorithms, support vector machines, artificial neural networks, fuzzy logic, decision-making algorithms, and Time Series Model and Forecasting are addressed. This book guides engineers, designers, and researchers to exploit the intrinsic design remote sensing systems. The book gathers remarkable material from an international experts' panel to guide the readers during the development of earth big data analytics and their challenges.
During the last decades, there has been an explosion in computation and information technology. This development comes with an expansion of complex observational studies and clinical trials in a variety of fields such as medicine, biology, epidemiology, sociology, and economics among many others, which involve collection of large amounts of data on subjects or organisms over time. The goal of such studies can be formulated as estimation of a finite dimensional parameter of the population distribution corresponding to the observed time-dependent process. Such estimation problems arise in survival analysis, causal inference and regression analysis. This book provides a fundamental statistical framework for the analysis of complex longitudinal data. It provides the first comprehensive description of optimal estimation techniques based on time-dependent data structures subject to informative censoring and treatment assignment in so called semiparametric models. Semiparametric models are particularly attractive since they allow the presence of large unmodeled nuisance parameters. These techniques include estimation of regression parameters in the familiar (multivariate) generalized linear regression and multiplicative intensity models. They go beyond standard statistical approaches by incorporating all the observed data to allow for informative censoring, to obtain maximal efficiency, and by developing estimators of causal effects. It can be used to teach masters and Ph.D. students in biostatistics and statistics and is suitable for researchers in statistics with a strong interest in the analysis of complex longitudinal data. |
You may like...
Aiding Forensic Investigation Through…
Alex Noel Joseph Raj, Vijayalakshmi G. V. Mahesh, …
Hardcover
R6,200
Discovery Miles 62 000
Rapid Automation - Concepts…
Information Reso Management Association
Hardcover
R9,395
Discovery Miles 93 950
|