![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Geology & the lithosphere > Economic geology
Tarquin Teale, a sedimentology/stratigraphy postgraduate student at the Royal School of Mines, was killed in a road accident south of Rome on 17 October 1985. Premature death is a form of tragedy which can make havoc of the ordered progress which we try to impose on our lives. As parents, relatives and friends, we all know this, and yet somehow when it touches our own world there is no consolation to be found anywhere. In Tarquin's case the enormity of the loss felt by those of us who knew him can barely be expressed in words. Tarquin had everything which we aspire to. His fellow graduate students envied his dramatic progress in research. We his advisors, in appreciating this progress, marvelled at how refreshingly rare it was to see such precocious talent combined with such a caring, modest and well-balanced personality. He was des tined for the highest honours in geoscience and there is no doubt that he would have lived a life, had he been granted the chance, which would have spread colour, intellectual insight and goodness."
This collection of papers originates from a meeting are in current use on board UK research vessels. organized in May 1988 at the Geological Society, Marine geological exploration requires information under three further headings: (i) the "shape" of the London, under the auspices of its Marine Studies Group. The meeting was concerned with reviewing sea floor, (ii) the nature of the rocks and sediments the present state-of-the-art of marine geological and which lie at its surface, and (iii) the nature of deeper geophysical sampling and surveying techniques. structures. Studies of the shape of the sea floor The pace of scientific exploration of the ocean (bathymetry) are based primarily on echo sounder basins has increased dramatically over the past few and side-scan sonar surveying. Technology in this decades in response to interest in the global tectonic field has seen major advances over the past two processes which control their long-term evolution decades, with the development of new ceramic ma and the regional and local sedimentary and tectonic terials to provide more efficient and powerful trans ducers, the increasing use of digital data processing processes which shape them, as well as more practi cal questions such as the nature and extent of off techniques to improve the quality of the signal from shore mineral resources, problems of waste disposal the sea floor, and the introduction of new design at sea and the response of sea level to global climatic concepts to provide higher resolution records."
Plan of Review This review of clay microstructure is aimed at the diverse group of professionals who share an interest in the properties of fine-grained minerals in sediments. During the last several decades, members of this group have included geologists, soil scientists, soil engineers, engineering geologists, and ceramics scientists. More recently, it has included significant numbers of marine geologists and other engineers. Each of the disciplines has developed special techniques for investigating properties of clay sediments that have proven to be fruitful in answering questions of central interest. Knowledge of clay microstructure-the fabric of a sediment and the physico chemical interactions between its components-is fundamental to all these disciplines (Mitchell 1956; Lambe 1958a; Foster and De 1971). Clay fabric refers to the spatial distribution, orientations, and particle-to-particle relations of the solid particles (generally those less than 3. 9 /Lm in size) of sediment. Physico-chemical interac tions are expressions of the forces between the particles. In this review, we trace the historical development of under standing clay microstructure by discussing key scientific papers published before 1986 on physico-chemical interactions in fine grained sediments and on clay fabric. Since the development follows an intricate path, the current view of clay microstructure is summarized. This summary includes a discussion of the present state of knowledge, the observations made so far, and the facts that are now established."
turning points that, in the course of a few years, have made this The uranium minerals that today are at the centre of worldwide metal an essential raw material. attention were unknown until 1780, when Wagsfort found a First, the destructive property of fission reactions made uranium a metal of fundamental strategic importance, increas pitchblende sample in 10hanngeorgenstadt. This discovery passed unnoticed, however, since Wags fort thought that it ing research in some nations, but the revolution came with the plan for the real possibility of utilizing chain reactions for contained a black species of a zinc mineral-hence the n' lme 'pitchblende' (= pitch-like blende). Seven years later, Klaproth, energy production in place of conventional fuels. while examining the mineral, noted that it contained an oxide Since that time a 'uranium race' has been in progress in many countries-often justified by the well-founded hope of of an unknown metal, which he called 'uranium' in honour of the planet Uranus, recently discovered by Herschel. Klaproth becoming self-sufficient with regard to energy, or at least of also believed that he had separated the metal, but, in fact, the paying off a part of the financial deficit due to increasing fuel imports."
This volume is a compendium of papers on the subject, as noted in the book title, of modeling and mapping. They were presented at the 25th Anniversary meeting of the International Association for Mathematical Geology (IAMG) at Praha (Prague), Czech Republic in October of 1993. The Association, founded at the International Geological Congress (IGC) in Prague in 1968, returned to its origins for its Silver Anniversary celebration. All in all 146 papers by 276 authors were offered for the 165 attendees at the 3-day meeting convened in the Hotel Krystal. It was a time for remembrance and for future prognostication. The selected papers in Geologic Modeling and Mapping comprise a broad range of powerful techniques used nowadays in the earth sciences. Modeling stands for reconstruction of geological features, such as subsurface structure, in space and time, as well as for simulation of geological processes both providing scenarios of geologic events and how these events might have occurred. Mapping stands for spatial analysis of data, a topic that always has been an extremely important part of the earth sciences. Because both modeling and mapping are used widely in conjunction, the book title should reflect the close relation of the subjects rather than a division. Here, we bring together a collection of papers that hopefully contribute to the growing amount of knowledge on these techniques.
This book is the published record of the papers presented at a conference of the Norwegian Petroleum Society (NPF) held in Bergen, Norway, on 3-5 October, 1988. The conference was initially proposed and promoted by the Geology and Geophysics Advisory Committee of the Norwegian Petroleum Society consisting of: A. M. Spencer (Chairman), M. Brink,J. D. Collinson, S. Hanslien, D. M. D.James, T. B. Lund, K. Messel, E. Ormaasen and G. Saeland. The programme and more detailed planning of the conference was carried out by a programme committee consisting of: J. D. Collinson (Chairman), O. Eldholm, E. Holter, D. M. D.James, H. Tykoezinski, D. Worsley and S. M. Aasheim. There were 245 participants at the meeting and 36 papers were presented as talks with a further 9 presented as posters. These proceedings are representative of the range of topics covered. The meeting was characterized by a high level of discussion which has influenced several authors in the final preparation of their written papers. These proceedings have been edi ted on behalf of the Norwegian Petroleum Society by J. D. Collinson with help from H. Tykoezinski. The editor and the organizing committee wish to thank all the referees who reviewed papers and all the authors who responded so fully and promptly to their comments. The NPF is most grateful to the University of Bergen for making available their facilities for the conference.
Gorda Ridge presents a primarily technical summary of recent advances in seafloor research related to mineral exploration of the only seafloor spreading center within the United States' Exclusive Economic Zone (EEZ). Spreading centers are known to be the locus of hydrothermal activity and to host mineral deposits of hydrothermal origin. The book includes sections on the results of mineral exploration on Gorda Ridge, the newest technologies for mineral exploration and sampling on the seafloor, and the evolving field of hydrothermal vent biology and ecology. What makes the book unique is that it is: 1) a site book, 2) a truly multidisciplinary summation of the state of the art in complementary areas of deep ocean geology and biology, and 3) a marker in the evolution of federal-state relations concerning ocean development.
Identificationof rock-forming minerals in thin section is a key skill needed by all earth science students and practising geologists. This translation of the completely revised and updated German second edition (by Leonore Hoke, Institute of Geological and Nuclear Sciences, New Zealand) provides a comprehensive guide to identifying 140 of the most important rock-forming mineral species. The book is divided into three main parts. Part A is a practical guide to the fundamentals of crystal optics, polarization microscopy and the practical use of microscopes. Part B gives a detailed description of the characteristic optical features, special features, and the paragenesis of the most common rock-forming minerals. This well-illustrated part is divided into opaque minerals, isotropic, uniaxial and optical biaxial mineral groups. Part C contains identification tables for the minerals and diagrams showing the international classification of magmatic rocks, as well as a colour plate section showing crystal forms of minerals. The book will provide an invaluable guide to all undergraduate earth scientists, as well as to professional geologists requiring an overview of mineral identification in thin section.
The first North Sea Oil and Gas Reservoirs Conference was held in Trondheim in 1985 as part of the Norwegian Institute of Technology's 75th anniversary celebrations. Favourable reactions from the delegates prompted the Committee to re-run the event some three and a half years later, and it is now intended that the Confe rence be held on a regular basis as long as there is a demand for this type of gathering. The objectives of the 1989 Conference, which were broadly similar to those of the previous one, were: (a) to bring together those engaged in various geoscientific and reservoir engineering aspects of North Sea Oil and gas reservoirs in one forum; (b) to demonstrate wherever poSsible the interdependence of the various disciplines and specializations; (c) to promote innovative, synergistic approaches to research and development programmes aimed at North Sea conditions; and (d) to reflect current trends in the reservoir sciences. Naturally there was no place for specialist parallel sessions in a Conference aimed at encouraging interdisciplinary integration and awareness."
TECTONlCS AND PHYSICS Geology, although rooted in the laws of physics, rarely has been taught in a manner designed to stress the relations between the laws and theorems of physics and the postulates of geology. The same is true of geophysics, whose specialties (seismology, gravimetIy, magnetics, magnetotellurics) deal only with the laws that govern them, and not with those that govern geology's postulates. The branch of geology and geophysics called tectonophysics is not a formalized discipline or subdiscipline, and, therefore, has no formal laws or theorems of its own. Although many recent books claim to be textbooks in tectonophysics, they are not; they are books designed to explain one hypothesis, just as the present book is designed to explain one hypothesis. The textbook that comes closest to being a textbook of tectonophysics is Peter 1. Wyllie's (1971) book, The Dynamic Earth. Teachers, students, and practitioners of geology since the very beginning of earth science teaching have avoided the development of a rigorous (but not rigid) scientific approach to tectonics, largely because we earth scientists have not fully understood the origin of the features with which we are dealing. This fact is not at all surprising when one considers that the database for hypotheses and theories of tectonics, particularly before 1960, has been limited to a small part of the exposed land area on the Earth's surface.
The demand for coal use (for electricity generation) and coal products, particularly liquid fuels and chemical feedstocks, is increasing throughout the world. Traditional markets such as North America and Europe are experiencing a steady increase in demand whereas emerging Asian markets, such as India and China, are witnessing a rapid surge in demand for clean liquid fuels. A detailed and comprehensive overview of the chemistry and technology of coal in the twenty-first century, The Chemistry and Technology of Coal, Third Edition also covers the relationship of coal industry processes with environmental regulations as well as the effects of combustion products on the atmosphere. Maintaining and enhancing the clarity of presentation that made the previous editions so popular, this book: Examines the effects of combustion products on the atmosphere Details practical elements of coal evaluation procedures Clarifies misconceptions concerning the organic structure of coal Discusses the physical, thermal, electrical, and mechanical properties of coal Analyzes the development and current status of combustion and gasification techniques In addition to two new chapters, Coal Use and the Environment and Coal and Energy Security, much of the material in this edition been rewritten to incorporate the latest developments in the coal industry. Citations from review articles, patents, other books, and technical articles with substantial introductory material are incorporated into the text for further reference. The Chemistry and Technology of Coal, Third Edition maintains its initial premise: to introduce the science of coal, beginning with its formation in the ground to the production of a wide variety of products and petrochemical intermediates in the twenty-first century. The book will prove useful for scientists and engineers already engaged in the coal and/or catalyst manufacturing industry looking for a general overview or update on the clean coal technology as well as professional researchers and students in chemistry and engineering.
The present book is the author's third on the subject of vertical seismic profiling (VSP). Ten years have elapsed since the pUblication of the fIrst book. During this period, VSP has become the principal method of seismic observations in boreholes and the chief method of experimental studies of seismic waves in the real earth. VSP combines borehole studies in the seismic frequency band, well velocity surveys, proximity or aplanatic surveys, all of which previously existed as separate methods. The high effectiveness ofVSP, its great practical value, the express nature and clarity of the results obtained have all contributed towards a very rapid acceptance of the method. In the USSR VSP has been used in an overwhelming majority of areas and is being used increasingly in many foreign countries as well. This has been greatly facilitated by the translation into English and the publication in the U. S. A. by the Society of Exploration Geophysicists of the book Vertical Seismic Profiling (Tulsa, Oklahoma, 1974). As the method has become more familiar, it has attracted growing interest outside the USSR This has been substantiated by the special seminar on VSP (Oklahoma, 1979) which was organized for 22 U. S. companies and universities and presented by the author.
This book explains in detail how to use oil and gas show information to find hydrocarbons. It covers the basics of exploration methodologies, drilling and mud systems, cuttings and mud gas show evaluation, fundamental log analysis, the pitfalls of log-calculated water saturations, and a complete overview of the use of pressures to understand traps and migration, hydrodynamics, and seal and reservoir quantification using capillary pressure. Also included are techniques for quickly generating pseudo-capillary pressure curves from simple porosity/permeability data, with examples of how to build spreadsheets in Excel, and a complete treatment of fluid inclusion analysis and fluid inclusion stratigraphy to map migration pathways. In addition, petroleum systems modeling and fundamental source rock geochemistry are discussed in depth, particularly in the context of unconventional source rock evaluation and screening tools for entering new plays. The book is heavily illustrated with numerous examples and case histories from the author's 37 years of exploration experience. The topics covered in this book will give any young geoscientist a quick start on a successful career and serve as a refresher for the more experienced explorer.
TO APPLIED GEOPHYSICS STANIS LAY MARE~, et al. Faculty of Science, Charles University, Prague SPRINGER-SCIENCE+BUSINESS MEDIA, B. V. Library of Congress Cataloging in Publication Data Mares, Stanislav Introduction to applied geophysics Translation of Uvod do uzite geofyziky Bibliography: p. Includes index. 1. Geophysics. 2. Prospecting-Geophysical methods. I. Title QC802. A1M3713 1984 551 84-4753 ISBN 978-90-481-8374-6 ISBN 978-94-015-7684-0 (eBook) DOI 10. 1007/978-94-015-7684-0 AII Rights Reserved (c) 1984 by Stanislav Mard et al. Originally published by Kluwer Academic Publishers in 1984 Softcover reprint ofthe hardcover lst edition 1984 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner CONTENTS XI INTRODUCTION LIST OF PRINCIPAL SYMBOLS AND UNITS USED XIII CHAPTER I. GRAVIMETRIC METHODS (S. Hrach) I. I. Physical principles of gravimetric methods- Volume gravitational potential I 1. 2. Gravity field of the Earth 3 1. 3. Anomalies of gravitational acceleration-Gravity anomalies 9 1. 3. 1. Faye anomaly-Free-air anomaly 9 1. 3. 2. Bouguer anomalies 10 1. 3. 3. Isostatic anomaly 14 1. 3. 4. Geological significance of anomalies 17 1. 4. Rock densities 19 1. 4. 1. Natural rock densities 20 1. 4. 2. Rock density determination 22 1. 4. 3. Determination of density characteristics 25 25 1. 5. Gravity observations 26 1. 5. 1. Instruments for absolute gravity observations 1. 5. 2.
This is the first book entirely devoted to travertine, a
material in use for over 4000 years. The single-author work is a
valuable reference source for travertine, covering all aspects of
travertine origins, formation, composition, flora and fauna,
occurrence and utilisation, as well as covering allied continental
carbonates such as lake marls, calcretes and beachrocks.
This book is about marine seismic sources, their history, their physical principles and their deconvolution. It is particularly accented towards the physical aspects rather than the mathematical principles of signature generation in water as it is these aspects which the authors have found to be somewhat neglected. A huge amount of research has been carried out by both commercial and academic institutions over the years and the resulting literature is a little daunting, to say the least. In spite of this, the subject is intrinsically very simple and relies on a very few fundamental physical principles, a somewhat larger number of heuristic principles and a refreshingly small amount of blunderbuss mathematics. As such it is still one of those subjects in which the gifted practical engineer reigns supreme and from which many of the important advances have originated. In Chapter 1 of the book, the underlying physics and concepts are discussed, including pressure and wave propagation, bubble motion, virtual images and the factors determining choice of source. In marine reflection seismology, almost all of the seismic data acquired currently is done with either the airgun or the watergun, which rely on the expulsion of air and water respectively to generate acoustic energy. As a consequence, the discussion in this chapter is geared towards these two sources, as is much of the rest of the book.
By their adoption of Agenda 21, most of the world's governments have acknowledged the need for sustainable development. This implies that new policies are needed, focusing on economic, social, cultural and ecological goals. At the same time, we also need to solve existing environmental and social problems, and prevent the occurrence of new ones. This volume presents, tests and illustrates a theoretically well-founded procedure for discovering regional opportunities for sustainable development, based on a systems approach to decision making. The procedure takes as its starting point the needs of the people involved, relating these to the measurement of available resources in order to find opportunities for multiple resource use and sustainable development. The needs of future generations and broader communities are taken into account throughout. The book studies regional planning and the implementation of plans, offering guidance and support to parties involved in debates on sustainable development, and improving the quality of their decision making.
Books published during recent years in the field of applied geo physics can be, in general, divided into two main types. The first type covers such multiaspect books as "Introduction to Geophysics," while the second-special works on fundamental theoretical prob lems with an elaborate mathematical description. The books of the first type are mainly intended for beginner students and specialists in adjacent fields. The books of the second type may be useful for teachers and theorists. However, there are also books of another (third) type. These books describe the experience in geophysical in vestigation under specific conditions or propose solutions to concrete geological problems, being a methodological guide for geophysicists and concentrating ideas both for advanced students and researchers. Authors hope to give the readers a book of this kind. Interpretation of geophysical fields is a complex consistent pro cess. Its successful realization requires: (a) knowledge of geological regularities and geological situation; (b) availability of petrophysical support; (c) mathematical methods of solving direct and inverse problems of geophysics (i.e. computation of geophysical fields from a known source and determination of source characteristics from known fields); (d) application of statistical and logico-informational procedures to the analysis and synthesis of observation results for revealing desired objects and peculiarities of the geological structure."
What is the role of government in environmental politics and policy? The answer to this question used to be relatively clear. Government was to regulate the environmental performance of state and non-state actors, to set standards, impose charges, and establish more or less stringent criteria of acceptable behavior. With the increasing appearance of the issues of globalization and global governance in the political science literature, however, the focus has turned to the role of non-state actors. Academic research and the popular debate have identified business, non-governmental organizations (NGOs), and civil society as such as increasingly important and potentially powerful actors in the political arena. At the same time, some observers have proclaimed the influence of government to be declining. Others have argued that the role of government primarily is changing rather than declining. Those who adopt the latter perspective postulate that the new role for government in this changing political and socio-economic context is to set the framework for action. In this perspective, government is still of fundamental importance for the functioning of the society, the economy, and political decision-making, but its role is different in that government 'merely' provides the institutional framework facilitating desired outcomes.
Bayesian probability theory and maximum entropy methods are at the core of a new view of scientific inference. These new' ideas, along with the revolution in computational methods afforded by modern computers, allow astronomers, electrical engineers, image processors of any type, NMR chemists and physicists, and anyone at all who has to deal with incomplete and noisy data, to take advantage of methods that, in the past, have been applied only in some areas of theoretical physics. This volume records the Proceedings of Eleventh Annual Maximum Entropy' Workshop, held at Seattle University in June, 1991. These workshops have been the focus of a group of researchers from many different fields, and this diversity is evident in this volume. There are tutorial papers, theoretical papers, and applications in a very wide variety of fields. Almost any instance of dealing with incomplete and noisy data can be usefully treated by these methods, and many areas of theoretical research are being enhanced by the thoughtful application of Bayes' theorem. The contributions contained in this volume present a state-of-the-art review that will be influential and useful for many years to come.
The significance of manganese ores is very weil known in cast iron and steel production, as weil as in various types of chemical raw material and agricultural fertilizers. The world industry development in recent years requires their increased production in the vicinity of the metallurgical centers in different regions of the world; high grade manganese and associated metalores are needed. Analysis of the world production and consumption of manganese ores by industrial countries indicates convincingly that the highest commercial value belongs to the ores associated with the supergene zone (National Minerals Advi- sory Board, 1981; Coffman and Palencia, 1984; Doncoisne, 1985; Iones, 1990, 1991; Manganese, 1990; McMichael, 1989). The remarkable property of manganese, in contrast to many other types of mineral resources, is that the ore accumulations of this metal are distributed in the wide geochrono- logical interval from the Archean to the present time; these ores are deposited in basins and supergene environments of different types from lakes, internal seas to pelagic and abyssal regions of the World ocean, as weIl as different types of weathering crusts and karst. At the same time the manganese accumulations and features of their mineral and chemical compositions are relatively sensitive indicators, reflecting facies and geodynamic condi- tions of their formation. These properties aid the investigation of the Earth's evolution processes.
Since the dissolution of the Soviet Union almost a decade ago, there has been rapid evolution of interactions between the Western nations and individual countries of the former Soviet Union. As part of that interaction, the autonomous independent Republic of Azerbaijan through its scientific arm, the Geological Institute of the Azerbaijan Academy of Sciences under the Directorship of Academician Akif Ali-Zadeh and Deputy Director Ibrahim Guliev, arranged for personnel to be seconded to the University of South Carolina. The idea here was to see to what extent a quantitative understanding could be achieved of the evolution of the Azerbaijan part of the South Caspian Basin from dynamical, thermal and hydrocarbon perspectives. The Azeris brought with them copious amounts of data collected over decades which, together with the quantitative numerical codes available at USC, enabled a concerted effort to be put forward, culminating in two large books (Evolution of the South Caspian Basin: Geological Risks and Probable Hazards, 675 pps; and The South Caspian Basin: Stratigraphy, Geochemistry, and Risk Analysis, of which were published by the Azerbaijan Academy of 472 pps. ) both Sciences, and also many scientific papers. Thus, over the last four to five years an integrated comprehensive start has been made to understand the hydrocarbon proneness of the South Caspian Basin. In the course of the endeavor to understand the basinal evolution, it became clear that a variety of natural hazards occur in the Basin.
In the last decade several international conferences on Finsler, Lagrange and Hamilton geometries were organized in Bra ov, Romania (1994), Seattle, USA (1995), Edmonton, Canada (1998), besides the Seminars that periodically are held in Japan and Romania. All these meetings produced important progress in the field and brought forth the appearance of some reference volumes. Along this line, a new International Conference on Finsler and Lagrange Geometry took place August 26-31,2001 at the "Al.I.Cuza" University in Ia i, Romania. This Conference was organized in the framework of a Memorandum of Un derstanding (1994-2004) between the "Al.I.Cuza" University in Ia i, Romania and the University of Alberta in Edmonton, Canada. It was especially dedicated to Prof. Dr. Peter Louis Antonelli, the liaison officer in the Memorandum, an untired promoter of Finsler, Lagrange and Hamilton geometries, very close to the Romanian School of Geometry led by Prof. Dr. Radu Miron. The dedica tion wished to mark also the 60th birthday of Prof. Dr. Peter Louis Antonelli. With this occasion a Diploma was given to Professor Dr. Peter Louis Antonelli conferring the title of Honorary Professor granted to him by the Senate of the oldest Romanian University (140 years), the "Al.I.Cuza" University, Ia i, Roma nia. There were almost fifty participants from Egypt, Greece, Hungary, Japan, Romania, USA. There were scheduled 45 minutes lectures as well as short communications."
This volume contains the text of the twenty-five papers presented at two workshops entitled Maximum-Entropy and Bayesian Methods in Applied Statistics, which were held at the University of Wyoming from June 8 to 10, 1981, and from August 9 to 11, 1982. The workshops were organized to bring together researchers from different fields to critically examine maxi mum-entropy and Bayesian methods in science, engineering, medicine, oceanography, economics, and other disciplines. An effort was made to maintain an informal environment where ideas could be easily ~xchanged. That the workshops were at least partially successful is borne out by the fact that there have been two succeeding workshops, and the upcoming Fifth Workshop promises to be the largest of all. These workshops and their proceedings could not have been brought to their final form without the substantial help of a number of people. The support of David Hofmann, the past chairman, and Glen Rebka, Jr. , the present chairman of the Physics Department of the University of Wyoming, has been strong and essential. Glen has taken a special interest in seeing that the proceedings have received the support required for their comple tion. The financial support of the Office of University Research Funds, University of Wyoming, is gratefully acknowledged. The secretarial staff, in particular Evelyn Haskell, Janice Gasaway, and Marce Mitchum, of the University of Wyoming Physics Department has contributed a great number of hours in helping C. Ray Smith organize and direct the workshops.
Engineers dreams and fossil energy replacement schemes can come true. Man has been tapping the energy of the sea to provide power for his industries for centuries. Tidal energy combined with that of waves and marine winds rank among those most successfully put the work. Large scale plants are capital intensive but smaller ones, particularly built in China, have proven profitable. Since the initiation of the St Malo project in France, similar projects have gone into active service where methods have been devised to cut down on costs, new types of turbines developed and cost competitiveness considerably improved. Tidal power has enormous potential. The book reviews recent progress in extracting power from the ocean, surveys the history of tidal power harnessing and updates a prior publication by the author." |
![]() ![]() You may like...
Chinese Water Systems - Volume 1: Liaohe…
Yonghui Song, Beidou Xi, …
Hardcover
R1,634
Discovery Miles 16 340
Discovery of Oyu Tolgoi - A Case Study…
Sergei Diakov, Samand Sanjdorj, …
Paperback
R3,608
Discovery Miles 36 080
Innovative Exploration Methods for…
A. K. Moitra, Jayanta Bhattacharya, …
Paperback
R3,450
Discovery Miles 34 500
Proceedings of the International…
Dieu Tien Bui, Hai Thanh Tran, …
Hardcover
R4,498
Discovery Miles 44 980
Elements of Petroleum Geology
Richard C. Selley, Stephen A Sonnenberg
Hardcover
European Glacial Landscapes - Maximum…
David Palacios, Philip D Hughes, …
Paperback
R3,468
Discovery Miles 34 680
Principles of Applied Remote Sensing
Siamak Khorram, Cynthia F. van der Wiele, …
Hardcover
R3,882
Discovery Miles 38 820
Geological Controls for Gas Hydrates and…
Sanjeev Rajput, N K Thakur
Paperback
|