![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Geology & the lithosphere > Economic geology
This book provides practical morphological information, together with detailed illustrations and concise texts explaining each entry. The book details the morphological characters of each organism, providing fundamental information for palaeontologists and palaeobiologists alike. Each chapter starts with a brief introduction and goes on to describe the organism's morphology in detail, followed by a brief note on classification and lastly illustrated examples of stratigraphically important organisms through time along with their major distinguishing characters. The book includes over 3000 clearly labelled, hand-drawn and classroom-friendly illustrations of over 1200 species.
This comprehensive reference is the first to cover industrially important borates, from deposits, through chemistry, mining, processing, and applications. The reference work begins with a listing of the 238 currently known borate minerals, their formulas, and properties. It features modern theories on the origin of borate deposits, their molecular structure and detailed descriptions of the world's borate deposits. Garrett describes the fascinating history of the discovery and development of borate deposits with anecdotes of how resourceful operators overcame obstacles in obtaining their minerals. Chapters on mining technology and processing detail the mineral's development from the earliest recorded times up to the sophisticated operations of the present day. The book also contains a comprehensive literature on boron isotope chemistry, their diverse applications, and productions and resource statistics for the world's largest industrial producers. * Functions as a complete reference for geologists, engineers,
and consumers of borate products
This textbook is one of the first to explain the fundamentals and applications of remote sensing at both undergraduate and graduate levels. Topics include definitions and a brief history of payloads and platforms, data acquisition and specifications, image processing techniques, data integration and spatial modeling, and a range of applications covering terrestrial, atmospheric, oceanographic and planetary disciplines. The policy and law issues of remote sensing and the future trends on the horizon are also covered. Remote sensing is an exciting, dynamic technology that is transforming the Earth sciences - terrestrial, atmospheric, and marine - as well as the practices of agriculture, disaster response, engineering, natural resources, providing evidence in legal cases and documented humanitarian crises, and many other fields. Increasingly, understanding of these techniques will be central to a number of disciplines, particularly as the technology advances.
By the second half of the twentieth century, a new branch of materials science had come into being - crystalline materials research. Its appearance is linked to the emergence of advanced technologies primarily based on single crystals (bulk crystals and films). At the turn of the last century, the impending onset of the "ceramic era" was forecasted. It was believed that ceramics would play a role comparable to that of the Stone or Bronze Ages in the history of civilization. Naturally, such an assumption was hypothetical, but it showed that ceramic materials had evoked keen interest among researchers. Although sapphire traditionally has been considered a gem, it has developed into a material typical of the "ceramic era." Widening the field of sapphire application necessitated essential improvement of its homogeneity and working characteristics and extension of the range of sapphire products, especially those with stipulated properties including a preset structural defect distribution. In the early 1980s, successful attainment of crystals with predetermined char- teristics was attributed to proper choice of the growth method. At present, in view of the fact that the requirements for crystalline products have become more str- gent, such an approach tends to be insufficient. It is clear that one must take into account the physical-chemical processes that take place during the formation of the real crystal structure, i.e., the growth mechanisms and the nature and causes of crystal imperfections.
All the solid fuels fossil energy and mineral commodities we use come out of the Earth. Modern society is increasingly dependent on mineral and fossil energy sources. They differ in availability, cost of production, and geographical distribution. Even if solid fuels, fossil energy resources and mineral commodities are non-renewable, the extracted metals can to a large extent be recycled and used again and again. Although the stock of these secondary resources and their use increases, the world still needs and will continue to need primary mineral resources for the foreseeable future. Growing demands have begun to restrict availability of these resources. The Earth is not running out of critical mineral resources - at least for the near future - but the ability to explore and extract these resources is being restricted in many regions by competing land use, as well as political and environmental issues. Extraction of natural resources requires a clear focus on sustainable development, involving economic, environmental and socio-cultural aspects. Although we do not know what the most important resources will be in 100 years from now, we can be quite certain that society will still need energy and a wide range of raw materials. These resources will include oil and gas, coal, uranium, thorium, geothermal, metallic minerals, industrial and specialty minerals, including cement, raw materials, rare-earth elements. A global approach for assessing the magnitude and future availability of these resources is called for - an approach that, with appropriate international collaboration, was started within the triennium of the International Year of Planet Earth. Some global mineral resource assessments, involving inter-governmental collaboration, have already been initiated. The International Year of Planet Earth helped to focus attention on how the geosciences can generate prosperity locally and globally, as well as sustainability issues in both developed and developing countries.
The book contains high-quality research papers presented at Sixth International Conference on Solid Waste Management held at Jadavpur University, Kolkata India during November 23-26, 2016. The Conference, IconSWM 2016, is organized by Centre for Quality Management System, Jadavpur University in association with premier institutes and societies of India. The researchers from more than 30 countries presented their work in Solid Waste Management. The book is divided into two volumes and deliberates on various issues related to innovation and implementation in sustainable waste management, segregation, collection, transportation of waste, treatment technology, policy and strategies, energy recovery, life cycle analysis, climate change, research and business opportunities.
This book examines in detail the entire process involved in implementing geotechnical projects, from a well-defined initial stress and deformation state, to the completion of the installation process. The individual chapters provide the fundamental knowledge needed to effectively improve soil-structure interaction models. Further, they present the results of theoretical fundamental research on suitable constitutive models, contact formulations, and efficient numerical implementations and algorithms. Applications of fundamental research on boundary value problems are also considered in order to improve the implementation of the theoretical models developed. Subsequent chapters highlight parametric studies of the respective geotechnical installation process, as well as elementary and large-scale model tests under well-defined conditions, in order to identify the most essential parameters for optimizing the process. The book provides suitable methods for simulating boundary value problems in connection with geotechnical installation processes, offering reliable predictions for the deformation behavior of structures in static contexts or dynamic interaction with the soil.
This book describes the application of modern information technology to reservoir modeling and well management in shale. While covering Shale Analytics, it focuses on reservoir modeling and production management of shale plays, since conventional reservoir and production modeling techniques do not perform well in this environment. Topics covered include tools for analysis, predictive modeling and optimization of production from shale in the presence of massive multi-cluster, multi-stage hydraulic fractures. Given the fact that the physics of storage and fluid flow in shale are not well-understood and well-defined, Shale Analytics avoids making simplifying assumptions and concentrates on facts (Hard Data - Field Measurements) to reach conclusions. Also discussed are important insights into understanding completion practices and re-frac candidate selection and design. The flexibility and power of the technique is demonstrated in numerous real-world situations.
Global Change studies are increasingly being considered a vital source of information to understand the Earth Environment, in particular in the framework of human-induced climate change and land use transformation. Satellite Earth Observing systems provide a unique tool to monitor those changes. While the range of applications and innovative techniques is constantly increasing, this book provides a summary of key case studies where satellite data offer critical information to understand the causes and effects of those environmental changes, minimizing their negative impacts. This book will be of interest to researchers and practitioners in the field of remote sensing, geographical information, meteorology and environmental sciences. Also scientists and graduate up to post-graduate level students in environmental science will find valuable information in this book.
Underground thermal energy storage (UTES) provide us with a flexible tool to combat global warming through conserving energy while utilizing natural renewable energy resources. Primarily, they act as a buffer to balance fluctuations in supply and demand of low temperature thermal energy. "Underground Thermal Energy Storage "provides an comprehensive introduction to the extensively-used energy storage method. "Underground Thermal Energy Storage" gives a general overview of UTES from basic concepts and classifications to operation regimes. As well as discussing general procedures for design and construction, thermo-hydro geological modeling of UTES systems is explained. Finally, current real life data and statistics are include to summarize major global developments in UTES over the past decades. The concise style and thorough coverage makes "Underground Thermal Energy Storage" a solid introduction for students, engineers and geologists alike. "
This book presents the proceedings of the 4th International Conference on Integrated Petroleum Engineering and Geosciences 2016 (ICIPEG 2016), held under the banner of World Engineering, Science & Technology Congress (ESTCON 2016) at Kuala Lumpur Convention Centre from August 15 to 17, 2016. It presents peer-reviewed research articles on exploration, while also exploring a new area: shale research. In this time of low oil prices, it highlights findings to maintain the exchange of knowledge between researchers, serving as a vital bridge-builder between engineers, geoscientists, academics, and industry.
This book presents a systematic attempt to generalize several fundamental physical laws related to subsurface fluid flow that are important for a number of contemporary applications in the areas of hydrogeology, reservoir engineering and rock mechanics. It also covers the history of discovering these physical laws, their respective scope of validity, and their generalizations or extensions. The physical laws discussed include Darcy's law, Darcy-Buckingham law and Hooke's law. Darcy's law is the fundamental law for subsurface fluid flow. For low-permeability media, it is not always adequate because of the strong fluid-solid interaction. Though the Darcy-Buckingham law is often used for modeling subsurface multiphase flow, it is only valid under the local equilibrium condition. This condition does not hold in many cases, especially when fingering flow occurs. It is well known that subsurface fluid flow is coupled with mechanical deformation of subsurface media; in some applications, this coupling can play a dominant role. The continuum-scale elastic deformation of natural rock, however, does not always follow the traditional form of Hooke's law. The book also presents applications of the proposed generalizations of the physical laws to several important engineering projects.
This book is the collection of papers from the latest International Uranium Mining and Hydrogeology Conference (UMH VII) held in September 2014, in Freiberg, Germany. It is divided to five sessions: Uranium Mining, Uranium and Phosphates, Clean-up technologies for water and soil. Uranium and daughter nuclides and basic research and modeling. Each session covers a wide range of related topic and provides readers with up to date research and solutions on those matters.
This well-illustrated book aims to enhance observations and understanding of structural features and proximity-indicator minerals, critical in exploration. The book provides a unique blending of different content on observational and critical aspects of data acquisition, geological, structural, tectonic set-up, mineral deposit types, geophysical framework, and proximity indicator minerals. Combining these topics led to a comprehensive understanding to facilitate mineral targeting and exploration in green- and brown-field terrains. Besides field photographs, the write-up is lavishly supplemented with relevant geological and geophysical maps, tables, and case stories in field geology, making it useful for a much larger section of the geoscientific community professional geologists and geophysicists, students, teachers, and also decision-makers in geo-surveys and exploration.
An accessible account of the ways in which the world's plant life affects the climate. It covers everything from tiny local microclimates created by plants to their effect on a global scale. If you ve ever wondered how vegetation can create clouds, haze and rain, or how plants have an impact on the composition of greenhouse gases, then this book is required reading."
The first volume in this new text book series covers comprehensively relevant aspects related to the appearance and characterisation of fossil matter in the geosphere such as kerogen, oil, shales and coals. As organic geochemistry is a modern scientific subject characterized by a high transdisciplinarity and located at the edge of chemistry, environmental sciences, geology and biology, there clearly is a need for a flexible offer of appropriate academic teaching material on an undergraduat level addressed to the variety of students coming originally from different study disciplines. For such a flexible usage this textbook series' consists of different volumes with clear defined aspects and with manageable length.
This book highlights the indispensability of minerals, the vulnerability of humans and issues faced by governments around the world regarding the management of natural resources. It addresses the growing land-ecology-mining conflicts, energy security and water policies of different countries bringing these issues into focus and critically analyzing them. The book discusses the role of governments regarding the security-centric issues pertaining to sustainability of mineral supply and the welfare-centric aspects of sustainable development of mineral resources. The latter includes the current trends for corporate social responsibility, political viability of mining projects, industrial ethics, human health and human resource development. The Annexure I is unique: It is a list of 925 familiar consumer products and processes with the names of the minerals, metals and rocks as well as the intermediate chemicals and alloys that go into the making of that product or process alongside each. Annexure II is an up-to-date, exhaustive list of about 835 minerals, metals, rocks and intermediate chemicals and alloys and against each of them is a list of the names of the end products and processes for which they are used. These two annexures will serve as a day-to-day reference source for teachers, students and professionals concerned with minerals as well as other interested readers. The book will be useful to any university/institution with undergraduate and post-graduate teaching/research facilities and libraries in the field of geology, mining, mineral economics, planning and natural-resource management. About the Author Kaulir Kisor Chatterjee studied Applied Geology at the Indian School of Mines, Dhanbad for his post-graduate and PhD degrees. He served in the Indian Bureau of Mines for over three decades and retired in early 2004, as Chief Mineral Economist. Post-retirement, he has occupied himself mostly with writing, teaching and lecturing in various institutions of repute in India on the subject of mineral economics. Besides 50 technical papers, he has authored eight books. He has worked in various Government committees and expert groups and was involved in organization of national mineral inventory; UN Framework Classification system of mineral resources; rationalisation of the mineral taxation, royalty and mineral legislation framework in India. He has been examiner and member of selection boards of UPSC, India and is also a recognised guide of the Nagpur University for doctoral research. His resume has been included in the Marquis Who Is Who of the World and in the 2000 Outstanding Intellectuals of the 21st Century, Cambridge.
This book discusses the progress that is being made through innovations in instrumental measurements of geologic and geochemical systems and their study using modern mathematical modeling. It covers the systems approach to understanding sedimentary rocks and their role in evolution and containment of subsurface fluids.
This book focuses on the phenomenon of sediment erosion and resuspension in the Yellow River delta, China, which is a vital issue involved in understanding the sediment transport processes in estuarine and coastal environments, and how these contribute to the nature and distribution of geohazards in the subaqueous Yellow River delta and Bohai Sea. The most important sections of this book will be the detailed physical mechanisms and theoretical models of sediment erosion and resuspension problem fully considering the wave-induced seabed dynamic response to waves, which are particularly useful for postgraduate students and junior researchers entering the discipline of estuary and coastal sedimentation, marine geotechnical engineering, estuary and coastal engineering, harbor and waterway engineering and coastal environmental protection. This book can also serve as a textbook for advanced graduate students of Marine Engineering Geology and Estuarine Sediment Dynamics.
This book is both a review and a look to the future, highlighting challenges for better predicting quantitatively the impact of diagenesis on reservoir rocks. Classical diagenesis studies make use of a wide range of descriptive analytical techniques to explain specific, relatively time-framed fluid-rock interaction processes, and deduce their impacts on reservoir rocks. Future operational workflows will consist of constructing a conceptual diagenesis model, quantifying the related diagenetic phases, and modelling the diagenetic processes. Innovative approaches are emerging for applied quantitative diagenesis, providing numerical data that can be used by reservoir engineers as entry (input) data, and for validating results of numerical simulations. Geometry-based, geostatistical and geochemical modelling do not necessarily mimic natural processes, they rather provide reasonable solutions to specific problems.
Urbanization drastically alters the ecosystems structure and functions, disrupts cycling of C and other elements along with water. It alters the energy balance and influences climate at local, regional and global scales. In 2008, urban population exceeded the rural population. In 2050, 70% of the world population will live in urban centers. The number of megacities (10 million inhabitants) increased from three in 1975 to 19 in 2007, and is projected to be 27 in 2025. Rapid urbanization is altering the ecosystem C budget. Yet, urban ecosystems have a large C sink capacity in soils and biota. Judicious planning and effective management can enhance C pool in urban ecosystems, and off-set some of the anthropogenic emissions. Principal components with regards to C sequestration include home lawns and turfs, urban forests, green roofs, park and recreational/sports facilities and urban agriculture.
This practical step-by-step guide describes the key geological field techniques needed by today's exploration geologists involved in the search for metallic mineral deposits. The techniques described are fundamental to the collection, storage and presentation of geological data and their use to locate ore. This book explains the various tasks which an exploration geologist is asked to perform in the sequence in which they might be employed in an actual exploration project. Hints and tips are given and the steps are illustrated with numerous examples drawn from real programmes on which the author has worked. Traditional skills are emphasised to show how they can be combined effectively with modern high-technology approaches. For instance this second edition also reviews new techniques geophysics along with GPS applications in exploration and the application of state-of-the-art software to mapping, 3D modelling and resource estimation. Another important facet is the discussion of harm minimisation, especially during the exploration stage, beginning with landowner and community consultation, through exploration planning, leading to sustainable and environmentally responsible mining practices.
This volume presents papers on the use of micro-XRF core scanners in palaeoenvironmental research. It contains a broad ranging view of instrument capability and points to future developments that will help contribute to higher precision elemental data and faster core analysis. Readers will find a diverse range of research by leading experts that have used micro-XRF core scanners in a wide range of scientific applications. The book includes specific application papers reporting on the use of XRF core scanners in a variety of marine, lacustrine, and pollution studies. In addition, coverage also examines practical aspects of core scanner usage, data optimisation and data calibration and interpretation. In a little over a decade, micro-XRF sediment core scanners have made a substantive contribution to palaeoenvironmental research. Their impact is based on their ability to rapidly, non-destructively and automatically scan sediment cores. Not only do they rapidly provide important proxy data without damaging samples, but they can obtain environmental data at decadal, annual and even sub-annual scales. This volume will help both experienced and new users of these non-destructive core scanners take full advantage of one of the most powerful geochemical screening tools in the environmental scientist's toolbox.
The fundamentals of methods in nuclear geophysics and their practical applications in engineering geology, hydrology, hydrogeology, agriculture and environmental science are discussed in this book. The methods and apparatus based on absorption and scattering of gamma and neutron radiation for determination of density and soil moisture in natural conditions are presented in Chapters 2, 3, and 4. The theoretical fundamentals and installations of the penetration logging techniques where gamma, gamma-gamma and neutron logging in combination with static penetration form common complexes for engineering geology and hydrogeology exploration without boring holes are described. The developed constructions and practical use penetration logging installations for applications on land and marine shelves are described in Chapters 5, 6, 7, and 8. The physical fundamentals for the use of the natural stable and radioactive isotopes for study of the global hydrological cycle are provided. The experimental data, origin and distribution of cosmogenic and radiogenic isotopes in the oceans, atmospheric moisture, surface and underground waters are presented in Chapters 9, 10, and 11. The sources and conditions of the radioactive contamination of the natural waters are discussed in Chapters 12 and 13. This book will be of interest to scientists and researchers who use nuclear geophysics methods in engineering geology, hydrology, hydrogeology and hydrogeoecology. Lecturers, students, and postgraduates in these subjects will also find it useful.
This practical training guidebook makes an important contribution to karst hydrogeology. It presents supporting material for academic courses worldwide that include this and similar topics. It is an excellent sourcebook for students and other attendees of the International Karst School: Characterization and Engineering of Karst Aquifers, which opened in Trebinje, Bosnia & Herzegovina in 2014 and which will be organized every year in early summer. As opposed to more theoretical works, this is a catalog of possible engineering interventions in karst and their implications. Although the majority of readers will be professionals with geology/hydrogeology backgrounds, the language is not purely technical making it accessible to a wider audience. This means that the methodology, case studies and experiences presented will also benefit water managers working in karst environments. |
![]() ![]() You may like...
Elements of Petroleum Geology
Richard C. Selley, Stephen A Sonnenberg
Hardcover
Geomorphological Mapping, Volume 15…
Mike Smith, James Griffiths
Hardcover
R3,915
Discovery Miles 39 150
Uranium Geology of the Middle East and…
Fares Howari, Abdelaty Salman, …
Paperback
R3,401
Discovery Miles 34 010
Discovery of Oyu Tolgoi - A Case Study…
Sergei Diakov, Samand Sanjdorj, …
Paperback
R3,608
Discovery Miles 36 080
Holistic Simulation of Geotechnical…
Theodoros Triantafyllidis
Hardcover
Geological Disaster Monitoring Based on…
Tariq S. Durrani, Wei Wang, …
Hardcover
R2,936
Discovery Miles 29 360
Proceedings of International Conference…
Peddada Jagadeeswara Rao, Kakani Nageswara Rao, …
Hardcover
R5,913
Discovery Miles 59 130
|